DSSSB/KVS/NVS/AEES/AWES BIHAR TRE/EMRS **NCERT SCIENCE** Physics, Chemistry & Biology

Chapter wise & Sub-topicwise Solved Papers

Chief Editor A.K. Mahajan

Complied by UPSC & State PSC Exam Expert Group

Computer Graphics By Balkrishna Tripathi & Vinay Sahu

Editorial Office 12, Church Lane Prayagraj-211002 Mob. : 9415650134

Email : yctap12@gmail.com website : www.yctbooks.com/ www.yctfastbook.com © All Rights Reserved with Publisher

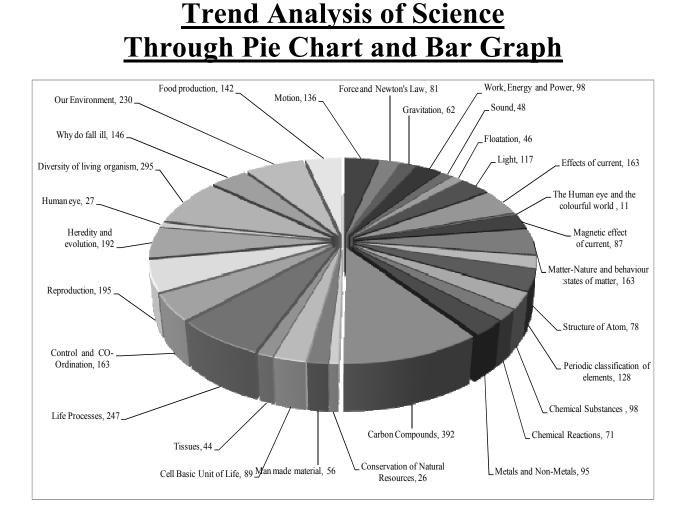
Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP YCT BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

CONTENT

	PHYSICS	8.	Effects of current 126	5-158
1.	Motion7-36	8.1	Electric current and circuit	- 126
1.1.	Distance and Displacement7	8.2	Electric potential and potential difference	- 128
1.2.	Velocity and speed9	8.3	Ohm's Law	- 136
1.3.	Acceleration22	8.4	Resistance of a system of resistors	- 139
1.4.	Uniform circular motion 32	8.5	Heating effect of electric current and	i its
2.	Force and Newton's Law 37-52		application	- 155
2.1.	Force and Motion37	8.6	Electric power	- 157
2.2.	Newton's Law of motion49	9.	The Human eye and the colourful world15	9-160
3.	Gravitation 53-67	9.1	Structure of eye	- 159
3.1	Universal Law of Gravitation53	9.2	Defects of eye and their correction	- 160
3.2	Force of Gravitation on earth54	10.	Magnetic effect of current 161	1-176
3.3	Acceleration due to gravity59	10.1	Magnetic field and field lines	- 161
3.4	Mass and weight62	10.2	Magnetic field due to a current car	rying
3.5	Free Fall66		conductor	
4.	Work, Energy and Power 68-86	10.3	Force on a current carrying conductor	in a
4.1	Work done by a force68		magnetic field	- 171
4.2	Energy75	10.4	Electric motor	- 172
4.3	Rate of doing work; Power84	10.5	Electric generator	- 173
5.	Sound 87-94	10.6	Electromagnetic Induction	- 173
5.1	Nature of Sound 87		CHEMISTRY	
5.2	Propagation of Sound in various media89	11.	Matter-Nature and behaviour :	
5.3	Reflection of Sound and its application 91		states of matter 177-	-199
5.4	Range of hearing in human ear and its structure 93	11.1.	Matter and its classification	177
5.5	Application of Ultrasound 94	11.2.	Measurement of properties of matter	178
6.	Floatation95-102	11.3.	Laws of chemical combinations	183
6.1	Thrust and Pressure95	11.4.	Atomic and molecular mass	
6.2	Archimedes Principle98		average atomic mass	183
6.3	Buoyancy100	11.5.	Mole concept and molar masses, perce	ntage
6.4	Elementary idea of relative density102		composition	186
7.	Light 103-125	11.6.	Colloids	195
7.1	Reflection of Light103	12.	Structure of Atom 200	-210
7.2	Spherical Mirror and its application105	12.1.	Dalton's atomic theory	200
7.3	Refraction of light111	12.2.	Discharge tube experiments,	200
7.4	Spherical lenses and its application 112	12.3	Atomic models	201
7.5	Application of refractive index 120	12.4	Atomic number and mass number	208
7.6	Refraction of light through a prism124	12.5.	Isotopes, isobars and isotones	209

13.	Periodic classification of elements 211-225	BIOLOGY	
13.1.	Mendeleev's periodic law211	20. Cell Basic Unit of Life	333-344
13.2.	Prediction of period, group and block 212	20.1 What is Cell	333
13.3.	Periodic trends in properties of Element 215	20.2. Cell Theory	333
13.4.	Position of hydrogen in the periodic table 225	20.3. An overview of Cell	334
14.	Chemical Substances 226-239	20.4. Prokaryotic Cells	335
14.1.	Nature and behaviour of acid, base and salts - 226	20.5. Cell envelope and its modification	
14.2.	pH Scale (pH, pOH and pkw), ionic equilibria in a solution 229	20.6. Ribosome's and Inclusion bodies	
1/1 2	Action of indicators on acids bases and salts and	20.7. Eukaryotic Cells	336
14.5.	their pH 237	20.8. Cell Membrane	336
14.4.	Preparation and uses (NaOH, CaOCl ₂ , NaHCO ₃	20.9. Cell Wall	337
	and CaSO ₄ 1/2 H ₂ O) 238	20.10. Endoplasmic Reticulum	337
15.	Chemical Reactions 240-249	20.11. Golgi Apparatus	337
15.1.	Formulation of chemical equation, balancing	20.12. Lysosomes	338
	chemical equation240	20.13. Vacuoles	339
152.	Types of chemical equation with examples 245	20.14. Mitochondria	339
16.	Metals and Non-Metals 250-261	20.15.Plastids	340
16.1.	Characters of metals, non-metals and metalloids Reactivity series250	20.16.Ribosomes	341
16.2.	All properties and applications occurrence	20.17. Cytoskeleton	341
	of metals in nature256	20.18. Centrosome and Centrioles	341
16.3.	Corrosion: (rusting of iron -prevention of	20.19. Nucleus and Chromosomes	341
	corrosion)260	21. Tissues	
17.	Carbon Compounds 262-321	21.1. The Tissue System	345
17.1.	Covalent bonding in carbon compounds and	21.2. Meristematic Tissue	346
	shape, hybridisation262	21.3. Permanent Tissue	347
17.2.	IUPAC nomenclature of carbon compound	21.3.1.Simple Permanent Tissue	
	containing functional groups (halogen alcohols, ketones, aldehyde, alkenes, and alkynes) 268	21.3.2. Complex Permanent Tissue	
17.3	Types of reactions undergone by organic	21.4. Animal Tissue	
17.0	compound 273	21.4.1. Epithelial Tissue	
17.4.	Hydrocarbons 280	21.4.2. Connective Tissue	
17.5.	Preparation and properties, (Alcohol, carboxylic	21.4.3. Muscular Tissue	
	acids, soaps, detergents, biodegradable detergent,	21.4.4. Nervous Tissue	
	carbon fibers) uses 299	22. Life Processes	
	Isomerism 316	22.1. What are life processes	
18.	Conservation of Natural Resources322-325	22.2 Different Modes of Nutrition in Plants	
18.1.	Pollution of river water, gang action plane for		
100	improving quality of water 322	22.3. Photosynthesis	
10.2.	Need for sustainable management of natural resources	22.4. Various Steps of Holozoic Nutrition	
19.	Man made material 326 -332	22.5. Respiration in Plants	
	Ceramics, cement, porcelain glass, polymer 326	22.6. Transportation in Plants22.7. Excretion in Plants	
- /	520		509

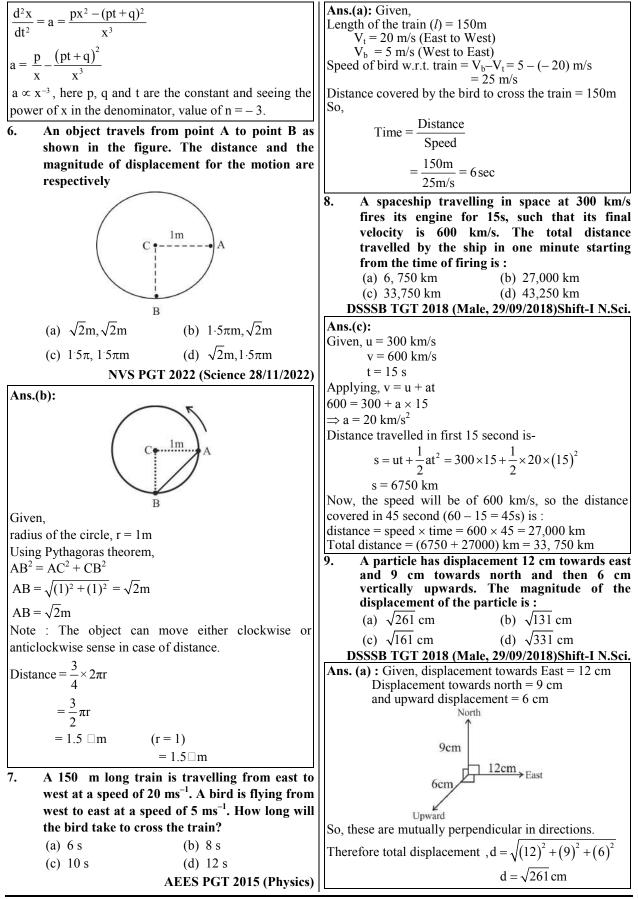

22.8.	Different Modes of Nutrition in Animals 369	25
22.9.	Human Respiratory System 370	25
22.10	Transportation in Human beings and Animals 374	25
22.11	Excretion in Animals including Human beings-380.	
23	Control and CO-Ordination386-407	26
23.1.	Introduction of Plant Hormones 386	26
23.2.	Tropic Movement in Plants 389	26
23.3.	Human Nervous System 391	26
23.4.	Basic Unit of Nervous System in Animals 393	27
23.5.	Nerve Impulse 394	27
23.6.	Central Nervous System 395	27
23.6.1	.Forebrain 396	-
23.6.2	2.Midbrain 398	27
23.6.3	B.Hindbrain 398	27
23.7.	Chemical Coordination 398	27
23.7.1	Endocrine Glands and Hormones 399	27
23.7.2	2Human Endocrine System 405	28
23.7.3	B.Hormones of Heart, Kidney and Gastrointestinal	
	Tract 406	
23.7.4	Mechanism of Hormone Action 407	28
24.	Reproduction 408-432	28
24.1	Reproduction in Plants 408	28
	Asexual Reproduction 408	28
	2 Sexual Reproduction 410	29
24.2.2	2.1. Structure of a Flower 412	29
	2.2. Reproductive Structure of Flower 414	_
	Reproduction in Animals 419	29
	Modes of Reproduction in Animals 419	29
	. Asexual Reproduction 420	29
	2. Sexual Reproduction 420	29
	2.1.Reproductive Organs 420	29
	2.2.Fertilization 421	29
	2.3.Embryo Development 424	
	Reproductive Health 426	29
24.6.	Reproductive Health Problem and Strategies - 427	29
24.7.	Population Stabilization and Birth Control 428	29
	MTP (medical termination of pregnancy) 430	30
	Sexually Transmitted Disease 431	30
24.10	Infertility 432	30
25	Heredity and evolution433-460	30
25.1.	Heredity 433	
	Mendel and his work on Inheritance 435	30
25.3.	Monohybrid Cross Heredity 438	30
25.4.	Dihybrid Cross 439	30
	Sex Determination 442	30
25.6.	Evolution and Classification 448	30
25.7.		1
	Origin of Species 455 Acquired and Inherited traits 456	30


5.9.	Homologous and Analogous organs	457
5.10	.Fossils	458
5.11	.Human Evolution	460
6.	Human eye	461-464
6.1.	Structure of Human eye	461
6.2.	Working of the Human eye	462
6.3.	Defects of a Human eye	463
7.	Diversity of living organism	465-500
7.1.	Basis of Classification	465
7.2	Classification System	465
7.3	Hierarchy of Classification	468
7.4.	Classification of Plantae	470
7.5.	Classification of Animal Kingdom	481
7.6.	Classification and Evolution	499
8.	Why do fall ill	501-518
8.1	Health	501
8.2.	Immune System	501
8.3	Types of Immunity	504
8.4	Diseases and its types	506
8.5	Prevention of Diseases	517
9.	Our Environment	519-554
9.1	Ecosystem	519
9.2.	Producer, Consumers, and Decompositio	n533
9.3.	Food Chain and Food Web	534
9.4.	Ozone Layer and its Depletion	537
9.5.	Waste Production and Their Solutions	539
9.6.	Biodegradable and Non - Biodegradable -	541
9.7.	Atmosphere	542
9.8.	Global Warming and Greenhouse Effect	545
9.9.	Biogeochemical Cycles	547
9.10	Types of Pollution	550
0. F	ood production	555-576
0.1	Improvement in Crop Yields	555
0.1.1	Crop Variety Improvement	558
0.1.2	2.Crop Production Management	561
	3. Crop Protection Management	
	Animal Husbandry	
	Cattle Farming	
	2.Poultry Farming	
	B.Fish Production	
	A.Bee Keeping	
0.3	Organic Farming	576

ANALYSIS OF QUESTION PAPERS

S.No.	Exam Name And Year	Total Exam Papers	No. Of Questions
1.	DSSSB TGT Natural Science 2014-2021	14	1400
2.	DSSSB PGT Physics 2014-2021	6	1120
3.	DSSSB PGT Chemistry 2014-2021	5	940
4.	DSSSB PGT Biology 2014-2021	5	840
5.	KVS TGT Science 2014, 2023	2	180
6.	KVS TGT (LDCE) Science 2022	1	120
7.	KVS PGT Physics 2014, 2018, 2023	3	260
8.	KVS PGT Chemistry 2017, 2018, 2023	3	280
9.	KVS PGT Biology 2018, 2023	2	180
10.	KVS PGT (LDCE) Physics 2022	1	120
11.	KVS PGT (LDCE) Chemistry 2022	1	120
12.	KVS PGT (LDCE) Biology 2022	1	120
13.	NVS TGT Science 2022	2	160
14.	NVS PGT Physics 2019, 2022	3	220
15.	NVS PGT Chemistry 2019, 2020, 2022	4	300
16.	NVS PGT Biology 2019, 2022	3	220
17.	AEES TGT Bio & /Chemistry 2015	1	50
18.	AEES TGT Math & Physics 2015	1	50
19.	AEES PGT Physics 2015	1	50
20.	AEES PGT Chemistry 2015	1	50
21.	AEES PGT Biology 2015	1	50
22.	AWES PGT Chemistry 2014	1	90
23.	AWES TGT Biology 2013	1	90
24.	Bihar Tre 1.0, 2.0, 3.0 Science 2023	3	240
25.	Bihar Tre 1.0, 2.0 Physics 2023	2	160
26.	Bihar Tre 1.0, 2.0 Chemistry 2023	2	160
27.	Bihar Tre 1.0, 2.0 Zoology 2023	2	160
28.	Bihar Tre 1.0, 2.0 Botony 2023	2	160
29.		1	80
30.		1	80
31.		1	80
32.	g,g,	1	80
	Total	78	8210

Note : After due analysis of the above question papers, 8210 questions related to Science have been presented chapter wise. Questions of repetitive and similar nature have been included so that the technique of asking questions can benefit the competitors.



01.

Motion

1. Distance and Displacement	Ans.(c): Rotational inertia is a property of any object
	which can be rotated. It is a scalar value which tells us
1. Which is not an important point about the	how difficult it is to change the rotational vleocity of an
1. Which is not an important point about the second law of motion?	object around a rotational axis which is termed as
	moment of inertia.
(a) The second law is obviously consistent with the first law.	On comparing pure translation with pure rotation, the
	term equivalent to mass is rotational inertia
(b) The second law of motion is not a vector	4. Light year is unit that is used to represent:
dependent law.	
(c) The second law of motion is applicable to a	
single point particle.	(c) Angle (d) Mass
(d) The second law of motion is a local relation,	DSSSB PGT 2018 (03 July 2018, Male) Phy.
which means that force at a point in space at a	Ans.(b): A light year is a unit of distance, representing the
certain instant of time is related to	distance light travles in one year, approximately 5.88
acceleration at that point at that instant.	trillion miles or 9.46 trillion kilometers. It is commonly
DSSSB PGT 2021 (23/07/2021 Shift-I) Physics	used in astronomy to measure huge interstellar distances.
Ans.(b): The second law of motion is not a vector	A light-year is a distance travelled by light in a year so a
dependent law.	light-year is a unit of length.
Second law of motion–Newton's second law of motion	5. The displacement (x) vs. time (t) of a particle
relates the net force acting on an object to its	follows the condition:
acceleration and mass as it states that the rate of change	$x^2 = pt^2 + 2qt + r$
in momentum is equal to force i.e. $\frac{dp}{dt} = F$.	
Mathematically, it can be expressed as	Where p, q and r are constants. It is found that
F = ma	the acceleration of the particle varies at x^n , then
Where,	n is equal to?
F = net force,	(a) -1 (b) -2
m = mass of the object	(c) -3 (d) -4
and a = acceleration	DSSSB PGT 2018 (04 July 2018 Female) Physics
2. Angular displacement is:	Ans.(): Distance x varies with time t as,
(a) Positive for counter-clockwise rotation	$\mathbf{x}^2 = \mathbf{p}\mathbf{t}^2 + 2\mathbf{q}\mathbf{t} + \mathbf{c} \qquad \dots $
(b) Positive for clockwise rotation	Differentiating both side w.r.t. t
(c) Negative for counter-clockwise rotation	dx
(d) zero for clockwise rotation	$2x \frac{dx}{dt} = 2pt + 2q$
DSSSB PGT 2018 (03 July 2018, Male) Phy.	
Ans.(a): Angular displacement – Angular displacement is	$x \frac{dx}{dt} = pt + q$ (ii)
defined as the total angle made by the particle from its	dt
starting point to final point and it is represented in the form	Again differentiating w.r.t. t -
of radian or degrees.	$d^2x (dx)^2$
For counter-clockwise rotaion, angular displacement is	$x\frac{d^2x}{dt^2} + \left(\frac{dx}{dt}\right)^2 = p$
positive and for clockwise is negative.	
3. On comparing pure translation with pure	$\Rightarrow \qquad \frac{d^2 x}{dt^2} = \frac{p - \left(\frac{dx}{dt}\right)^2}{x}$
rotation, the term equivalent to mass is:	$\Rightarrow \frac{d^2x}{dt} = \frac{1}{dt} \frac{dt}{dt}$
(a) Angular velocity	
(b) Angular acceleration	Using eq ⁿ . (ii), we get-
(c) Rotational Inertia	$\frac{d^2 x}{d^2 x} = \frac{p - \left(\frac{pt + q}{x}\right)^2}{\left(\frac{pt + q}{x}\right)^2}$
(d) Energy	$\left \frac{p^2 \mathbf{x}}{d^2 \mathbf{x}} - p - \frac{p^2 + q}{r} \right $
DSSSB PGT 2018 (03 July 2018, Male) Phy.	$\left \frac{d^2 x}{dt^2}\right = \frac{(x)}{x}$
= (,,,,) i ny.	

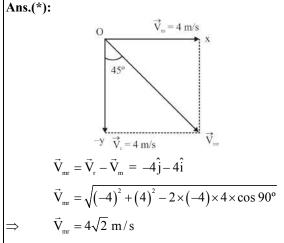
2. Velocity and Speed	Ans.(d): According to the question $v.sin\theta$
 10. A bullet of mass 100g is fired from a gun of mass 20 kg with a velocity of 100m/s. The recoil velocity of the gun is: (a) 0.1 ms⁻¹ (b) 0.2 ms⁻¹ (c) 0.4 ms⁻¹ (d) 0.5 ms⁻¹ DSSSB TGT 2018 (Female, 27/09/2018) Shift-III N.Sci. 	$ \begin{array}{c} m \\ \bigcirc \\ & u_1 \\ \bigcirc \\ & u_2 = 0 \\ \end{array} $ Before collision $ \begin{array}{c} & v_1 \\ & 0 \\ & v_1 \cos\theta \\ \end{array} $
Ans. (d) : Given,	$\mathbf{v}_{\mathrm{v_2sin\phi}} = \mathbf{v}_{\mathrm{v_2}}$
mass of bullet, $m_B = 100 \text{ g} = 0.1 \text{ kg}$	After collision
mass of gun, $m_G = 20 \text{ kg}$	In horizontal direction -
velocity of bullet, $v_B = 100 \text{ m/s}$	$m_1u_1 + m_2u_2 = m_1v_1cos\theta + m_2v_2cos\theta$
Let the recoil velocity of gun be v _G .	$m_1u_1 + 0 = mv_1cos\theta + mv_2cos\phi$
Applying the conservation of linear momentum,	$u_1 = v_1 \cos\theta + v_2 \cos\phi$ (i) In vertical direction -
$m_B v_B = m_G v_G$	$0 = m_1 v_1 \sin \theta - m_2 v_2 \sin \phi$
$m_{\rm B}v_{\rm B} = 0.1 \times 100$	$0 = v_1 \sin \theta - v_2 \sin \phi \dots \dots$
$\Rightarrow v_{G} = \frac{m_{B}v_{B}}{m_{G}} = \frac{0.1 \times 100}{20}$	On squaring and adding equation (i) and (ii) both side
$v_G = 0.5 \text{ m/s}$	we get -
11. A body is thrown with a velocity of projection	$u_1^2 = v_1^2 + v_2^2 + 2v_1v_2\cos(\theta + \phi)$ (iii)
49ms ⁻¹ at an angle of projection 45°. Find the	According to the question collision is perfectly elastic
Range (g = 9.8 ms ⁻²).	therefore K.E. is conserved - $u_1^2 = v_1^2 + v_2^2$ (iv)
(a) 240 m (b) 245 m	$u_1 - v_1 + v_2$ (iv) From eq ⁿ . (iii) and (iv) -
(c) 250 m (d) 278 m	$\cos(\theta + \phi) = 0$
DSSSB PGT 2021 (23/07/2021 Shift-I) Physics	$\frac{\left[\Theta + \phi = 90^{\circ}\right]}{\left[\Theta + \phi = 90^{\circ}\right]}$
Ans.(b): Given,	13. A bullet of mass 50g moving with a velocity 'v'
u = 49 m/s	strike a block of mass 2kg. The block is free to
$\Box = 45^{\circ}$	move in the direction of the bullet. In the
$g = 9.8 m/s^2$	process there is a loss of kinetic energy of
Using formula,	4100J. find u in metres per sec. (a) $\frac{205}{100}$
-	(a) 205 (b) 410 (c) $410\sqrt{2}$ (d) 820
$R = \frac{u^2 \sin 2\theta}{g}$	(c) 410√2 (d) 820 DSSSB PGT 2018 (04 July 2018 Female) Physics
	Ans.(b): Given,
$R = \frac{49^2 \times \sin(2 \times 45^\circ)}{9.8}$	$m_1 = 50g = 0.05 \text{ kg},$
R = 245m	$m_2 = 2kg$
12. A ball moving on a smooth horizontal plane in	K.E. = 4100J
a straight line with a velocity of 100 cms ⁻¹ hit	By the law of conservation of momentum, $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
an identical ball which is at rest. The collision is	Here, initial velocity of bullet, $u_1 = v m/s$
perfectly elastic and the two balls move along	Let, the final velocity under perfectly elastic collision
two straight paths after the collision. The	between the bullet and block be u m/s. $0.05y \pm 0.02y = 2 \times y \pm 0.05y$
velocity of the first ball gets reduced to 60cms ⁻¹ .	$0.05v + 0 = 2 \times u + 0.05 u$ 2 05
Find the angle between the direction of the ball	$v = \frac{2.05}{0.05}u$
after the collision.	v = 41u
(a) 30° (b) 45°	
(c) 60° (d) 90°	K.E. = $\frac{1}{2}$ mv ² - $\frac{1}{2}$ (m ₁ + m ₂) u ²
DSSSB PGT 2018 (04 July 2018 Female) Physics	
	9

$$4100 = \frac{1}{2} \times 0.5 \times (41u)^2 - \frac{1}{2} \times (2.05) u^2$$

$$8200 = 0.05 \times 1618u^2 - 2.05 u^2$$

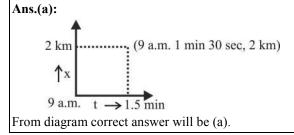
$$8200 = 84.05u^2 - 2.05u^2$$

$$8200 = 82u^2$$


$$u^2 = 100$$

$$u = 10 \text{ m/sec}$$

$$v = 41u = 41 \times 10 = 410 \text{ m/sec}.$$


14. On a rainy day when a boy is running at a speed of 4 ms⁻¹, rain strikes him vertically at a speed of 4 ms⁻¹. For what speed of the boy will rain strike him at an angle of 45°?
(a) 2 m/s
(b) 6 m/s

(c) 8 m/s (d)
$$8\sqrt{2}$$
 m/s

Note :- Official answer given by commission is (c)

15. A train moving with a velocity 40 km/hr passes through a station at 9 AM. After 1.5 min a lightning bolt strikes the railway tracks 2 km from the station in the same direction as that of the motion of the train. Find the co-ordinates of the lightning flash as measured by an observer at the station.

Ans.(d): Given, $m_1 = 10g$ $m_2 = 20g$ $u_1 = 10 \text{ m/sec}, v_1 = 0 \text{ m/s}$ We have, $m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$ $10 \times 10 + 20 \times 5 = 0 + 20 \times v_2$ $100 + 100 = 20v_2$ $v_2 = \frac{200}{20}$ $v_2 = 10 \text{ m/sec}.$

17. An open carriage is travelling at 20 m/s. A boy standing on the carriage throws a ball vertically upward with a velocity 10 m/s. The direction of motion of the carriage is along the x -axis, and the vertical dissection is along the y - axis. The frame of reference attached with a stationary observer is defined by (x, y, t) and that with the carriage is (x', y', t'). Where the symbols have their meanings. Wrote the displacement vs. time equations correcting (x, y) : (x', y') with (t, t'). Take g = 10 m/s²

(a)
$$x = 0, y = 10t - 5t^2,$$

 $x' = 20t, y' = 10t' - 5t'^2$
(b) $x = 20t, y = 10t - 5t^2,$
 $x' = 0, y' = 10t' - 5t'^2$
(c) $x' = 0, y' = 10t'$

Ans. (b) : Displacement vs time equation (x, y) (x', y') with time (t, t') Given, v = 20 m/s v₀ = 10 m/s g = 10 m/s² • displacement in x' as a function of time, x'(t') = v_{0x}t' = 0 • displacement in x as a function of time, x(t) = x'(t') + v_ct' = 0+20t x(t) = 20t • displacement in y' as a function of time, y'(t') = v₀t' - $\frac{1}{2}$ gt'² = 10t' - $\frac{1}{2}$ ×10t'² = 10t' - 5t'² • displacement in y as a function of time,

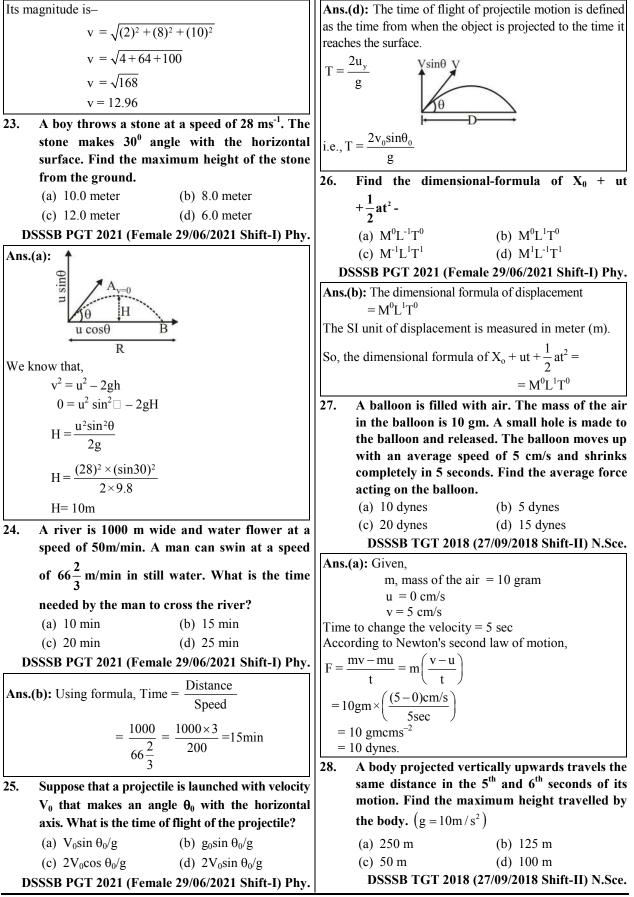
 $y(t) = y'(t') = 10t - 5t^2$

Female) Physics

- 18. Two spherical drops of water of the same size attain terminal velocities of magnitude 0.1 ms⁻¹. In the process of falling they coalesce to form a single drop. What will be the new terminal velocity?
 - (a) $\frac{1}{10} 2^{1/3} \text{ ms}^{-1}$ (b) $\frac{1}{10} 2^{2/3} \text{ ms}^{-1}$ (c) $\frac{1}{5}2^{2/3}$ ms⁻¹ (d) $\frac{1}{20}2^{1/3}$ ms⁻¹

DSSSB PGT 2018 (04 July 2018 Female) Physics

Ans.(b): If R is radius of new drop formed then,

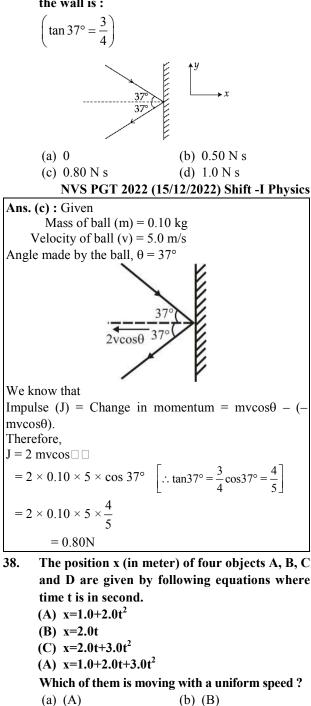

$$\frac{4}{3}\pi R^3 = 2 \times \frac{4}{3}\pi r^3$$

or $R = 2^{\frac{1}{3}}r$
If drop of radius r falling in a medium then it acquire a
critical velocity
As $V \propto r^2$
 $\Box \frac{V_2}{V_1} = \frac{R^2}{r^2}$
 $= \frac{(2^{1/3}r)^2}{r^2} = 2^{2/3} \Box$

$$V_{1} = \frac{(2^{1/3} r)^{2}}{r^{2}} = 2^{2/3} \square$$

or $V_{2} = V_{1} \times 2^{2/3}$
 $= 0.1 \times (2)^{2/3}$
 $= \frac{1}{10} \times (2)^{2/3} m/s$

19. A projectile of mass 40 kg is shot vertically upwards with a velocity 80 m/s. After 5sec it explodes into two equal parts and one of them travels vertically up with a velocity 100m/s. What is the velocity of the other fragment (in magnitude and direction) at this instant? (take $g = 10 \text{ m/s}^2$ (a) 40 m/s upward (b) 40 m/s downward (c) 20 m/s upward (d) 20 m/s downward DSSSB PGT 2018 (04 July 2018 Female) Physics Ans.(b): Given,


mass = 40 kgvelocity = 80 m/stime = $5 \sec$ After 5 sec velocity attained by themv = u - gt $= 80 - 10 \times 5$ = 80 - 50= 30 m/sApply law of conservation of momentum for its fragment parts $mv = m_1v_1 + m_2u_2$ (i) The fragment mass equal because of identical in size then. $m_1 = m_2 = 20 \text{ kg and } v_1 = 100 \text{ m/s}$

Now. from equation. (i) $mv = m_1v_1 + m_2u_2$ $40 \times 30 = 20 \times 100 + 20 \times u_2$ $1200 = 2000 + 20u_2$ $20u_2 = -800$ $u_2 = -40 \text{ m/s}$ In a mathematical treatment the expression of 20. a function of velocity u, appears as e^{-bu^2} . The dimension of b is: (b) ML^2T^{-2} (a) L^2T^{-2} (c) $L^{-2}T^2$ (d) MLT^{-1} DSSSB PGT 2018 (04 July 2018 Female) Physics Ans.(c): $bu^2 = M^{\circ}L^{\circ}T^{\circ} = 1$ $bu^2 = 1$ $b = \frac{1}{u^2}$ $b = \frac{1}{[LT^{-1}]^2} = \frac{1}{L^2 T^{-2}} = L^{-2} T^2$ 21. What will be the angle of projection to find the maximum horizontal range by a projectile? (b) 60° (a) 30° (c) 45° (d) 90° DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy. Ans.(c): We know that, Range (R) = $\frac{u^2 \sin 2\theta}{dt}$ For maximum range, \Rightarrow R_{max} = $\frac{u^2}{dt}$ $\sin 2\Box = 1$ $\sin 2\Box = 1$ $\Box = 45^{\circ}$ So, angle of projection is 45°. Find the magnitude of linear velocity of a 22. particle whose angular velocity is $7\hat{i}+3\hat{j}-\hat{k}$ and the distance from the origin is $\hat{i} - \hat{j} + \hat{k}$. (a) 15.75 ms^{-1} (b) 14.62 ms^{-1} (c) 12.35 ms^{-1} (d) 13.75 ms^{-1} DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy. Ans.(c): Given, angular velocity $(\vec{\omega}) = 7\hat{i} + 3\hat{j} - \hat{k}$ distance $(\vec{r}) = \hat{i} - \hat{j} + k$ Liner velocity, $\vec{v} = \vec{\omega} \times \vec{r} = -(\vec{r} \times \vec{\omega})$ $\vec{v} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & -1 & 1 \\ 7 & 3 & -1 \end{vmatrix} = -2\hat{i} + 8\hat{j} + 10\hat{k} =$ $= 2\hat{i} - 8\hat{j} - 10\hat{k}$

35. A vehicle travels half the distance *l*. with speed Ans.(c): Given, V_1 , and the other half with speed V_2 , then the mass of the bullet, $m_1 = 25g = 25 \times 10^{-3}$ kg average speed of the vehicle is velocity of the bullet, $v_1 = 120$ m/s (a) $\frac{v_1 + v_2}{2}$ (b) $\frac{v_1 v_2}{v_1 + v_2}$ mass of the pistol, $m_2 = 2.5$ kg From the conservation of the momentum, $m_1v_1 + m_2v_2 = 0$ (d) $\frac{v_1^2 v_2^2}{v_1 + v_2}$ (c) $\frac{2v_1v_2}{v_1+v_2}$ $\mathbf{v}_2 = \frac{-\mathbf{m}_1 \mathbf{v}_1}{\mathbf{m}_2}$ NVS PGT 2022 (Science 29/11/2022) $=\frac{-25\times10^{-3}\times120}{2.5}$ **Ans.** (c) : Given, total distance = l= -1.2 m/sSo, recoil velocity is -1.2 m/s. The time taken to cover the half distance, $t_1 = \frac{l/2}{v}$ A particle moves along a semicircular path of 33. radius 20 m in 10 seconds. The average speeds of the particle is Similarly, $t_2 = \frac{l/2}{v_2}$ (a) 2 m/s(b) 4 m/s(c) $2\pi \, \text{m/s}$ (d) $4\pi \text{ m/s}$ So, total time $t = t_1 + t_2$ NVS PGT 2022 (Science 28/11/2022) Therefore, average speed $(v) = \frac{\text{Total distance}}{\text{Total Time}}$ Ans.(c): Given, The radius of the circle, r = 20 m $\mathbf{v} = \frac{l}{\left(\frac{l}{2\mathbf{v}_1} + \frac{l}{2\mathbf{v}_2}\right)} = \frac{l}{\frac{l}{2}\left(\frac{\mathbf{v}_2 + \mathbf{v}_1}{\mathbf{v}_1 \cdot \mathbf{v}_2}\right)}$ Time, t = 10 secThe average speed of the particle is defined as the total distance travelled per unit time. $v_a = \frac{\pi r}{t}$ $\mathbf{v} = \frac{2\mathbf{v}_1\mathbf{v}_2}{(\mathbf{v}_1 + \mathbf{v}_2)}$ $=\frac{\pi\times 20}{10}=2\pi m/sec$ A ball whose kinetic energy is E, is thrown at 36. an angle of 45⁰ with the horizontal. The kinetic 34. The velocity (v)-time (t) graph of a ball of mass energy at the highest point of its flight will be : 50 g along a straight line on a horizontal (a) E (b) E/2surface is as shown. The magnitude of force (c) E/3 (d) Zero exerted by the surface on the ball to bring it to **KVS PGT 2014 (Physics)** rest is Ans. (b) : \rightarrow v cos 45° v(cm/s) 15 5 The velocity at highest point of projectile path v' = v0 8 10 2 6 $\cos\theta = v \cos 45^{\circ} \Rightarrow v' = \frac{v}{\sqrt{2}}$ t(s) (b) 0.001 N (a) 1 N At initially projected ball, (c) 0.01 N (d) 0.1 N kinetic energy $=\frac{1}{2}mv^2 = E$ NVS PGT 2022 (Science 29/11/2022) Ans. (b) : Given, m = 50gThe kinetic energy at highest point According to Newton's force law, $=\frac{1}{2}mv'^{2}=\frac{1}{2}m\left(\frac{v}{\sqrt{2}}\right)^{2}=\frac{1}{2}\times\frac{mv^{2}}{2}$ $F = \frac{dp}{dt} = m\frac{dv}{dt} = \frac{50}{1000} \times \left(\frac{0-20}{0-10}\right) \times \frac{1}{100}$ $=\left(\frac{1}{2}\mathrm{mv}^2\right)\frac{1}{2}=\frac{\mathrm{E}}{2}$ $F = \frac{1000}{1000} \times \frac{1}{1000} = 10^{-3} N = 0.001 N$ 14

37. A ball of mass 0.10 kg strikes a rigid wall with a speed of 5.0 m/s and is reflected with the same speed, as shown in the figure. The (c) magnitude of impulse imparted to the ball by the wall is :

(d) (D) NVS PGT 2022 (15/12/2022) Shift -I Physics

Ans.(b): Except the option (b), all others are non

(a)
$$x = 1.0 + 2.0t^2 \Rightarrow \frac{dx}{dt} = 4.0t$$

(c) $x = 2.0t + 3.0t^2 \Rightarrow \frac{dx}{dx} = 2.0 + 6.0t$
(d) $x = 1.0 + 2.0t + 3.0t^2$
 $\frac{dx}{dt} = 2.0 + 6.0t$
(b) $x = 2t \Rightarrow \frac{dx}{dt} = 2 = v$
which is a constant independent of t.
So, option (b) $x = 2.0t$ is moving with a uniform speed.
39. The velocity v (in m/s) of a particle changes
with time t (in second) as
 $v=1.0+2.0t+1.0t^2$
The average acceleration of the particle for the
duration t=0 s to t=2.0 s is :
(a) 1.0 m/s^2 (b) 3.0 m/s^2
(c) 4.0 m/s^2 (d) 5.0 m/s^2

Ans. (c) : Given, velocity = $1.0 + 2.0t + 1.0t^2$ So, acceleration of particle at time t

$$a_{t} = \frac{dv}{dt} = \frac{d}{dt} (1.0 + 2.0t + 1.0t^{2})$$

$$a_{t} = 2.0 + 2.0t$$
acceleration at t = 0,

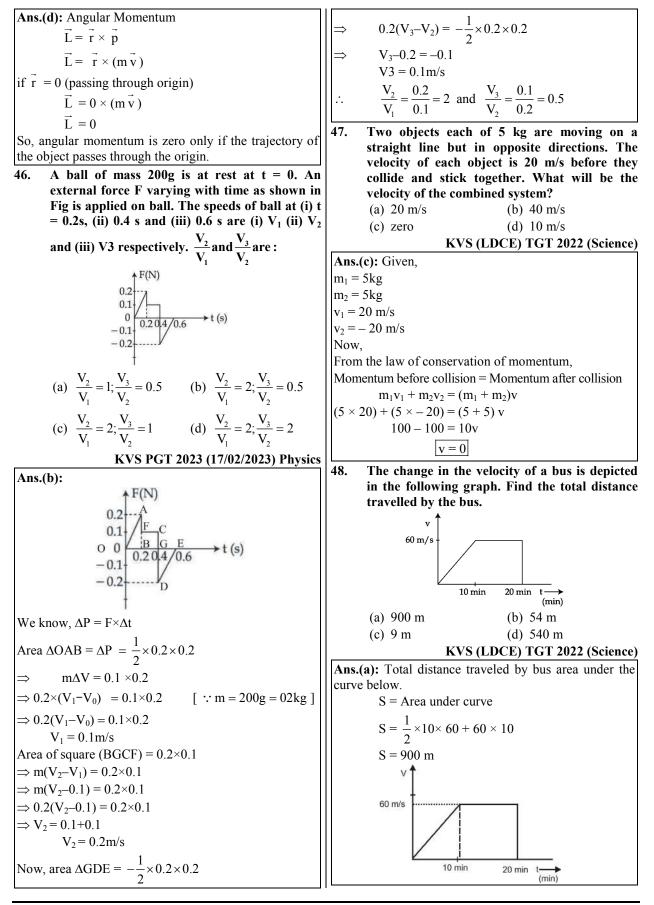
$$a_{0} = 2.0 + 2.0 \times 0 = 2.0 \text{ m/s}^{2}$$
acceleration at t = 2,

$$a_{0} = 2.0 + 2.0 \times 2 = 6.0 \text{ m/s}^{2}$$
Average Acceleration,

So 39.

$$a = \frac{a_0 + a_2}{2} = \frac{2 + 6}{2} = 4.0 \text{ m/s}^2$$

40. Match the List - I with List - II and select the correct answer :


List-I (Expression)	List-II (Physical Quantity)
(A) $\frac{R}{L}$	(p) Time
(B) RC	(q) Frequency
(C) $\frac{E}{B}$	(r)Speed
(D) $\sqrt{\mu_0 \varepsilon_0}$	(s) (Speed) ⁻¹
(A) (B) (C) (D)	
(a) (p) (q) (r) (s)	
(b) (q) (p) (r) (s)	
(c) (p) (q) (s) (r)	
(d) (s) (r) (q) (p)	

Now from the options.

uniform because $\frac{dx}{dt} = f(t)$.

(c) (C)

If a wave is having group velocity of 2×10^8 43. Ans. (b) : m/sec, then what is phase velocity? $\frac{L}{P}$ = time constant [T] (a) 4.5×10^8 m/sec $\frac{R}{L} = \frac{1}{\text{time constant}} = \text{frequency}$ (b) 5.5×10^8 m/sec (c) 9×10^8 m/sec (d) More than one of the above RC = time constant [T](e) None of the above $\frac{E}{B} = C = speed$ **BPSC School Teeacher 2023 Paper-III Science** $\frac{1}{\sqrt{\mu_0 \in 0}} = c = speed$ Ans.(a): Given. Group velocity $(v_g) = 2 \times 10^8 \text{ m/s}$ Phase velocity, $v_p = ?$ $\sqrt{\mu_0 \in \mathbf{0}} = \frac{1}{2} = (\text{speed})^{-1}$ $c = 3 \times 10^8 \text{ m/s}$ We know that, So, option b is correct. $v_g \times v_p = (c)^2$ A 0.5 kg ball falls pass a window, whose top is 41. $v_p = \frac{(c)^2}{c}$ 1.8 m in vertical extent from the ground. If the speed of the ball at the top of the window is 8 m/s, its speed at the ground will be: $=\frac{(3\times10^8)^2}{2\times10^8}$ (Take $g = 10 \text{ m/s}^2$) (a) 10 m/s(b) 8 m/s(c) 6 m/s(d) 5 m/s $= 4.5 \times 108 \text{ m/s}$ KVŚ TGT 2023 (Science) 44. A particle moves with different uniform speeds Ans.(a): Given, v, 2v,3v,,nv in equal intervals of time. m = 0.5 kgThe average speed of particle over complete h = 1.8 m $v_1 = 8 \text{ m/s}$ journey is We know that, (a) $\frac{nv}{2}$ (b) $\frac{(n-1)v}{2}$ $\frac{1}{2}mv_1^2 + mgh = \frac{1}{2}mv_2^2$ (c) $\frac{(n+1)v}{2}$ (d) (n+1)v $\frac{1}{2} \times 0.5 \times (8)^2 + 0.5 \times 10 \times 1.8 = \frac{1}{2} \times 0.5 \times v_2^2$ KVS PGT 2023 (17/02/2023) Physics $\frac{1}{2} \times 64 + 18 = \frac{1}{2} v_2^2$ **Ans.(c):** $V_{avg} = \frac{\text{Total Distance}}{\text{Total Time}}$ $32+18 = \frac{1}{2}v_2^2$ $V_{av} = \frac{(v \times t) + (2v \times t) + \dots (nv \times t)}{t + t + t + \dots + n \text{ times}}$ $v_2^2 = 100$ $=\frac{vt+2vt+3vt+\ldots+nvt}{nt}$ $v_2 = 10 \text{ m/s}$ 42. The ratio of average velocity and average speed of a body is $=\frac{v}{n}[1+2+3....n]$ (a) 1 (b) more than 1 $=\frac{v(n)(n+1)}{n}=\frac{(n+1)v}{2}$ (c) 1 or less than 1 (d) More than one of the above (e) None of the above An object is moving with a constant velocity \vec{V} . 45. **BPSC School Teeacher 2023 Paper-IV Physics** Which one of the following statements is Ans.(c): Displacement is the shortest distance between two correct for the angular momentum of this points. object? $Displacement \leq Distance$ $Displacement \le 1$ (a) Its value is always zero (b) Its value is always non-zero Distance Average velocity ≤ 1 (c) It value is zero only once during its journey (d) Its value is zero only if the trajectory of the Average speed object passes through the origin So, option (c) is correct. KVS PGT 2023 (17/02/2023) Physics

49. Ravi is travelling from Delhi to Agra in a car. He covers one - third of distance at a speed of	8
30 km/h and rest of the distacne at a speed of	S1 - Average speed of an object over a finite
50 km/h	intervel of time is greater than or equal to the
The average speed is approximately:	magnitude of average velocity.
(a) 41 km/h (b) 45 km/h	S2 - Instantaneous speed at any instant is equal
(c) 35 km/h (d) 48 km/h KVS (LDCE) TGT 2022 (Science)	to the magnitude of instantaneous velocity.
Ans.(a): Given,	(a) S1 is correct and S2 in incorrect
	(b) S1 is incorrect and S2 is correct
$D_1 = \frac{x}{3}$ km, $D_2 = \frac{2x}{3}$ km,	(c) Both S1 and S2 and correct
$v_1 = 30 \text{ km/hr}, v_2 = 50 \text{ km/hr}$	(d) Neither S1 nor S2 is correct
	KVS (LDCE) TGT 2022 (Science)
$t_1 = \frac{D_1}{v_1} = \frac{x/3}{30} = \frac{x}{3 \times 30}$	Ans.(c): Average speed of an object over a finite interval
$v_1 = 30 = 3 \times 30$	of time is greater than or equal to the magnitude of
$\frac{2}{3}$ x	average velocity because the two are equal only if the
$t_2 = \frac{\frac{2}{3}x}{50} = \frac{2x}{3 \times 50}$	path length is equal to the magnitude of displacement.
	52. The dimension of speed is-
Total time = $t_1 + t_2$	(a) LT^{-1} (b) LT^{-3}
$\frac{1}{3}x$ $x - \frac{1}{3}x = \frac{2}{3}x$	(c) LT (d) LT^{-2}
$A \underbrace{\frac{1}{3}x}_{A} \underbrace{x - \frac{1}{3}x = \frac{2}{3}x}_{B}$	DSSSB TGT 2021(male,08/09/2021)Shift-II N.Sci.
С	distance
$t_1 + t_2 = \frac{x}{3 \times 30} + \frac{2x}{3 \times 50}$	Ans.(a): speed = $\frac{\text{distance}}{\text{time}}$
3×30 3×50	distance = [L]
$t_1 + t_2 = \frac{x}{3 \times 10} \left[\frac{1}{3} + \frac{2}{5} \right]$	time $(t) = [T]$
$\left[t_1 + t_2 - \frac{1}{3 \times 10} \left[\frac{1}{3} + \frac{1}{5} \right] \right]$	
$x \begin{bmatrix} 5+6 \end{bmatrix}$	$V = \begin{bmatrix} L \\ T \end{bmatrix}$
$t_1 + t_2 = \frac{x}{30} \left[\frac{5+6}{15} \right]$	
	$= M^{o}LT^{-1}.$
$t_1 + t_2 = \frac{11x}{30 \times 15}$	53. If an object moves 40 m towards north in 10 s
50,15	and then 30 m east ward in next 10s, The
Now,	average velocity of the object is-
$V_{av} = \frac{\text{Total Distance}}{\text{Total Time Taken}} = \frac{x}{t_1 + t_2}$	(a) 2 ms^{-1} (b) 2.5 ms^{-1} (c) 3 ms^{-1} (d) 1.5 ms^{-1}
Total Time Taken $t_1 + t_2$	
x _ x _ 30×15 _ 450	DSSSB TGT 2022 (Female, 26/09/2022) Shift-I N.Sci.
$V_{av} = \frac{x}{x \times 11} = \frac{30 \times 15}{11} = \frac{450}{11}$	Ans.(b): Since, object moves 40 m north and 30 m east.
$\overline{30 \times 15}$	Then, the resultant displacement of object
= 40.909	$=\sqrt{(40)^2+(30)^2}=50m$
= 41 km/h.	
50. The length of minute hand in a clock is 4.5 cm.	Total time (t) = $10 + 10 = 20$ second
What is the average velocity of the tip of the	Average velocity $=\frac{50}{20}=2.5$ m/s
minute hand between 6.00 am and 6.30 am.	
(a) 0.3 m/s (b) $0.5 \times 10^{-4} \text{ m/s}$	54. A man running with a uniform velocity u on a
(c) 5×10^{-3} cm/s (d) 0.5 cm/s	straight road sees a bus just starting when it is
KVS (LDCE) TGT 2022 (Science)	at a distance x from him. If the acceleration of
Ans.(c): Between $6:00 \text{ Am}$ to $6:30 \text{ Am}$	the bus is f, then what is the maximum possible
$\Box \text{ Displacement} = 2 \times (\text{length of minute hand})$ $= 2 \times 4.5$	value of x that would enable the man to catch
$= 2 \times 4.5$ = 9 cm	the bus?
and time taken (t) = $30 \text{ min} = 30 \times 60$	(a) There is no upper limit (b) $\frac{u^2}{4f}$
= 1800 sec	
	(c) $\frac{u^2}{f}$ (d) $\frac{u^2}{2f}$
\Box average velocity = $\frac{s}{t} = \frac{9}{1800} = 5 \times 10^{-3} \text{ cm/sec}$	1 21
L	NVS PGT 2019 (Physics)

(b) 2h (a) h Ans.(d): Given, (c) 3h velocity of man = u (d) 4h Acceleration of bus = fDSSSB TGT 2018 (Male, 29/09/2018)Shift-I N.Sci. Ans.(c): At h height, Distance travelled by the bus, = $S_1 = 0 + \frac{1}{2}ft^2 = \frac{1}{2}ft^2$ $\frac{1}{2}$ mv² = mgh Distance travelled by the man, $S_2 = ut$ $\Rightarrow v^{2} = 2gh$ $\Rightarrow v^{2} \propto h$ When man catches the Bus, $x + S_1 = S_2$ $\Rightarrow x = S_2 - S_1 = ut - \frac{1}{2}ft^2$ Here, $v_1 = v$, $v_2 = 2v$, $h_1 = h$, $h_2 = ?$ $\left(\frac{\mathbf{v}_1}{\mathbf{v}}\right)^2 = \frac{\mathbf{h}_1}{\mathbf{h}}$ $\Rightarrow \frac{1}{2} ft^2 - ut + x = 0$ $\Rightarrow t = \frac{4 \pm \sqrt{u^2 - 4 \times \frac{f}{2} \times x}}{2 \times f/2}$ $\Rightarrow \left(\frac{\mathbf{v}}{2\mathbf{v}}\right)^2 = \frac{\mathbf{h}}{\mathbf{h}_2} \Rightarrow \mathbf{h}_2 = 4\mathbf{h}$ Since, body already fall at height h. So, from height h, it For real time t, $u^2 \ge 2fx$ only fall 4h - h = 3h height to gain its double velocity. A mass of 4 kg moving at 3m/s collides with a $\Rightarrow \frac{u^2}{2f} \ge x$ 57. mass of 6 kg moving at 2m/s in the opposite direction and they stick together. The i.e. the maximum possible value of x that would enable combined mass has velocity of: the man to catch the bus is $x = \frac{u^2}{2f}$ (b) 2.4 m/s(a) zero (c) 4.8 m/s(d) 5.6 m/sAbhiram leaves his house at 8.30 am for his 55. DSSSB TGT 2018 (Male, 29/09/2018)Shift-I N.Sci. school. The school is 2 km away and classes **Ans.(a):** Given, $m_1 = 4 \text{ kg}$, $v_1 = 3 \text{ m/s}$ start at 9.00 am. If he walks at a speed of 3 $m_2 = 6 \text{ kg}, v_2 = -2 \text{ m/s}$ km/hr for the first kilometer, at what speed As per question, using the conservation of linear should he walk the second kilometer to reach momentum, just in time? $(m_1 + m_2) v = m_1 v_1 + m_2 v_2$ (a) 6 km/hr (b) 5.5 km/hr $10v = 4 \times 3 - 6 \times 2$ (c) 4.5 km/hr (d) 3 km/hr \Rightarrow v = 0 DSSSB TGT 2018 (Female, 27/09/2018) Shift-III Thus the combined mass is at rest. N.Sci. 58. A car covers the first half of the distance Ans.(a): Given, between two places at a speed of 40 km/hr and Total distance, d = 2 kmthe second half at 60 km/hr. What is the Total time taken by Abhiram, t = 30 Minute $= \frac{1}{2}$ hr average speed of the car? (a) 50 km/hr (b) 48 km/hr House $\xrightarrow{1 \text{ km}}$ $\xrightarrow{1 \text{ km}}$ School (c) 100 km/hr (d) 60 km/hr DSSSB TGT 2018 (Male, 29/09/2018)Shift-II N.Sci. Ans. (b) : Avg.speed = $\frac{\text{Total distance covered}}{\text{Total time taken}} = \frac{x}{t}$ Time taken by abhiram in first 1 km = 1/3 hr Suppose time taken in next 1 km = t_2 \therefore t₁ + t₂ = t $\Rightarrow \frac{1}{3} + t_2 = \frac{1}{2}$ Time $t_1 = \frac{x}{2} \times \frac{1}{40} = \frac{x}{80}$ \Rightarrow $t_2 = \frac{1}{2} - \frac{1}{3} = \frac{1}{6}hr$ $t_2 = \frac{x}{120}$ Thus, the speed through which he walks the second kilometer is $v_2 = \frac{1}{(1/6)} = 6 \text{ km/hr}$. Total time $t = t_1 + t_2$ $t = \frac{x}{80} + \frac{x}{120} \implies t = \frac{x}{40} \left| \frac{1}{2} + \frac{1}{3} \right|$ 56. A body freely falling from rest has acquired a velocity 'v' after it falls through a distance 'h'. Average speed $\frac{x}{t} = 40 \times \frac{6}{5} = 48 \text{ km/h}$ The distance it has to fall down further for its velocity to become doubled is :

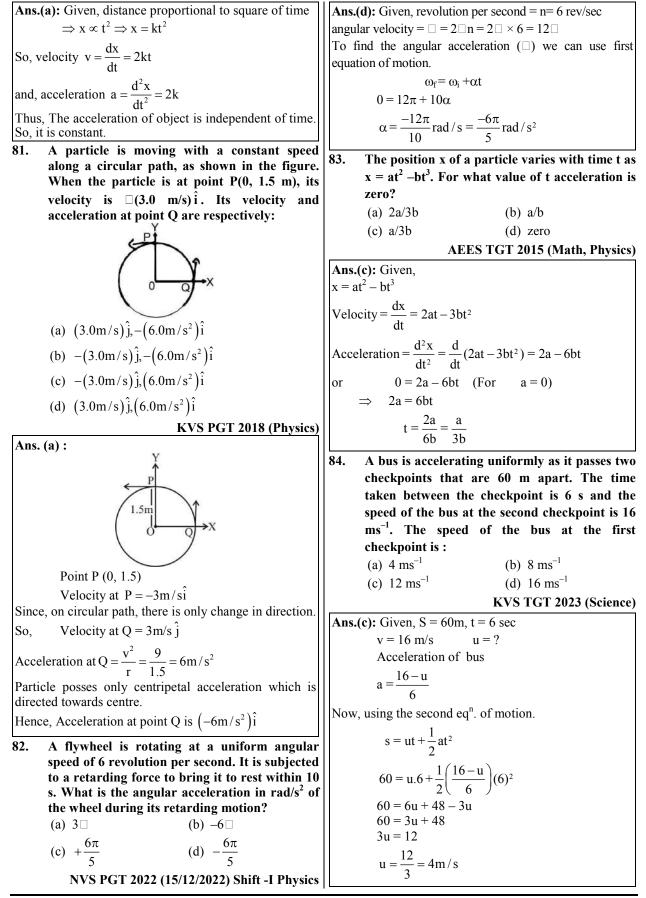
59. A sphere of mass 2 kg strikes another sphere of $\frac{1}{2}m(2u)^2 + \frac{1}{2}m(u)^2$ mass 3 kg at rest with a velocity of 5m/s. If they move together after collision, what is their and net final kinetic energy = common velocity? $\frac{1}{2}m(v_1^2+v_2^2)$ (a) 5 m/s (b) 6 m/s(c) 1 m/s(d) 2 m/sATO. DSSSB TGT 2018 (Male, 29/09/2018)Shift-II N.Sci. $\Rightarrow \frac{1}{2}m(4u^{2} + u^{2}) = \frac{1}{2}m(v_{1}^{2} + v_{2}^{2}) + \frac{mx}{100}\left(\frac{5u^{2}}{2}\right) \dots (ii)$ **Ans.** (d) : $m_1 = 2 \text{ kg}$ $v_1 = 5 m/s$ Coefficient of restitution $m_2 = 3 \text{ kg}.$ $\mathbf{e}_{1} = -\left(\frac{\mathbf{v}_{2} - \mathbf{v}_{1}}{\mathbf{u}_{2} - \mathbf{u}_{1}}\right)$ $v_2 = 0$ $m_1v_1 + m_2v_2 = (m_1 + m_2)v_f$ $2 \times 5 + 3 \times 0 = (2+3) \times v_{e}$ $5v_{f} = 10$ $\Rightarrow \frac{2}{3} = -\frac{(v_2 - v_1)}{u}$ $v_{f} = 10/5 = 2m/s$ \Rightarrow 3(v₁-v₂) = 2u The dimensions of $\in_0 \mu$ are the same as those of 60. (a) $(velocity)^{-2}$ (b) $(velocity)^2$ \Rightarrow v₁-v₂ = $\frac{2}{2}$ u ... (iii) (d) $(velocity)^{-1/2}$ (c) velocity Adding (i) and (iii), equation, we get DSSSB TGT 2014 (28/12/2014) N.SCI. $2\mathbf{v}_1 = 3\mathbf{u} + \frac{2}{3}\mathbf{u} = \frac{11}{3}\mathbf{u}$ $\Rightarrow \mathbf{v}_1 = \frac{11}{6}\mathbf{u}$ Ans. (a) : \therefore c = $\frac{1}{\sqrt{\mu_0 \in 0}}$, where c = speed of light $\therefore \mu_0 \in = \frac{1}{2}$ So, $v_2 = 3u - v_1$ [From (i)] $= 3u - \frac{11}{\epsilon}u$ So, dimensions of $\mu_0 \in_0$ will be same as of (velocity)⁻² Hence, option (a) is correct. Two balls of equal mass are moving in the same 61. $=\frac{7}{6}u$ direction along the same straight line with velocities of magnitude in the ratio 2:1. They From (ii), we get collide and in the process lose x% of their $\frac{1}{2}m(5u^2) - \frac{1}{2}\left(\frac{11}{6}\right)^2 + \left(\frac{7}{6}\right)^2 \left|u^2 - \frac{x}{100} \times \frac{5u^2}{2} \times m\right|$ kinetic energy. If the coefficient of restitution is $\frac{2}{3}$, find x: $\Rightarrow 5u^2 - \frac{170}{36}u^2 = \frac{x}{20} \times mu^2$ (a) $5\frac{1}{4}$ (b) $5\frac{2}{9}$ $\Rightarrow \frac{10}{36}u^2 = \frac{x}{20}mu^2$ (c) $5\frac{5}{2}$ (d) 6 $\Rightarrow \mathbf{x} = \frac{20 \times 10}{36} = \frac{50}{9}$ DSSSB PGT 2018 (04 July 2018 Female) Physics $\therefore x = 5\frac{5}{9}$ Ans. (c) : Let the initial velocities of the given balls be 2u and u and final velocity after collision be V_1 and V_2 . 62. A particle is moving along a straight line. It Applying, Law of conservation of momentum here. starts from rest and moves with a uniform 2u (m/s) acceleration 'a', till it attains a velocity 'V' and then travels with uniform retardation 'b' till it again comes to rest. The total time of travel is 't'. then. here, $m_1 = m_2 = m$ (a) $\frac{1}{a} + \frac{1}{b} = \frac{2t}{V}$ (b) $\frac{1}{a} + \frac{1}{b} = \frac{t}{V}$ \Rightarrow m(2u) + mu = mv₁+mv₂ \Rightarrow 3mu = mv₁+mv₂ (c) $\frac{1}{a} + \frac{1}{b} = \frac{V}{2t}$ (d) $\frac{1}{a} - \frac{1}{b} = \frac{t}{V}$ \Rightarrow v₁+v₂ = 3u ... (i) and after collision. Net Initial kinetic energy = DSSSB PGT 2018 (04 July 2018 Female) Physics

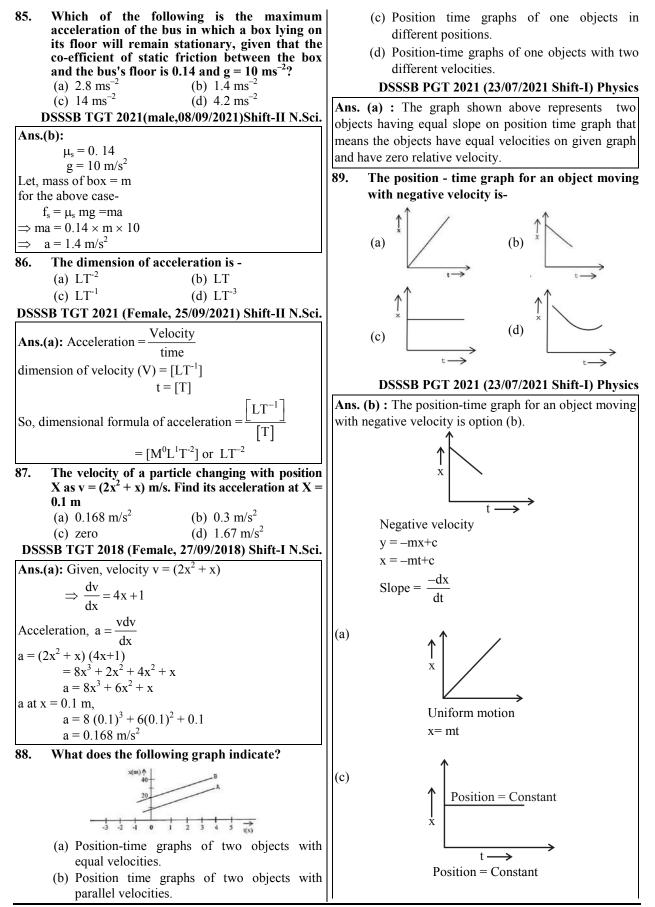
(a) 0 < x < 4(b) $x \le 0$ Ans.(b): We have. (d) $0 \le x \le 4$ Equation of motion, (c) $x \ge 4$ (i) For the acceleration phase DSSSB PGT 2018 (04 July 2018 Female) Physics $V = 0 + at_1$ Ans. (d) : Given, $t_1 = \frac{V}{a}$ $v^2 = 4x - x^2$(i)] $v = \sqrt{4x - x^2}$ (ii) For the retardation phase $4x-x^2 \ge 0$ $0 = V - bt_2$ \Rightarrow $x^2 - 4x \le 0$ $t_2 = \frac{V}{h}$ (ii) \Rightarrow $x(x-4) \le 0$ Now find (t_2) we know that the total time of travel (t) is $x \in (0, 4)$ the sum of the times taken in each point. Hence, $0 \le x \le 4$ $t = t_1 + t_2$ 65. A body is projected at an angle 30° to the horizontal, so as just to clear walls of equal Putting the values of t_1 and t_2 from eq^n . (i) and (ii) we height 5m at a distance 10m from each other. get-The total range of the body in meters is? $t = \frac{V}{a} + \frac{V}{b}$(iii) (b) $10\sqrt{3}$ (a) 20 (c) 10 cot15° (d) 20 cot15° DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (c) : Given, A heavy uniform rod is in equilibrium and 63. Angle, $\alpha = 30^{\circ}$ resting against a smooth vertical wall, and the Height of wall, a = 5mother against a smooth plane inclined to the From formula, $h = 2a \cot\left(\frac{1}{2}\right)\alpha$ wall at 45°. If ' α ' is the inclination of the rod to the horizontal, then tan α is equal to: Where, h = total range of the body.(a) $h = 2 \times 5 \cot\left(\frac{1}{2}\right) \times 30^{\circ}$ (c) $\frac{1}{2}$ $h = 10 \cot \frac{30}{2}$ DSSSB PGT 2018 (04 July 2018 Female) Physics $h = 10 \cot 15^{\circ}$ Ans. (c) : A ball is thrown up at a speed of 2m/s. If g =66. 10m/s², then find the maximum height the ball will reach? (a) 0.80 m (b) 0.40 m (c) 0.20 m (d) 0.10 m DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) : Given Given, $\theta = 45^{\circ}$ v = 2m/s, $g = 10m/s^2$ In the equilibrium condition of rod-Initial K.E. = final P.E. Torque due to weight = Torque due to normal force on $\frac{1}{2}mv^{2} = mgh$ $v^{2} = 2gh$ $h = \frac{v^{2}}{2g} = \frac{4}{2 \times 10} = \frac{2}{10} = 0.2m$ inclination $W \cdot \frac{L}{2} \cdot \sin \alpha = W.L.\cos \alpha$ sinα 1 \Rightarrow $\overline{\cos \alpha}^{-2}$ $\tan \alpha = \frac{1}{2}$ 67. A particle moves in a straight line such that its displacement at any time t is given by $s = t^3 - 6t^2$ + 3t + 7 meters. The velocity of the particle 64. A particle moving in a straight line follows the when the acceleration is zero is : equation: (a) 42 m/s (b) -9 m/s $v^2 = 4x - x^2$ (c) 3 m/s(d) -12 m/sWhat is the range of motion? KVS PGT 2014 (Physics)

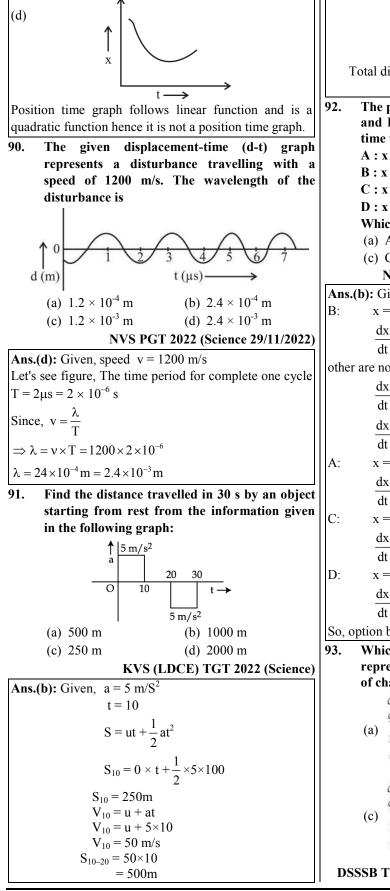
Ans. (b) : Given,
$$s = t^2 - 6t^2 + 3t + 7$$

 $v = \frac{ds}{dt} = 3t^2 - 12t + 3$
 $a = \frac{dv}{dt} = \frac{d^2}{dt^2} - 6t - 12$
since acceleration is zero,
 $a = 0 > 6t - 12 = 0 \Rightarrow t = 2$ second
Therefore, tocking oparticle at $t = 2s$,
 $v = 3(2)^2 - 12 \times 2 + 3 = -9 m/s$
68. Ramesh travels on a straight rath with uniform
velocity v, for some time and with uniform
velocity v, for the next equal time.
(a) $v = \sqrt{v_1v_2}$ (b) $\frac{1}{v} = \frac{1}{v_1} + \frac{1}{v_2}$
(c) $v = \frac{v_1 + v_2}{2}$ (d) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$
(c) $v = \frac{v_1 + v_2}{2}$ (d) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$
(c) $v = \frac{v_1 + v_2}{2}$ (d) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$
(c) $v = \frac{v_1 + v_2}{2}$ (d) $\frac{2}{v} = \frac{1}{v_1} + \frac{1}{v_2}$
(c) $v = \frac{v_1 + v_2}{2}$ (d) $\frac{2}{v_2} = \frac{1}{v_1} + \frac{1}{v_2}$
(d) Explacement
 $x_2 = v_3t$
Average velocity = Displacement
 $\frac{v_1 + v_2}{2}$
69. For an object moving along a straight line
without changing its direction the-
(a) distance travelled d singhacement
(b) distance travelled d singhacement
(c) distance travelled d singhacement
(d) distance travelled d singhacement
(e) (d) the initial to the final position of object. i.e, the
displacement.
(f) The velocity has a linear relation with the displacement.
(g) Row 1202 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 2021 (180, 190, 200) (180, 190, 100 (10

inertia. The concept of


statements related to

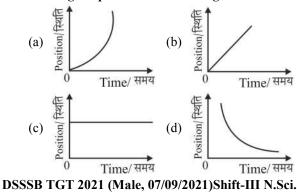

(b) (r) and (s) (d) only (r)

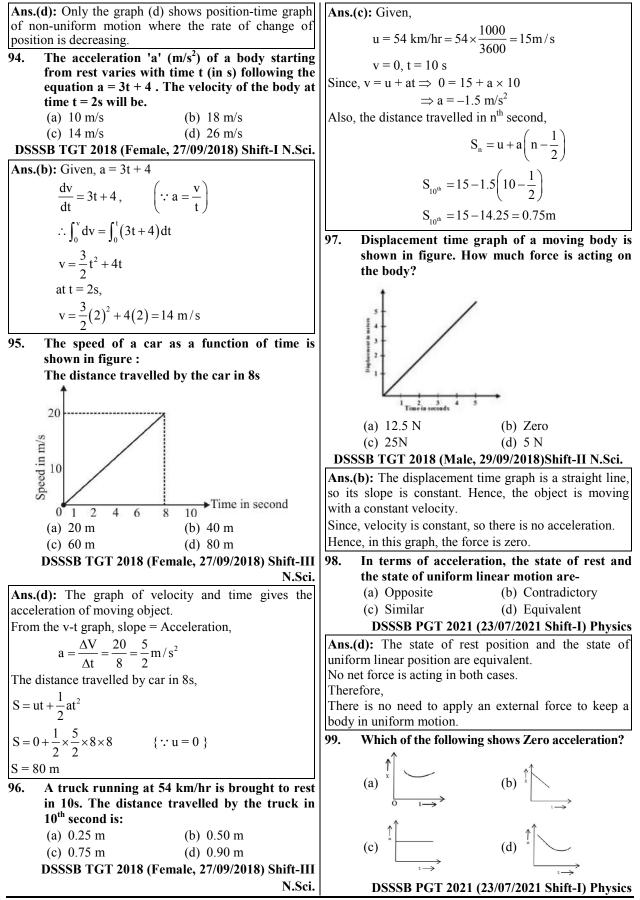

(b) 120 m (d) 360 m

$$\begin{array}{c} \begin{array}{c} v = u + at \\ y = mx. \\ The square of the velocity has a linear relation with the displacement. \\ v^2 - u^2 + 2as \\ y = mx^+ c \\ y = v^2 \quad m = 2a \quad x = s \quad c = u^2 \\ \hline v^2 \quad v^2 \quad$$

Ans.(d): Let the mass of 10m length be m kg.	77. Projectile motion is an example of motion in a
$10 \rightarrow m$	plane with acceleration.
, m	(a) Increasing (b) Decreasing
$1 \rightarrow \frac{1}{10}$	(c) Zero (d) Constant
3m	DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural
$3 \rightarrow \frac{3m}{10}$	Sci.
7 7m	Ans.(d): Projectile motion is an example of zero
$7 \rightarrow \frac{711}{10}$	accleration in horizontal plane and constant accleration
l0 a	in vertical plane.
	In projectile motion our consideration is vertical plane
\frown	so correct answer is option (d).
(\cap)	78. In which of the following situations, the velocity
	of an object may be zero at some instant but its
	acceleration is not zero at that instant ?
3m 8 8 7m	A. An object released from a certain height
	B. A ball thrown up
$\begin{array}{c} 3m \\ \downarrow \\ 0 \\ \downarrow \\ 0 \\ \downarrow \\ 0 \\ \downarrow \\ 0 \\ \downarrow \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1 \\ 1$	C. An object moving in a uniform circular
When the mid point of the chain is at 3 m below the	motion
pulley-	(a) A and B
	(b) B and C
$\left(\frac{7m}{10} - \frac{3m}{10}\right)g = ma$	(c) A and C
	(d) A only
$\frac{4\text{mg}}{10} = \text{ma}$	NVS PGT 2022 (Science 28/11/2022)
10	Ans.(a): Statement A-An object released from a certain
$a = \frac{4}{10} \times 10 = 4 \text{ m/s}^2$	height then its initial velocity is zero.
10^{-10}	Also, it is falling freely, then it has acceleration due to
76. A glass plate can just support a weight of 54	gravity.
kg. The plate with a body on it is raised with	Statement B –A ball is thrown up, then its velocity
gradually increasing acceleration. It is found	becomes zero when it reaches to a maximum height but
that the plate breaks when the acceleration is 8	it has constant acceleration g.
ms ⁻² . Find the mass of the body in kg (take $g =$	79. Which of the following situations is depicted by
10 ms^{-2})	the given graph ?
(a) 120 (b) 90 (b) 20	1
(c) 60 (d) 30	
DSSSB PGT 2018 (04 July 2018 Female) Physics	Velocity
Ans. (d) : Let, mass of the body is 'm' kg.	
A glass plate can support 54 kg mass.	Time
So force it can suffer $-m_{\rm VC}$	(a) The chiest is meaning with non-iniferral
So, force it can suffer = $m \times a'$	(a) The object is moving with non-uniform
Considering, $g = 10 \text{ m/s}^2$	acceleration
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$	acceleration (b) The object is moving with non-uniform
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is	acceleration (b) The object is moving with non-uniform retardation
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} .	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = a' = g+a	 acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms ⁻² . \therefore a = 8 ms ⁻² Acceleration added with gravity = a' = g+a a' = 10+8	 acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = a' = g+a a' = 10+8 = 18 \text{ ms}^{-2}	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022)
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = a' = g+a a' = $10+8$ = 18 ms^{-2} Now,	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation.
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = a' = g+a a' = 10+8 = 18 \text{ ms}^{-2} Now, $540 = \text{m} \times \text{a'}$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation. 80. An object is covering distance in direct
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = $a' = g + a$ a' = 10 + 8 $= 18 \text{ ms}^{-2}$ Now, $540 = m \times a'$ $540 = m \times 18$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation. 80. An object is covering distance in direct proportion to the square of time elapsed. The
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = $a' = g + a$ a' = 10 + 8 $= 18 \text{ ms}^{-2}$ Now, $540 = m \times a'$ $540 = m \times 18$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation. 80. An object is covering distance in direct proportion to the square of time elapsed. The acceleration of the object is
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = a' = g+a a' = 10+8 = 18 \text{ ms}^{-2} Now, $540 = \text{m} \times \text{a'}$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation. 80. An object is covering distance in direct proportion to the square of time elapsed. The acceleration of the object is (a) constant (b) increasing
Considering, $g = 10 \text{ m/s}^2$ The force it can bear = $54 \times 10 = 540 \text{ N}$ It is found that the plate break when the acceleration is 8 ms^{-2} . $\therefore a = 8 \text{ ms}^{-2}$ Acceleration added with gravity = $a' = g + a$ a' = 10 + 8 $= 18 \text{ ms}^{-2}$ Now, $540 = m \times a'$ $540 = m \times 18$	acceleration (b) The object is moving with non-uniform retardation (c) The object is moving with uniform acceleration (d) The object is moving with uniform retardation NVS PGT 2022 (Science 28/11/2022) Ans.(d): The object is moving with uniform retardation. 80. An object is covering distance in direct proportion to the square of time elapsed. The acceleration of the object is

$$S_{20-30} = 50 \times 10 + \frac{1}{2} \times (-5) \times (10)^{2}$$


$$= 500 - 250$$

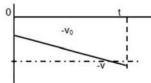

$$= 250$$
Total distance = 250 + 500 + 250

$$= 1000m$$
2. The position x (in meter) of four objects A, B, C
and D are given by following equations where
time t is in second:
A : x = 3.0 + 4.0 t + 5.0 t^{2}
B : x = -4.0 + 5.0 t
C : x = 5.0 t + 6.0 t^{2}
D : x = 6.0 t³
Which of them is moving with a uniform speed?
(a) A (b) B
(c) C (d) D
NVS PGT 2022 (16/12/2022) Shift -I Physics
ns.(b): Given
: x = -4.0 + 5.0t
 $\frac{dx}{dt} = 5.0$ [Uniform speed]
ther are non-uniform because
 $\frac{dx}{dt} \neq constant$
 $\frac{dx}{dt} = f(t)$
: x = 3.0 + 4.0t + 5.0 t²
 $\frac{dx}{dt} = 4.0 + 10.0t = f(t)$
: x = 5.0t + 6.0t²
 $\frac{dx}{dt} = 5.0 + 12.0t = f(t)$
: x = 6.0 t³
 $\frac{dx}{dt} = 18.0t^{2} = f(t)$
b, option b: (B) is moving with uniform speed.

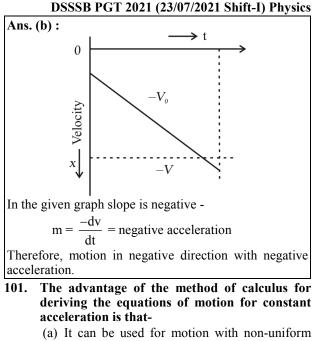
a

Which of the following position - time graph represents non-uniform motion, where the rate of change of position is decreasing ?

Ans. (*) :


The given graph is about the displacement and time. Since, change in velocity with respect to time gives acceleration and change in displacement with respect to change in time gives velocity.

Thus, if there is a constant velocity so the change in acceleration is zero and if the displacement is uniform for a time period then the velocity will be zero.

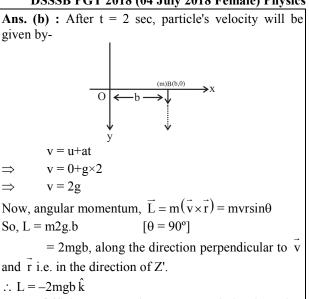

Note : For this question, discrepancy is found in question/answer.

So, this question is ignored for all candidates.

100. What does the following graph indicate?

- (a) Motion in positive direction with positive acceleration.
- (b) Motion in negative direction with negative acceleration.
- (c) Motion in Positive direction with negative acceleration.
- (d) Motion object with negative of an acceleration that changes direction at anytime.

- acceleration also.
- (b) It can be used for motion with instant acceleration also.
- (c) It can be used for motion with linear acceleration also.
- (d) It can be used for motion with effective acceleration also.


DSSSB PGT 2021 (23/07/2021 Shift-I) Physics

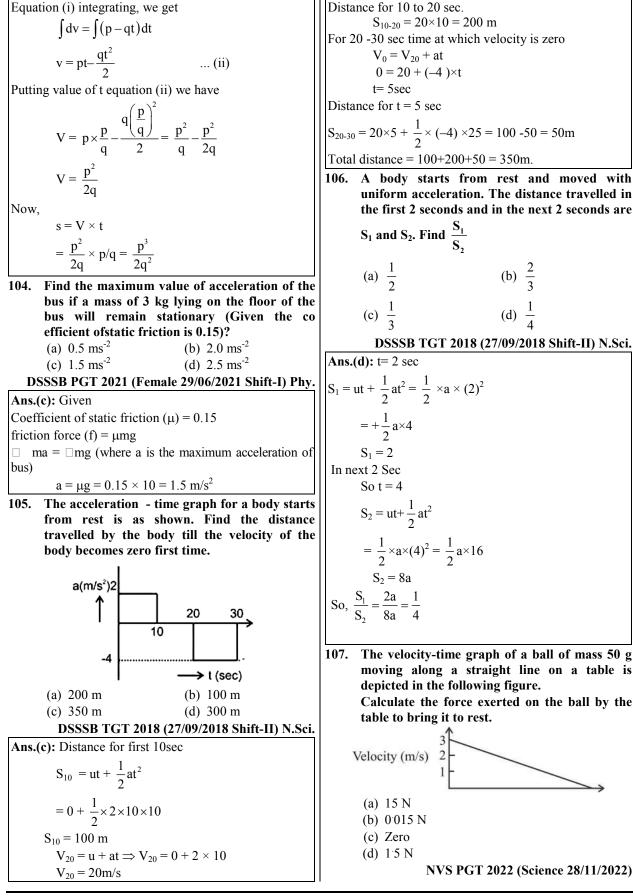
Ans. (a): The advantage of the method of calculus for deriving equations of motion for constant acceleration is that it can be used for motion with non-uniform acceleration as well.

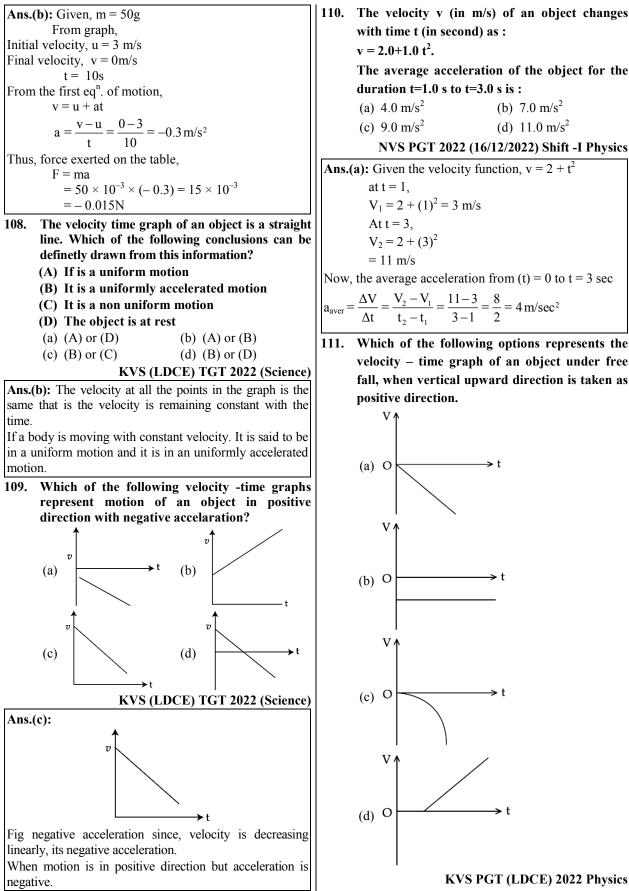
102. A particle of mass m is at the point (b, o) say B. The y-axis is chosen vertically downward and the particle is let fall from B parallel to the yaxis, find the angular momentum of the particle about the origin 2 sec after the ball.

(a) $2 \text{ mg b} \hat{k}$	(b) $-2 \text{ mg b} \hat{k}$
(c) $\frac{1}{2}$ mg b \hat{k}	(d) $-\frac{1}{2}$ mg b \hat{k}

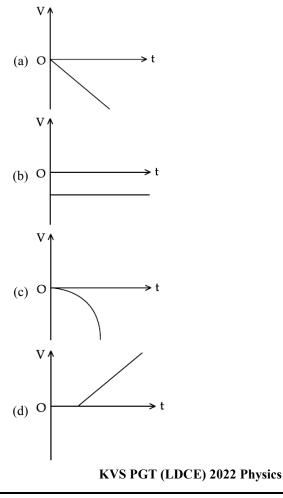
DSSSB PGT 2018 (04 July 2018 Female) Physics

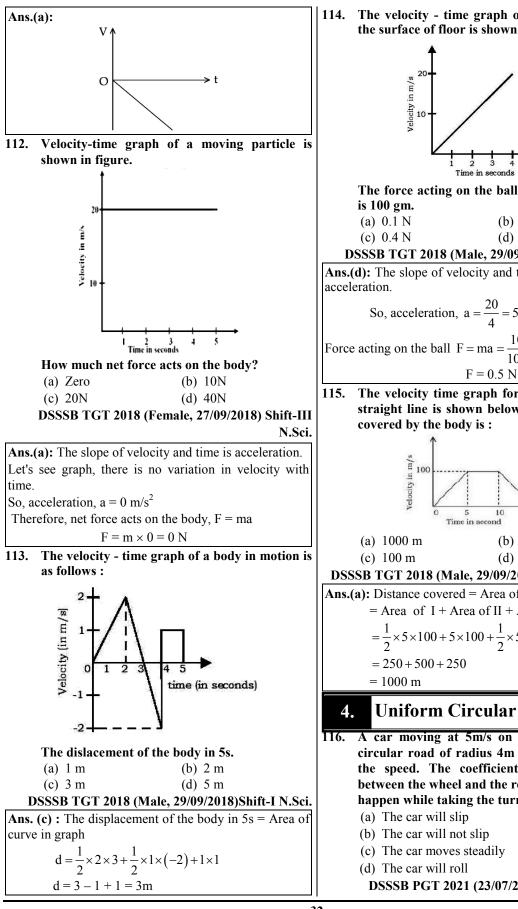
Note : Official answer given by commission is option **(a)**.

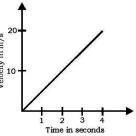

103. A particle starts from rest and accelerates, where its acceleration vs. time equation is: f = p - qt,


> where p and q are positive constants. Find the distance travelled by the particle till the time it reaches its maximum velocity.

(a)
$$\frac{P^3}{q^2}$$
 (b) $\frac{p^3}{3q^2}$
(c) $\frac{p^3}{2q^2}$ (d) $\frac{3p^3}{2q^2}$


DSSSB PGT 2018 (04 July 2018 Female) Physics

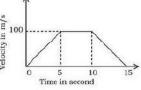

Ans. (c) : Given equation, f = p-qt= p - qt... (i) dt p - qt = 0 $t = \frac{p}{p}$ q



The average acceleration of the object for the duration t=1.0 s to t=3.0 s is : (b) 7.0 m/s² (d) 11.0 m/s^2 NVS PGT 2022 (16/12/2022) Shift -I Physics Ans.(a): Given the velocity function, $v = 2 + t^2$ $V_1 = 2 + (1)^2 = 3 \text{ m/s}$ Now, the average acceleration from (t) = 0 to t = 3 sec $a_{aver} = \frac{\Delta V}{\Delta t} = \frac{V_2 - V_1}{t_2 - t_1} = \frac{11 - 3}{3 - 1} = \frac{8}{2} = 4 \text{ m/sec}^2$ 111. Which of the following options represents the velocity - time graph of an object under free

114. The velocity - time graph of a ball moving on the surface of floor is shown in figure :

The force acting on the ball, if mass of the ball


10 1 0 0 8	
(a) 0.1 N	(b) 0.2 N
(c) 0.4 N	(d) 0.5 N

DSSSB TGT 2018 (Male, 29/09/2018)Shift-I N.Sci.

Ans.(d): The slope of velocity and time graph gives the

So, acceleration,
$$a = \frac{20}{4} = 5m/s^2$$

rce acting on the ball $F = ma = \frac{100}{1000} \times 5$

The velocity time graph for a car moving in a straight line is shown below, the total distance covered by the body is :

(b) 10 m (d) Zero

DSSSB TGT 2018 (Male, 29/09/2018)Shift-II N.Sci.

Ans.(a): Distance covered = Area of the paralellogram. = Area of I + Area of II + Area of III

$$= \frac{1}{2} \times 5 \times 100 + 5 \times 100 + \frac{1}{2} \times 5 \times 100$$

= 250 + 500 + 250
= 1000 m

Uniform Circular Motion

- A car moving at 5m/s on a road, takes in a circular road of radius 4m without decreasing the speed. The coefficient of static friction between the wheel and the road is 0.2 What will happen while taking the turn?

DSSSB PGT 2021 (23/07/2021 Shift-I) Physics

Ans. (a) : Frictional force, $f = \mu mg$ Centripetal force, $F_c = \frac{mv^2}{r}$ for no slip condition, $F_c = f$ $\mu mg = \frac{mv^2}{r}$ $\Rightarrow \mu g = \frac{v^2}{-}$ but $0.2 \times 9.81 = \frac{(5)^2}{4}$ $1.962 \neq 6.25$ Hence, the car will slip. 117. A point moves uniformly along a straight line. Its angular velocity about any point at a distance 'r' from it varies as: (a) $\frac{1}{r}$ (b) $\frac{1}{r^2}$ (d) r (c) r DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (b) : Whan a particle is moving in a straight line it has zero angular momentum. So, L = mvr = 0 \Rightarrow L = m×r× ω ×r = mr² ω $\Rightarrow \omega = \frac{L}{mr^2}$ $\Rightarrow \omega \propto \frac{1}{m^2}$ 118. A particle is executing uniform angular motion angular with velocity an $\vec{w} = (2\hat{i} - \hat{j} + 5\hat{k})$ radians sec⁻¹. (-1, 2, 3) is a position of the particle in its path (co-ordinates are in metres). Find the linear velocity of the particle in ms⁻¹. (a) $12\hat{i}+10\hat{j}+3\hat{k}$ (b) $-13\hat{i}+11\hat{j}+3\hat{k}$ (c) $-11\hat{i}+13\hat{j}-4\hat{k}$ (d) $-12\hat{i}+4\hat{j}-9\hat{k}$ DSSSB PGT 2018 (04 July 2018 Female) Physics **Ans. (b) :** Angular velocity, $\vec{\omega} = (2\hat{i} - \hat{j} + 5\hat{k})$ rad/sec $\vec{r} = (-1, 2, 3) = -\hat{i} + 2\hat{j} + 3\hat{k}$ Linear velocity, $\vec{v} = \vec{w} \times \vec{r}$ ĥ 2 -1 5 -1 2 $=\hat{i}(-3-10)-\hat{i}(6+5)+\hat{k}(4-1)$ $= -13\hat{i} - 11\hat{j} + 3\hat{k}$

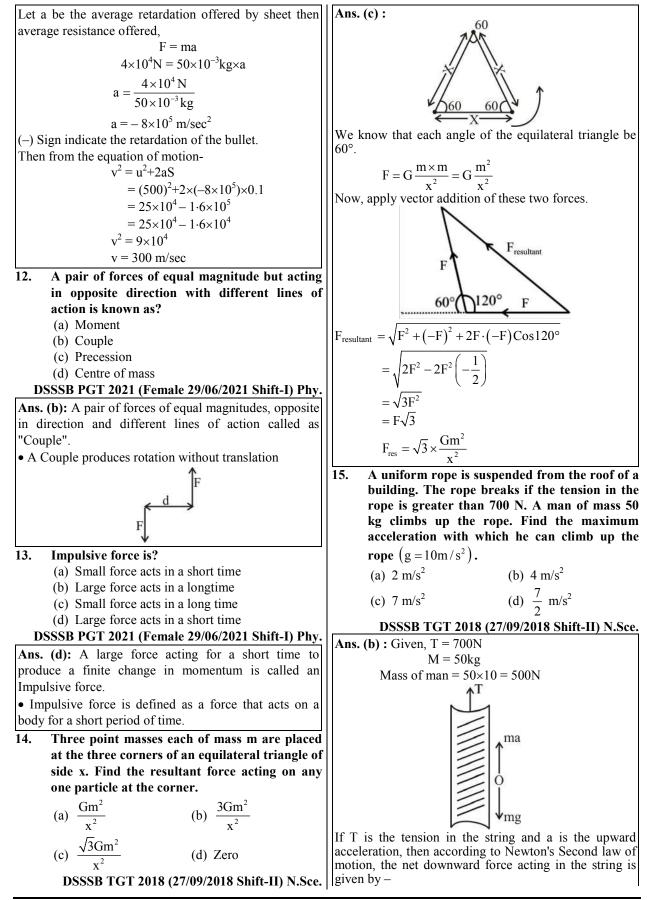
- 119. A steamer is going due East with a velocity 10 ms⁻¹, and wind is blowing from North. The smoke the chimney points 30° West of south. Find the magnitude of the velocity of wind. (a) $10\sqrt{3}$ ms⁻¹ (b) 30 ms⁻¹ (c) $30\sqrt{3}$ ms⁻¹ (d) $\frac{10\sqrt{3}}{3}$ ms⁻¹ DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (a) : Given that velocity (v) = 10 m/s N V_w V_w V_w tan $\theta = \frac{V_s}{V_w}$ tan $30^\circ = \frac{10}{V_w}$ $\frac{1}{\sqrt{3}} = \frac{10}{V_w}$ V_w = $10\sqrt{3}$ m/s
- 120. A ball is projected vertically upwards from a point A to reach its greatest height B. It again returns to the point B. In course of the above journey is passes through two points P and Q twice (Q is above P). Now, which among the following options is true?
 - (a) Time of rise from P to Q is greater than Time of fall from Q to P.
 - (b) Time of rise from P to Q is equal to the Time of fall from Q to P.
 - (c) Time of rise from P to Q is less than Time of fall from Q to P.
 - (d) (Time of rise from P to Q) plus (Time of fall from Q to P) is equal to Half of the total time of flight.

DSSSB PGT 2018 (04 July 2018 Female) Physics

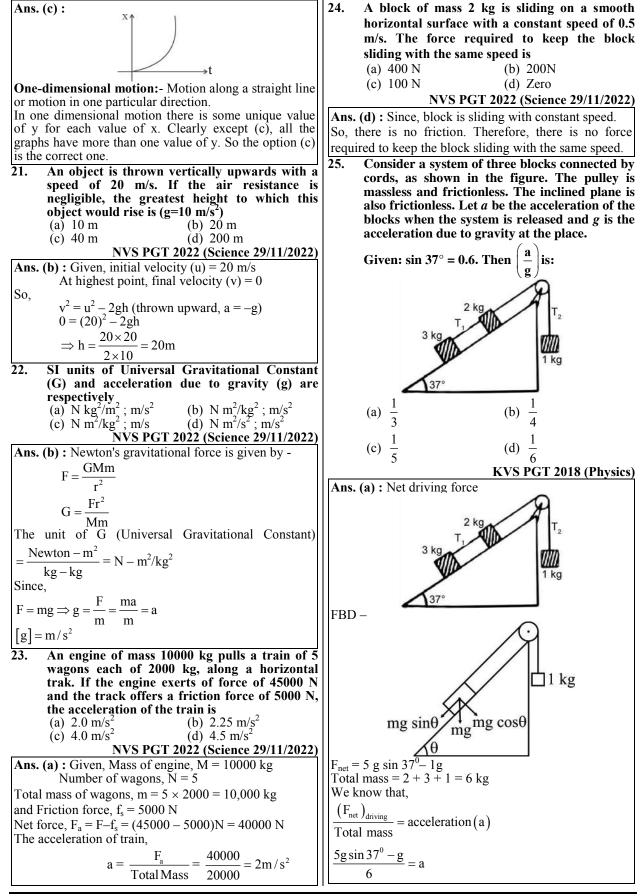
Ans. (a) : Time of rise from P to Q is greater than time of fall from Q to P because when it goes in the upward direction it is in opposite direction to the gravity due to earth or we can say that when a body releases from height it goes under the effect of gravity (i.e. attained acceleration) so it takes lesser time than going upward for the same PQ.

121. Find the total energy of a circularly orbiting | 125. If ve be the orbital velocity of a satellite in a satellite? circular orbital close to earth's surface and ve is (b) Postive (a) Zero the escape velocity for the earth, the relation (c) Negative (d) Infinite between the two is-DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy. (a) $v_e = \sqrt{2}v_e$ (b) $v_e = \sqrt{3} v_e$ (c) $v_o = v_e$ (d) $v_e = 2v_o$ **AEES PGT 2015 (Physics) Ans.(c):** The kinetic energy of the satellite of mass (m) in a circular orbit is. $KE = \frac{1}{2}m\left(\frac{GM}{R+h}\right)$ **Ans.(d):** Escape velocity, $(V_e) = \sqrt{\frac{2GM}{r}}$ (i) The potential energy at distance (R + h) from the center of the earth is given by $PE = -\frac{GmM}{R+h}$ The orbital velocity of satellite close to the earth surface. $V_o = \sqrt{\frac{GM}{R}}$ (i) Total energy = KE + PETotal energy = $\frac{1}{2}m\left(\frac{GM}{R+h}\right) - \frac{GmM}{R+h}$ From eq^n . (i) and (ii) Total energy = $-\frac{\text{GmM}}{2(\text{R}+\text{h})}$ $V_e = \sqrt{2}v_o$ The motion of planets in the solar system is an 126. The total energy of a circularly orbiting satellite is negative. example of conservation of: In pure translational motion at any instant of 122. (a) Mass time all particles of the body have . (b) Linear momentum (a) Different velocity (c) Angular momentum (b) Different momentum (d) Kinetic energy (c) Same velocity **AEES PGT 2015 (Physics)** (d) Same momentum DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy. Ans.(c): The motion of planets in the solar system is based Ans.(c): In pure translational motion at any instant of on the conservation of angular momentum. time all particles of the body have the same velocity. A 127. A person having mass 60 kg, is moving in rigid body fixed at one point or along a line can have uniform circular motion on horizontal surface only rotational motion. A rigid body not fixed in same which is frictionless. The radius of circle is 5m. way can have either pure translation or a combination of The centripetal force applied is 50 N. What is translation and rotation. the amount of work done by the force when the 123. A particle moving along a circular path with person moves through one-half of a rotation uniform speed has a (a) radial velocity and radial acceleration (a) 0 Nm (b) 250 Nm (b) radial velocity and transverse acceleration (d) 250 πNm (c) 500 Nm (c) transverse velocity and radial acceleration KVS PGT 2023 (17/02/2023) Physics (d) transverse velocity and transverse acceleration Ans.(d): Given, **AEES PGT 2015 (Physics)** m = 60 kgr = 5mAns.(c): A particle moving along a circular path with uniform speed has a transverse velocity and radial Centripetal force (F) = 50Nacceleration. $\Box = 180^{\circ}$ 124. Two satellites of masses 3M and M orbit the Using formula, earth in the circular orbits of radil r and 3r Work = Force \times Distance \times cos \square respectively. The ratio of their orbital velocities $W = 50 \times (\pi r) \times \cos 180$ is $W = 50 \times \Box \times 5 \times (-1)$ (b) $\sqrt{3}$:1 (a) 1:1 $W = -250 \square Nm$ (d) 9:1 (c) 3:1128. A point object is moving with uniform speed v **AEES PGT 2015 (Physics)** in a circle of radius R. Let n be the frequency **Ans.(b):** $v_1 \propto \frac{1}{\sqrt{r_1}}$ and $v_2 \propto \frac{1}{\sqrt{r_2}}$ of its motion. The acceleration of the object is : (a) $\pi^2 n^2 R$ (b) $2\pi^2 n^2 R$ (d) $\left(\frac{\pi v}{n}\right)^2 R$ $\frac{\mathbf{v}_1}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{r}_2}{\mathbf{r}_1}} = \sqrt{\frac{3\mathbf{r}}{\mathbf{r}}} = \sqrt{3}$ (c) $4\pi^2 n^2 R$ KVS PGT 2023 (17/02/2023) Physics

Ans.(c): We have, 131. The angular speed of a motor wheel is increased from 1800 rpm to 3240 rpm in 12 seconds. Its $a = \frac{v^2}{P}$ (i) angular acceleration, assuming the acceleration to Where (a) = centripetal accelerationbe uniform will be: (v) = speed of object (a) $2 \square \operatorname{rad/s}^2$ (b) $3 \square \operatorname{rad/s}^2$ (R) = radius of circle(c) $4 \square \text{ rad/s}^2$ (d) $5 \square \operatorname{rad/s}^2$ The frequency of the motion, (n) is related to speed and the circumference of the circle KVS PGT (LDCE) 2022 Physics $n = \frac{V}{2\pi R}$ **Ans.(c):** The relation between (α) and changing (\Box) is given by- $V = 2\pi nR$ $\omega_1 = \omega_0 + \alpha t$ Putting the value of 'v' in eq^n . (i) Where $\Box_1 = \text{final angular velocity}$ $a = \frac{(2\pi nR)^2}{R}$ $a = 4\Box^2 Rn^2$ $\Box_{o} =$ initial angular velocity α = angular acceleration A ball is made to uniformly move on a 129. Given, horizontal circular path. The work done by the $f_{\rm o} = 1800 \text{ rpm}$ agency providing necessary force for one $f_1 = 3240 \text{ rpm}$ complete revolution of the ball is zero because: t = 12 sec(a) the average force for each revolution is zero. We have. (b) there is no friction. Angular velocity $\omega = \frac{2\pi f}{60}$ (c) the force is perpendicular to the velocity of ball throughout the motion. (d) there is no gravitational force acting on the $\omega_{o} = \frac{2\pi f_{o}}{60} = \frac{2\pi \times 1800}{60} = 60\pi$ ball. NVS PGT 2022 (16/12/2022) Shift -I Physics $\omega_1 = \frac{2\pi f_1}{60} = \frac{2\pi \times 3240}{60} = 108\pi$ Ans.(c): The force is perpendicular to the velocity of ball throughout the motion. It means the force is acting as a From eqⁿ. (i) centripetal force, keeping the ball moving in a curved path. This sould occur, for example, in uniform circular motion $\Box_1 = \Box_0 + \alpha t$ where the velocity is constantly changing direction but the $108 \square = 60\pi + \alpha \times 12$ speed remains constant. $108 \square - 60\pi = 12\alpha$ 130. A small ball is moving with uniform speed v in $\alpha = \frac{48\pi}{12} = 4\pi \, \text{rad/sec}^2$ a circle of radius R. If T is the time period of its motion, its acceleration is given by : 132. A toy train engine steadily moves in a circular (a) $\left(\frac{2\pi}{T}\right)^2 R$ (b) $\left(\frac{\pi}{T}\right)^2 R$ track of radius 14 cm and completes 6 rounds in 80 s. Its angular speed and magnitude of (c) $\left(\frac{2\pi}{T}\right)^2 R^2$ (d) $\left(\frac{\pi}{T}\right)^2 R^2$ acceleration respectively are: (a) 0.4713 rad/s and 3.10 cm s⁻² NVS PGT 2022 (16/12/2022) Shift -I Physics (b) 0.4713 rad/s and 31.02 cm s⁻² Ans.(a): The acceleration of an object moving in a (c) 0.7413 rad/s and 3.10 cm s^{-1} circle with uniform sped is given by the formula. (d) 0.7413 rad/s and 31.02 cm s⁻¹ $a = \frac{V^2}{R}$ KVS PGT (LDCE) 2022 Physics Ans.(a): The angular speed is given by $a = \frac{\left(\frac{2\pi R}{T}\right)^2}{R}$ $\omega = \frac{2\pi \times \text{Number of revolutions}}{2\pi \times \text{Number of revolutions}}$ Time taken $\omega = \frac{2\pi \times 6}{2\pi}$ $=\left(\frac{2\pi}{T}\right)^2 R$


(a) Only 2 (b) Neither 1 nor 2 $\omega = \frac{12\pi}{80} = \frac{3\pi}{20} = 0.4713 \, \text{rad/s}$ (c) Only 1 (d) Both 1 and 2 Now, $a = \Box^2 \times radius$ DSSSB TGT 2021 (Female, 25/09/2021) Shift-II N.Sci. $=(0.4713)^2 \times 14$ Ans.(c): $= 0.2222 \times 14$ * When an object change its position with respect to $= 3.11 \text{ cm/s}^2$ time then we called the object is in the motion 133. The angle of 1" is equal to : otherwise in the rest. $[360^{\circ} = 2 \square$ radian, $1^{\circ} = 60$ minutes (60') and 1' Motion is a combined property of the object under = 60 arc second (60")] study and the observer. There is no meaning of rest (a) 1.745×10^{-4} radian (b) 4.85×10^{-6} radian or motion without observer or viewer. (c) 4.85×10^{-4} radian (d) 1.745×10^{-2} radian Absolute rest and absolute motion is not possible KVS PGT (LDCE) 2022 Physics because there is no point in the universe which is at Ans.(d): Since, $360^\circ = 2\pi$ rad rest and can be taken as point of reference. The $1^\circ = \frac{\pi}{180}$ rad planet Earth is in continuous motion. 136. AB is the arc of a circle of radius R whose $= 1.745 \times 10^{-2}$ rad centre is at O, where it subtends an angle 60°. A vehicle travels in a circular motion. Which of 134. M is the midpoint of the arc AB. The centre of the following statements are true ? mass of the arc lies at a point C on OM such (a) The distance traveled by the vehicle is always that OC is equal to: be equal to the displacement of the vehicle (b) $\frac{3R}{\pi}$ (a) (b) The distance covered by the vehicle will always be less than the displacement of the $\frac{2R}{3\pi}$ (d) $\frac{2R}{\pi}$ (c) vehicle (c) When the displacement is zero, the distance **NVS PGT 2019 (Physics)** covered by the vehicle will be zero Ans. (b) : (d) The distance covered by the vehicle will always be greater than the displacement of the vehicle DSSSB TGT 2021 (Male, 07/09/2021)Shift-III N.Sci. Ans. (d) : For arc, the centre of Mass, $OC = \frac{r \sin \alpha}{1}$ vehicle displacement Whole angle = 60° Here, $\alpha = \frac{60^{\circ}}{2} = 30^{\circ} = \frac{\pi}{6}$ When the vehicle complete the round, the distance $\frac{R\sin\left(\frac{\pi}{6}\right)}{\left(\frac{\pi}{6}\right)} = \frac{R\left(\frac{1}{2}\right)}{\frac{\pi}{6}}$ covered will be $2\pi r$ but the displacement will be zero. 135. Which of the following statements is/are true? 1. Motion is a combined property of the object under study and the observer. $OC = \frac{\overline{3R}}{}$ 2. There is absolute rest or absolute motion. **Choose the correct code :**

02.


Force and Newton's Law

1. Force and Motion	2. Hooke's law gives relation between: (a) Stress and strain (b) Margara devices
1. Two blocks of mass as m ₁ and m ₂ are connected	(b) Mass and velocity
to each other by a massless inextensible string	(c) Force and acceleration(d) Potential energy and height
length <i>l</i> and these are placed along a diameter	DSSSB PGT 2018 (03 July 2018, Male) Phy.
of a turn table. There is no friction between m ₂	
and the surface of the table whereas the friction	Ans. (a) : Hooke's law states that the strain of the material is proportional to the applied stress within the
between m_1 and the surface of the table is μ .	elastic limit of that material. It is expressed as -
The table is rotating with an angular velocity ω	stress \propto strain
about a vertical axis passing through the centre	
of the turn table. The masses m_1 and m_2 are lying at distances r_1 and r_2 respectively from	$\sigma = E\varepsilon$
the centre of the turn-table. If the masses are	So, Hooke's law gives relation between stress and strain.
observed to be at rest with respect to an	
observer on the turn table.	3. Which is the example of centrifugal force?
Calculate the friction force on m ₁ –	(a) A body tied to one end of a string is being
(a) $m_1(r_1 - r_2)\omega^2$ (b) $m_2(r_1 - r_2)\omega^2$	rotated in a circle; the force is supplied by the tension of the string.
(c) $(m_1r_1 - m_2r_2)\omega^2$ (d) $(m_1r_1 + m_2r_2)\omega^2$	(b) The moon revolving around the earth, the
DSSSB PGT 2018 (04 July 2018 Female) Physics	force is the gravitational pull of the earth on
Ans. (c) : Given,	the moon.
Mass of first block = m_1	(c) A person riding a cycle along a circular path,
Mass of second block = m_2	the necessary force is supplied by a sidewise
Angular velocity of turn table = ω	pressure exerted by the road on the tyres.
The coefficient of friction between m_1 and the surface	(d) A stone tied to one end of a string is being
of the table = μ	rotated in a circle, the stone itself exerts an
Tension T and friction force f will be directed towards	equal and opposite force on the hand holding
centre of circular path to provide necessary centripetal	the string.
force.	DSSSB PGT 2021 (23/07/2021 Shift-I) Physics
From the free body diagram (FBD) of m_1 and m_2 ,	Ans. (d) : Centrifugal force, a fictitious force, peculiar to a particle moving on a circular path, that has the same
$r_1 \xrightarrow{\omega} r_2 \xrightarrow{\omega} r_2$	magnitude and dimensions as the force that keeps the
0 III ₂	particles on its circular path but acts in the outward
H	direction.
	Example of centrifugal force,-
FBD:-	A stone tied to one end of a string is being rotated in a
	circle, the stone itself exerts an equal and opposite force on the hand holding the string.
	4. Who first gave the view that if a body is
	moving, something external is required to keep
<i>(</i>	it moving?
$\omega_{\mathbf{y}} \underline{\mathbf{m}}_{\mathbf{y}} \longrightarrow \mathbf{x}$	(a) Aristotle (b) Democritus
: 1 1	(c) Kanada (d) Copernicus
All the vertical forces are balanced due to equilibrium	DSSSB PGT 2021 (23/07/2021 Shift-I) Physics
in vertical direction.	Ans. (a): The Greek thinker, Aristotle (384 B.C-322 B.C), held the view that if a body is moving, something
Along the radial direction -	external is required to keep it moving.
For the block having mass m_2 :	Aristotle made observation from practical experiences
$T = m_2 \omega^2 r_2 \qquad \dots (i)$	and came to the conclusion that an external source is
For block m_1 :	required to keep a body in uniform motion.
$\mathbf{F} + \mathbf{T} = \mathbf{m}_1 \boldsymbol{\omega}^2 \mathbf{r}_1 \qquad \dots \text{ (ii)}$	5. What does "Centripetal" mean?
Subtracting equation (i) from equation (ii),	(a) Central (b) Center seeking
$F = m_1 r_1 \omega^2 - m_2 r_2 \omega^2$	(c) Around the center (d) Away from center
$\mathbf{F} = (\mathbf{m}_1 \mathbf{r}_1 - \mathbf{m}_2 \mathbf{r}_2) \boldsymbol{\omega}^2$	DSSSB PGT 2021 (23/07/2021 Shift-I) Physics

Ans. (b) : Centripetal: Something acting in a direction	• In any closed path, the work done by a conservative
towards the center or center seeking objects round a	force is zero.
circular path is called as centripetal.	• The work done by a Conservative is reversible.
6. The dimensional formula of force is -	• Another property of a Conservative force is that it can
(a) $[M^{\circ}L T^{-2}]$ (b) $[M L^{\circ} T^{-2}]$	be derived from a potential energy function. Thus for
(a) $[M^{o}L T^{-2}]$ (b) $[M L^{o} T^{-2}]$ (c) $[M L T^{o}]$ (d) $[M L T^{-2}]$	any Conservative force, there exists a scalar function V
DSSSB PGT 2021 (23/07/2021 Shift-I) Physics	(x,y,z) such that the force is equal to-grad V, or - ΔV .
	• The Conservative law for total mechanical energy,
Ans. (d): Force is a vector quantity. It is defined as the	
mass of the object or a body multiplied by the	states sum of kinetic and potential energy is constant.
acceleration i.e., $F = ma$.	10. A body of mass 'm' has been falling from rest
The dimensional formula for the force is $[M L T^{-2}]$.	under the action of gravity for t seconds. Find
7. Mark the correct relation with respect to the	the vertical force required to be applied in
strength of the forces, out of the following-	order to bring it to rest within another distance
(a) Electromagnetic force > Gravitational force	'a'. ('m' is in kg and 'a' is in metres)
(b) Electromagnetic force < Gravitational force	
(c) Electromagnetic force = Gravitational force	(a) $mg^2 \frac{1}{m}$ (b) $mg^2 \frac{1}{m}$
(d) Can't be determined	(a) $mg^2 \frac{t^2}{2a}$ (b) $mg^2 \frac{t^2}{4a}$
	$(\cdot \cdot \cdot \cdot 2) (\cdot \cdot \cdot \cdot 2)$
DSSSB PGT 2021 (23/07/2021 Shift-I) Physics	(c) $Mg \left[1 + \frac{gt^2}{gt} \right]$ (d) $Mg \left[1 + \frac{gt^2}{gt} \right]$
Ans. (a): Electromagnetic force:- The electromagnetic	(c) $Mg\left(1+\frac{gt^2}{4a}\right)$ (d) $Mg\left(1+\frac{gt^2}{2a}\right)$
force is a type of physical interaction of charged	
particles.	DSSSB PGT 2018 (04 July 2018 Female) Physics
Gravitational Force: - The gravitational force is a force	Ans. (d) : Mass = m, Distance = a
that attracts any two objects with mass under the effect	time = t, deceleration = a'
of gravity.	from the 3rd equation of motion,
Electromagnetic force > Gravitational Force	$v^2 = u^2 + 2aS$
8. What is the relative strength of strong nuclear	$0 = u^2 - 2aa'$ [acceleration = $-a'$ and S = a]
	$u^2 = 2aa'$ (i)
force?	from $v = u + at$
(a) 1	
(b) 10	$ \begin{array}{c} \mathbf{v} = \mathbf{u} - \mathbf{gt} \\ \mathbf{u} = \mathbf{gt} \\ (\mathbf{gt})^2 = 2\mathbf{a}.\mathbf{a'} \end{array} $ (ii)
(c) 100	\Rightarrow $(gt)^2 = 2a.a'$ (ii)
(d) 1000	\rightarrow (gi) 2d.d
DSSSB PGT 2021 (23/07/2021 Shift-I) Physics	$a' = \frac{g^2 t^2}{2}$
Ans. (a) :	$\mathbf{a'} = \frac{\mathbf{g}^2 \mathbf{t}^2}{2\mathbf{a}}$ $\uparrow \qquad \qquad$
Force Relative Strength	\wedge t = 0 u = gt ²
(1) Strong nuclear force 1	
(1) Strong nuclear force 10^{-2} (2) Electromagnetic force 10^{-2}	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	0.75
	$\Psi \perp V = 0$ (Rest)
	Force = weight + Deceleration force
So, the relative strength of strong nuclear force is 1	F = mg + ma'
9. Which among the following is/are the	$\sigma^2 t^2$
characteristics of a conservative force field?	$F = mg + m\frac{g^2t^2}{2}$
(p) The force can be derived from a potential	Za
by taking its negative space gradient.	$\Gamma_{\rm resc} \left(1, gt^2 \right)$
(q) The work done by the force round a closed	$\mathbf{F} = \mathbf{mg} \left(1 + \frac{\mathbf{gt}^2}{2\mathbf{a}} \right)$
path is zero.	· · · ·
(r) The total mechanical energy is a constant	$\left[\frac{1}{2} \right]$
of time.	Thus the vertical force required is mg $\left 1 + \frac{c}{2a} \right $.
(s) For the motion of a particle in the field, the	Thus the vertical force required is mg $\left(1+\frac{gt^2}{2a}\right)$.
gain in kinetic energy is equal to the loss in	11. A 50 g bullet is fired through a stack of fibre
potential energy.	board sheets 10 cm thick. The velocity of the
(a) Only (p)	bullet at the point of approaching the stack is
(b) Only (p) and (q)	500 ms ⁻¹ . What will be its velocity in ms ⁻¹ at the
	exit point from the stack if the average
(c) Only (p), (q) and (r) (d) (p) (q) (r) and (c)	resistance offered by the stack to the bullet 4 ×
(d) (p), (q), (r) and (s)	10^4 N.
DSSSB PGT 2018 (04 July 2018 Female) Physics	
Ans. (c) : Conservative force: - A conservative force is	(a) 200 (b) 300
Ans. (c) : Conservative force:- A conservative force is a force with the property that the total work done in a	(a) 200 (b) 300 (c) 400 (d) 500
Ans. (c) : Conservative force: - A conservative force is	(a) 200 (b) 300 (c) 400 (d) 500 DSSSB PGT 2018 (04 July 2018 Female) Physics
Ans. (c) : Conservative force:- A conservative force is a force with the property that the total work done in a	(a) 200 (b) 300 (c) 400 (d) 500 DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (b) : Given, $F = 4 \times 10^4$ N
Ans. (c) : Conservative force:- A conservative force is a force with the property that the total work done in a moving particle between two points is independent of	(a) 200 (b) 300 (c) 400 (d) 500 DSSSB PGT 2018 (04 July 2018 Female) Physics
Ans. (c) : Conservative force:- A conservative force is a force with the property that the total work done in a moving particle between two points is independent of the path taken. Characteristics of Conservative force field-	(a) 200 (b) 300 (c) 400 (d) 500 DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (b) : Given, $F = 4 \times 10^4$ N Mass of bullet, $m = 50g = 50 \times 10^{-3}$ kg
Ans. (c) : Conservative force: A conservative force is a force with the property that the total work done in a moving particle between two points is independent of the path taken.	(a) 200 (b) 300 (c) 400 (d) 500 DSSSB PGT 2018 (04 July 2018 Female) Physics Ans. (b) : Given, $F = 4 \times 10^4$ N

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
$ \begin{array}{c} 50a = 500 - 700 \\ 50a = 200N \\ a = \frac{200}{50} = 4m/s^2 \\ \hline \\ $	ma = mg - T	(a) 18 N
$\frac{3 - 200}{3} - 4m/s^{2}$ $\frac{3 - 200}{3}$ $\frac{3 - 200}{3} - 4m/s^{2}$ $\frac{3 - 200}{3}$ $\frac{3 - 20}{3}$ $\frac{3 - 2}{3}$ $$		
$a = \frac{200}{50} = 4m/s^{2}$ 1. Gravitational 2. Electromagnetic 3. Nuclear 4. Weak Choose the correct one. (a) 1 and 2 only (b) 1.2 and 3 only (c) 1.3 and 4 only (c		(c) 9 N
InterferenceInterference16. Which of the following is/are type/s of forces in nature?17. Kepler's second law is based on class.18. Mice ar a. Viewak c. Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only. (c) 1, 3 and 4 only. DSSSB TCT 2021 (07/09/2021 Shift-11 Male) Natural sci.Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. (c) the law of Gravitation was given by S is Isaac My separated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force force serven two objects of mass in and more sparated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force cat's when the distance between charged particles and is the combination of all the magnetic and force acts when the distance between nucleons is less than 10 force. Tooms nuclear Force: The strong nuclear force is a type of physical interaction that occurs between than 10 force forces. Strong Nuclear Force: The strong nuclear force sapeard (c) be ber (d) become 4F (d) become 4F (d) become 2F is law is based on- (a) Newton's second law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Newton's second law is based on conservation of angular momentum of planet remains constant. Strong thanet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant wh		(d) 0 N
InterferenceInterference16. Which of the following is/are type/s of forces in nature?17. Kepler's second law is based on class.18. Mice ar a. Viewak c. Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only. (c) 1, 3 and 4 only. DSSSB TCT 2021 (07/09/2021 Shift-11 Male) Natural sci.Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. (c) the law of Gravitation was given by S is Isaac My separated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force force serven two objects of mass in and more sparated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force cat's when the distance between charged particles and is the combination of all the magnetic and force acts when the distance between nucleons is less than 10 force. Tooms nuclear Force: The strong nuclear force is a type of physical interaction that occurs between than 10 force forces. Strong Nuclear Force: The strong nuclear force sapeard (c) be ber (d) become 4F (d) become 4F (d) become 2F is law is based on- (a) Newton's second law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Newton's second law is based on conservation of angular momentum of planet remains constant. Strong thanet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant wh	$a - \frac{200}{4m} - 4m/s^2$	NVS PGT 2022 (Science 28/11/2022)
InterferenceInterference16. Which of the following is/are type/s of forces in nature?17. Kepler's second law is based on class.18. Mice ar a. Viewak c. Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only. (c) 1, 3 and 4 only. DSSSB TCT 2021 (07/09/2021 Shift-11 Male) Natural sci.Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. (c) the law of Gravitation was given by S is Isaac My separated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force force serven two objects of mass in and more sparated by a distance ris given by - F = $\frac{Gm_m 2}{r^2}$, where G is a universal Gravitational force cat's when the distance between charged particles and is the combination of all the magnetic and force acts when the distance between nucleons is less than 10 force. Tooms nuclear Force: The strong nuclear force is a type of physical interaction that occurs between than 10 force forces. Strong Nuclear Force: The strong nuclear force sapeard (c) be ber (d) become 4F (d) become 4F (d) become 2F is law is based on- (a) Newton's second law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Newton's second law is based on conservation of angular momentum of planet remains constant. Strong thanet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant wh	$a = \frac{1}{50} = 4007 \text{ s}$	
In large args, arg		
1. Gravitational 2. Feetromagnetic 3. Nuclear 4. Weak Choose the correct one. (a) 1 and 2 only (b) 1; 2 and 3 only (c) 1; 3 and 4 only (c) 1; 3 and 4 only (d) 1; 2, 3 and 4 only (e) 1; 3 and 4 only (f) 1; 3 and 4 only (g) 1; 5 and 4 only (g) 1; 6 and 1; 7 and 1;		
2. Electromagnetic 3. Nuclear 4. Weak Choose the correct one. (a) 1 and 2 only (b) 1, 2, and 4 only (c) 1, 3 and 4 only (c) 1, 3 and 4 only DSSBB TCF 2021 (07/09/021 Shift-II Male) Natural Set $\frac{F}{n} = \frac{F}{m} = \frac{18}{6} = 3m/s^2$ Thus the net force on 2kg block, $F_{mi} = m \times a$ $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 2 \times 3$ = 6N 19. Two spheres of mass m_1 and m_2 have $= 3 \times 3 $		
3. Nuclear 4. Weak Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only (d) 1, 2, 3 and 4 only (e) 1, 2, 3 and 4 only (f) 1, 2, 3 and 4 only (g) 1, 2, 3 and 4 only (h) 2, 3 and 4 only (h) 1, 2, 3 and 4 only (h) 2, 3 and 4 only (h) 1, 2, 3 and 4 only (h) 1, 2, 3 and 4 only (h) 2, 3 and 4 only (h) 1, 2, 3 and 4 only (h) 2, 4 and 2 only (h) 4, 4 and 2 only (h) 4, 4 and 2 only (h) 4, 4 and 2 only (Since, 18N is applied on the total mass = $3+2+1 = 6$ kg
4. Weak Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only, DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. The law of Gravitational Force: The gravitational force is a force that acts between any two masses. Note of Gravitational Force: The gravitational force $F = \frac{Gm_m^2}{r^2}$, where G is a universal Gravitational constant = $6.67 \times 10^{-11} \text{Mrk} \text{g}^2$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between cleatrical forces. Strong Nuclear Force: The strong nuclear force binds force acts when the distance between nucleons is less than 10 ⁻⁵ mo or 1 fermineter. Weak Nuclear Force: The weak nuclear force sappear only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's strat law (b) Newton's second law (c) conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with eacd other 2 kg block. Find the net force or 18 N is applied on the 3 kg block. Find the net force or 18 N is applied on the 3 kg 2 kg 1 kg (d) $\overrightarrow{\qquad}$	0	F = ma
Choose the correct one. (a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only, (d) 1, 2, 3 and 4 only, (e) 1, 2 and 4 only, (f) 1, 2 and 4 only, (g) 1, 2 and 4 only, (h) 2, 2 and 4 only, (g) 1, 2 and 4 only, (h) 2, 2 and 4 only, (g) 1, 2 and 4 only, (h) 2, 2 and 4 only, (g) 1, 2 and 4 only, (h) 2, 2 and 4 only, (h) 2, 3 and 4 only, (h) 2, 3 and 4 only, (h) 2, 3 and 4 only, (h) 2 k 3 k 4 only, (h) 2 k 4 only,		F 18
(a) 1 and 2 only (b) 1, 2 and 3 only (c) 1, 3 and 4 only, (d) 1, 2, 3 and 4 only, DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sti. Ans. (d): Gravitational Force: - The gravitational force is a force that acts between any two masses. • The law of Gravitational Force: - The gravitational force is a force that acts between any two masses. • The law of Gravitational serves any and m ₂ have gravitational force F acting between them, when placed in air at a distance at 0. placing the same spheres of mass m ₁ and m ₂ have gravitational force F acting between them, when placed in air at a distance at 0. placing the same spheres at the same distance in a liquid medium of relative density 4, the gravitational force between them will be – (a) become 4F (b) become $\frac{F}{4}$ (c) be F (d) become Zro NVSP GT 2022 (Science 28/11/2022) Ans. (c): The gravitational force (F) between two spheres will be F because F is independent of the medium in which the two bodies are placed. 0. Which of the following graphs can possibly represent one-dimensional motion of a particle ? (a) Newton's first law (b) Newton's second law is based on- (a) Newton's first law (c) conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a placet is constant. B. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on 18 N applied on the 3 kg block. Find the net force on 18 N tag N 3 kg 2 kg 1 kg	Choose the correct one.	$a = \frac{1}{6} = \frac{10}{6} = 3 \text{ m/s}^2$
(b) 1, 2 and 3 only (c) 1, 3 and 4 only (d) 1, 2, 3 and 4 only (d) 1, 2, 3 and 4 only (e) 1, 2, 3 and 4 only (f) 1, 2, 3 and 4 only (g) 1, 2, 3 and 1, 2, 2, 3, 2, 2, 3, 2, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4,		
(c) 1, 3 and 4 only. (d) 1, 2, 3 and 4 only. DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. The law of Gravitational Serce: The gravitational force sequence force the objects of mass m ₁ and r_2 separated by a distance r is given by $-$ $F = \frac{Gm_1 m_2}{r^2}$, where G is a universal Gravitational constant = $6.7 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between deterrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nuclear. The strong nuclear force acts when the distance between nucleons is less than 10^{-15} mor 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Repler's and law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remais constant. So the Kepler's nuclear in construct. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constart with easily applied on the 3 kg block. Find the net force on the 2 kg block. 112 N $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ kg}}{1 \text{ kg}}$ $\frac{12 \text{ NN}}{3 \text{ kg}}$ $\frac{2 \text{ kg}}{1 \text{ kg}}$		Thus the net force on 2kg block,
(d) $1, 2, 3$ and 4 only. DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. • The law of Gravitation was given by Sir Isaac Newton. The force between two objects of mass m, and m_2 separated by a distance r is given by – $F = \frac{Gm, m_2}{r^2}$, where G is a universal Gravitational constant = $6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged portices and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻¹⁵ m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's acton law is based on- (a) Newton's first law (b) Newton's scoond law is based on- (c) Neight's acton law is based on- (c) Neight's cond law strafe can show (c) Conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 12 N 3 kg 2 kg 1 kg		$F_{net} = m \times a$
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		
Ans. (d): Gravitational Force: The gravitational force is a force that acts between any two masses. • The law of Gravitation was given by Sir Isaac Newton. The force between two objects of mass m, and m, have $F = \frac{Gm, m_1}{r^2}$, where G is a universal Gravitational constant = 6.67×10^{-11} Nm ² kg ⁻² . Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged force acts when the distance between nucleons is less than 10 ⁻¹ m or 1 fermimeter. Weak Nuclear Force: The strong nuclear force acts when the distance between nucleons is less than 10 ⁻¹ m or 1 fermimeter. Wask Nuclear Force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bhar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the aral velocity of a planet is constant which implies that the angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact. So the Kepler's lad law staged on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact. 18 M 3 kg 2 kg 1 kg 18 N 3 kg 2 kg 1 kg	DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural	_
is a force that acts between any two masses. • The law of Gravitation was given by Sir Isaac Newton. The force between two objects of mass m ₁ and m_2 separated by a distance r is given by – $F = \frac{Gm_m_r^2}{r^2}$, where G is a universal Gravitational constant = $6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$. Electromagnetic Forces. The electromagnetic force is a type of physical interaction that occurs between electrical forces. Strong Nuclear Forces. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻³ more 1 fernimete. Waak Nuclear forces. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻³ more 1 fernimete. Waak Nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Bhar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constant. So the Kepler's laded in constant. So the Kepler's laded in constant. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constant. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constant. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constant. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in constant. 18. Three blocks of mass 3 kg, 2 kg, it hg 18. Three blocks of mass 3 kg, 2 kg mid kince force on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block.	Sci.	= 6N
is a force that acts between any two masses. The law of Gravitation was given by Sir Isaac Newton. The force between two objects of mass m, and m_2 separated by a distance r is given by – $F = \frac{Gm, m_2}{r^2}$, where G is a universal Gravitational constant = $6.67 \times 10^{-11} \text{ Nm}^2 \text{kg}^{-2}$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic force acts when the distance between nucleons is less than 10^{-3} more of the above (c) None of the above (d) More than one of the above (e) None of the above (f) Newton's first law (h) Newton's second law is based on- (a) Newton's first law (h) Newton's keepel is constant. So the Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact. 18 M 3 kg 2 kg 1 kg 18 M 3 kg 2 kg 1 kg 1 kg 18 M 3 kg 2 kg 1 kg 1 kg 18 M 3 kg 2 kg 1 kg 1 kg 18 M 3 kg 2 kg 1 kg 18	Ans. (d): Gravitational Force:- The gravitational force	19. Two spheres of mass m_1 and m_2 have
• The law of Gravitation was given by Sir Isaac Max Separated by a distance r is given by – $F = \frac{Gm,m_{\pi}}{r^2}$, where G is a universal Gravitational constant = 6.67×10 ⁻¹¹ Nm ² kg ⁻² . Electromagnetic Force: - The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: - The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻¹⁵ m or 1 fermimeter. Weak Nuclear Force: - The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant. So the Kepler's law is based on conservation of angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum of planet remains constant. 18. Three blocks. 118. 3kg 2kg 1kg		gravitational force F acting between them,
Newton. The force between two objects of mass m_1 and m_2 separated by a distance r is given by – $F = \frac{Gm_1m_2}{r^2}$, where G is a universal Gravitational constant = $6.67 \times 10^{-11} \text{ Nm}^2 \text{ kg}^{-2}$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force sappears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. N 3 kg 2 kg 1 kg	• The law of Gravitation was given by Sir Isaac	
In 2 separated by a distance f is given by – $F = \frac{Gm, m_2}{r^2}, where G is a universal Gravitational constant = 6.67×10-11Nm2kg-2. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10-15 mor 1 fermimete. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law is based on- (a) Newton's second law with each of the above (b) Newton's second law is based on- (a) Newton's second law is based on- (a) Newton's second law is based on- (b) Newton's second law is based on- (c) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Cepler's 2nd law states that the areal velocity of a planet is constant which implies that the areal velocity of a planet is constant which implies that the areal velocity of a planet momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. 3 kg 2 kg 1 kg$		
$ \begin{array}{c} F = \frac{(11)}{110} \\ F^{-} \\ F^{$	m_2 separated by a distance r is given by –	
constant = $6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^2$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds force acts when the distance between nucleons is less than 10^{-15} m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (e) None of the above (f) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Newton's first law (h) Newton's firs	Γ Gm ₁ m ₂ , G , H , H , H , H	
constant = $6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^2$. Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds force acts when the distance between nucleons is less than 10^{-15} m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (e) None of the above (f) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Newton's first law (h) Newton's firs	$F = \frac{1}{r^2}$, where G is a universal Gravitational	0
Electromagnetic Force: The electromagnetic force is a type of physical interaction that occurs between electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻¹⁶ m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (e) None of the above (f) a planet is constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal surface as shown in the figure. A horizontal surface or 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. Name Tacker 2013 (TRE-200) Science 19. Very the states that the angular momentum. 19. Mass 2 kg 2 kg 1 kg	1	(a) become 4 F
 (c) be F (d) become zero (e) be F (d) become zero (e) be F (f) between two spheres will be F because F is independent of the medium in which the two bodies are placed. (f) Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant. No he Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 		(b) become F
electrically charged particles. It acts between charged particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force at symmetry force acts when the distance between nucleons is less than 10^{-15} m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law is based on- (a) Nore than one of the above (c) None of the above (e) None of the above (f) None than one of the above (g) None of the above 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal surface of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. Three blocks of mass 3 kg, 2 kg mod 1 kg (c) 18 N 3 kg 2 kg 1 kg		(b) become $\frac{-4}{4}$
 particles and is the combination of all the magnetic and electrical forces. Strong Nuclear Force: The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10⁻¹⁵ m or 1 fermimeter. Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on— (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) Bihar Teacher 2013 (TRE-200) Science 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with earch other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 		(c) he F
 electrical forces. Strong Nuclear Force: - The strong nuclear force binds protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10⁻¹⁵ m or 1 fermimeter. Weak Nuclear force: - The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) More than one of the above (g) None of the above (h) Newton's such as that the angular momentum of planet remains constant. 8. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg 18 N 18 N 18 N 3 kg 2 kg 1 kg 18 N 18 N 3 kg 2 kg 1 kg 18 N 18 N 3 kg 2 kg 1 kg 18 N 18 N		
Strong Nuclear Force The strong nuclear force units protons and neutrons in a nucleus. The strong nuclear force acts when the distance between nucleons is less than 10 ⁻¹⁵ m or 1 fermimeter. Weak Nuclear force: - The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) None of the above (g) None of the above (g) None of the above (h) Newton's second law states that the areal velocity of a planet is constant which implies that the angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with earch other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. Northor of the 3 kg block. Find the net force on the 2 kg block. 18. Northor of the 3 kg 2 kg 1 kg 18. Northor of the 3 kg 2 kg 1 kg 18. Northor of a supervalue of the state of the net force on the 2 kg block. 18. Northor of the 3 kg 2 kg 1 kg		
Force acts when the distance between nucleons is less than 10 ⁻¹⁵ m or 1 fermimeter.Weak Nuclear force: - The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus.17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above Bihar Teacher 2013 (TRE-200) ScienceSheres will be F because F is independent of the medium in which the two bodies are placed.Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum.(a)18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block.18 N18. 19. 3 kg2 kg1 kg	Strong Nuclear Force:- The strong nuclear force binds	
than 10^{-15} m or 1 fermimeter. Weak Nuclear force: - The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the angular momentum. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg		
 Weak Nuclear force: The weak nuclear forces appears only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's first law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) None of the above (g) None of the above Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 	force acts when the distance between nucleons is less	spheres will be F because F is independent of the
 only in certain nuclear processes such as the β decay of a nucleus. 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above (f) None of the above (g) None of the above (g) None of the above Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 		medium in which the two bodies are placed.
 (a) Newton's first law (b) Newton's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. (c) 18. 3 kg 2 kg 1 kg		20. Which of the following graphs can possibly
17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. 18. 3kg 2 kg 1 kg (c)		
 17. Kepler's second law is based on- (a) Newton's first law (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 		
 (b) Newton's second law (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. Marking 2 kg 1 kg 		
 (c) Conservation of angular momentum (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 12N 3 kg 2 kg 1 kg 		\uparrow
 (d) More than one of the above (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg 		
 (e) None of the above Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg 		
Bihar Teacher 2013 (TRE-200) Science Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg		t
Ans. (c): Kepler's 2nd law states that the areal velocity of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg		V↑.
 of a planet is constant which implies that the angular momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. 18 N 3 kg 2 kg 1 kg 		
momentum of planet remains constant. So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. $18 N \qquad 3 kg \qquad 2 kg \qquad 1 kg$ (0) (1) (1) (2) (3) (4) (5) (5) (6) (7) (7) (7) (7) (7) (7) (7) (7) (7) (7		- (-) - >t
So the Kepler's law is based on conservation of angular momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18 N 3 kg 2 kg 1 kg		(b) (b)
momentum. 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. 18. 18 N 3 kg 2 kg 1 kg		\forall
 18. Three blocks of mass 3 kg, 2 kg, and 1 kg respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. (c) (c) (c) (c) (c) (c) (c) (c) (c) (c)		
respectively are placed in contact with each other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. $18 N \qquad 3 \text{ kg} \qquad 2 \text{ kg} \qquad 1 \text{ kg}$ (c) (c) (c) (c) (d) (d) (c) (c) (c) (c) (c) (c) (c) (c) (c) (c		
other on a smooth horizontal surface as shown in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. $18 \text{ N} \qquad 3 \text{ kg} \qquad 2 \text{ kg} \qquad 1 \text{ kg}$ (c)		
in the figure. A horizontal force of 18 N is applied on the 3 kg block. Find the net force on the 2 kg block. $18 \text{ N} \qquad 3 \text{ kg} \qquad 2 \text{ kg} \qquad 1 \text{ kg}$ (d)		(c)
applied on the 3 kg block. Find the net force on the 2 kg block. 18 N $3 kg$ $2 kg$ $1 kg18 N$ $3 kg$ $2 kg$ $1 kg$		\longrightarrow t
the 2 kg block. $18 \text{ N} \xrightarrow{3 \text{ kg}} 2 \text{ kg} \xrightarrow{1 \text{ kg}} (d) \xrightarrow{(d)} t$		Speed
$18 \text{ N} \xrightarrow{3 \text{ kg}} 2 \text{ kg} \xrightarrow{1 \text{ kg}} (d) \xrightarrow{(d)} t$		
$18 \text{ N} \rightarrow 3 \text{ kg}$ 2 kg 1 kg		
\rightarrow 3 kg 2 kg 1 kg \rightarrow $7 (\rightarrow)$		(d)
1 Ng		
NVS PG1 2022 (Science 28/11/2022)	1 kg	NUC DOT 2022 (9.1
	xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx	NV 5 FG 1 2022 (Science 28/11/2022)

$$\frac{\frac{\log(0.6)-g}{6}}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{\frac{2}{6}}{\frac{2}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \sin 37^6 = 0.6 \text{ (given)})$$

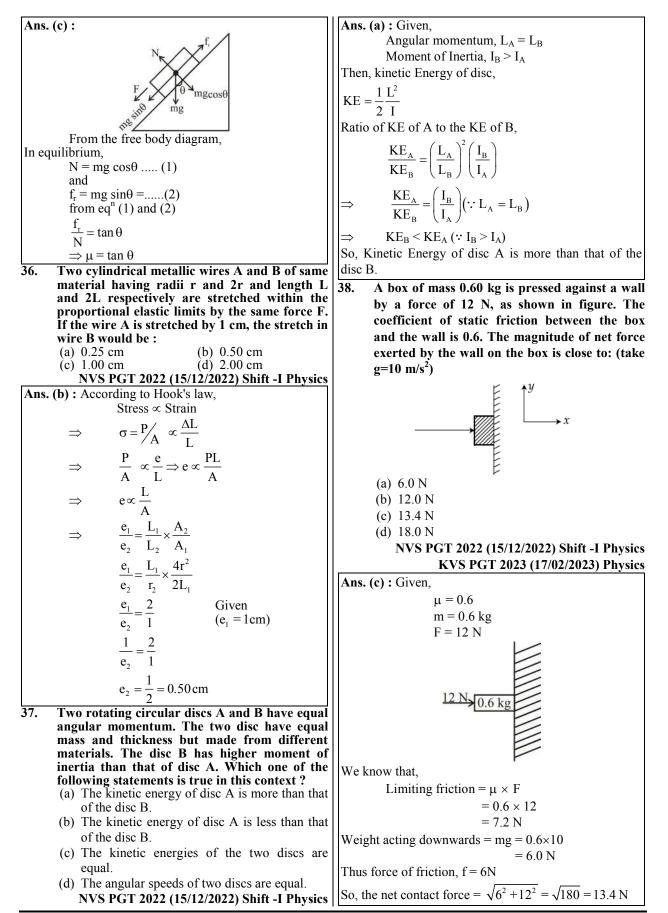
$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.6 \text{ (given)})$$

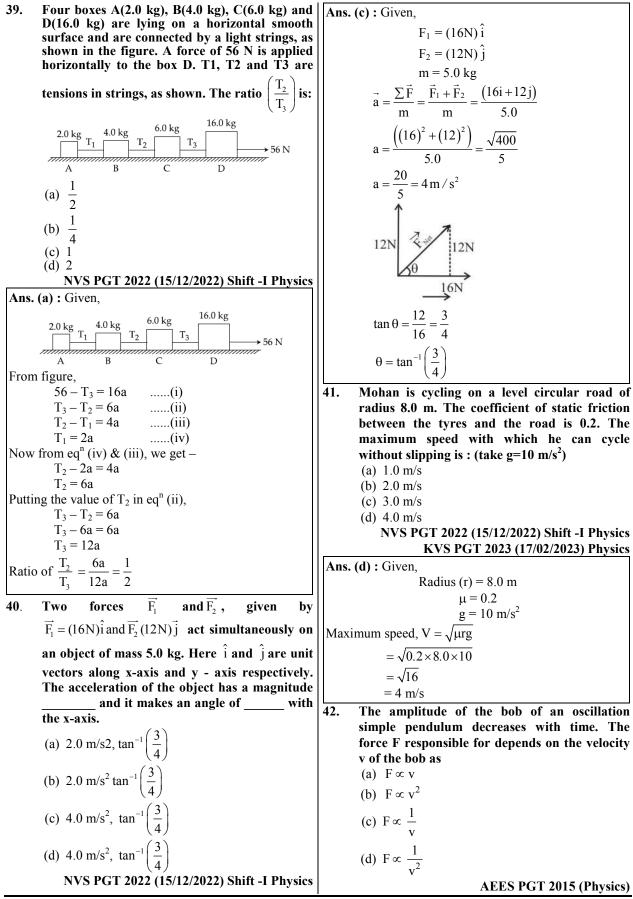
$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.5 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.5 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.5 \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.5 \text{ (given)})$$


$$\frac{2}{\frac{6}{6}} = a \quad (\because \cos 37^6 = 0.5 \text{ (given)})$$


$$\frac{2}{\frac{6}{6}} = a \quad (\land (1 + 1) \text{ (given)})$$

$$\frac{2}{\frac{6}{6}} = \frac{1}{\frac{6}{6}} = \frac{1}{\frac{6}{2}} = \frac{$$

another circular

30. Two bodies X and Y have masses M and m 33. A 2 kg stone at the end of a string 1 m long is respectively, where M > m, and they are at a whirled in a vertical circle at a constant speed distance d apart. Equal force is applied to them of 4 m/s. The tension in the string will be 52 N so that they approach each other. The position when the stone is : where they hit each other is : (a) near to Y (a) at the top of the circle (b) nearer to X (b) halfway down (c) at equal distance from X and Y (c) at the bottom of the circle (d) can not be decided (d) anywhere on the circle KVS PGT 2014 (Physics) KVS PGT 2014 (Physics) Ans. (b) : Since, the forces are equal and directed to each other i.e., applied in opposite directions. Therefore, Ans. (c) : The weight of stone $w = mg = 2 \times 10 = 20 N$. the net external force is zero. Thus, the centre of mass will remain at rest and they meet at the centre of mass and the centre of mass lies closer to big massive bodies. $T \xrightarrow{T_c} 4 \text{ m/s}$ So, the position where they hit each other is nearer to X. The moment of inertia of a thin rod of mass M 31. and length L about an axis passing through its end and perpendicular to the length is : (a) $ML_2^2/3$ (b) $ML_2^2/12$ The centrifugal force, (c) $ML^2/2$ (d) ML² KVS PGT 2014 (Physics) $F_{\rm C} = \frac{mv^2}{r}$ Ans. (a) : For a uniform rod with negligible thickness, the moment of inertia about its centre of mass is : $F_{\rm C} = \frac{2 \times 4 \times 4}{1} = 32$ N $I_{cm} = \frac{1}{12}ML^2$ The distance between the centre of mass and one end of When the stone is at the bottom most position, the three rod x = L/2forces will act on it. Tension of string is in the upward direction and weight and centrifugal force is in the downward direction. Therefore, $T_{Bottom} = mg + F_e = mg + \frac{mv^2}{r}$ So, using parallel axis theorem, $I = I_{cm} + Mx^2$ $=2 \times 10 + \frac{2 \times 4^2}{1} = 52$ N $I = \frac{1}{12}ML^{2} + \frac{ML^{2}}{4} = \left(\frac{1}{12} + \frac{1}{4}\right)ML^{2} = \frac{1}{3}ML^{2}$ The linear momentum of a particle is given by 34. Thus, the moment of inertia of a rod about its one end $p = a + bt^2$, where t is time and a & b are is, $I = \frac{ML^2}{3}$ constants. The force acting on the body varies directly as : Two springs X and Y $(k_x = 2k_y)$ are stretched (a) t^0 (b) t^{1} by applying forces of equal magnitudes at the (c) t^2 (d) t^{3} four ends. If the energy stored in X is E, then KVS PGT 2014 (Physics) the energy stored in Y is : (b) 2E (a) E/2 **Ans. (b) :** Given, linear Momentum $p = a + bt^2$ (c) E (d) E/4 $\Rightarrow \frac{dp}{dt} = 0 + 2bt = 2bt$ KVS PGT 2014 (Physics) **Ans. (b) :** Given, $F_A = F_B$ In case of spring, restoring force, F = -kXAccording to Newton's law of force, Since the force applied was equal, $F \propto m \Longrightarrow F = \frac{dp}{dt}$ $\Rightarrow k_{x}X_{x} = k_{y}X_{y} \Rightarrow X_{y} = \left(\frac{k_{x}}{k_{y}}\right)X_{x} = 2X_{x}$ i.e. The applying force on the body is equal to the time of change of linear momentum of body. The energy stored in spring $X = \frac{1}{2}k_x X_x^2 = E$ So, force $F = 2bt \Longrightarrow F \propto t$ 35. A body starts sliding down at an angle θ to Then, the energy stored in spring $Y = \frac{1}{2}k_y X_y^2$ horizontal. Then coefficient of friction is equal to: $U_{y} = \frac{1}{2} \left(\frac{k_{x}}{2} \right) (2X_{x})^{2} = \frac{1}{2} k_{x} X_{x}^{2} \times 2$ (b) $\cos \theta$ (a) $\sin \theta$ (c) $\tan \theta$ (d) $\cot \theta$ $U_v = 2E$ KVS PGT 2014 (Physics)

Ans. (a) : Xecording to question,

$$F = m \frac{1}{4}$$

$$F \approx x^{-1}$$

$$F \approx$$

(C) Change in momentum does not depend	Ans. (c) : According to the law of gravitation, The force
on duration of force applied.	F between two bodies of masses m_1 and m_2 placed at a
(D) Change in momentum takes place on	distance of 'r' from each other, is given as,
application of unbalance force only.	Where G is universal constant, $G = 6.67 \times 10^{-4} \text{ N}$
(a) $(A) \& (B)$ (b) $(B) \& (C)$	m^2/kg^2
(c) (C) & (D) (d) (A) & (D)	
KVS (LDCE) TGT 2022 (Science)	$F = G \frac{m_1 m_2}{r^2}$
Ans. (d): The rate of change in linear momentum of a	r^2
body is directly proportional to the external force	51. Which of the following equations is the correct
applied on the body, and this change takes place in the	representation of momentum?
direction of the applied force.	[mass m and velocity v and momentum is
• Momentum and velocity always have the same	denoted by p of the body]
\rightarrow \rightarrow	(a) $p = v/m$ (b) $p = mv$
direction as $p = mv$	(c) $p = m-v$ (d) $p = m/v$
• Newton's Second law of motion states that the rate of	DSSSB TGT 2021 (Female, 25/09/2021) Shift-I N.Sci.
change of momentum of an object is proportional to the	Ans. (b) : It is the capacity to make an objects moving
applied unbalanced force in the direction of the force	in the direction of their motion.
So, option (A) & (D) are correct.	Linear momentum is given by –
48. Which of the following statements is/are true?	$\vec{P} = m \cdot \vec{v}$
1. If a body does not change its position it is at	m = Mass of object
rest.	v = velocity of object
2. There is no meaning of rest or motion	Linear momentum is the product of mass and
without the viewer.	velocity.
Choose the correct code.	Mass is scalar quantity and velocity is a vector
(a) Neither 1 nor 2 (b) Both 1 and 2	quantity.
	So, momentum is a vector quantity.
	52. A bullet of mass 0.08 kg moving with a speed of
DSSSB TGT 2021(male,08/09/2021)Shift-II N.Sci.	50 ms ⁻¹ enters a heavy wooden block and is
Ans. (b) : The concept of rest and motion can be	stopped after a distance of 40 cm. What is the
explained by an example, consider Ram is moving in	average resistive force exerted by the block on the bullet?
train. He is in motion with respect to a person standing	(a) 220 N (b) 350 N
outside train. As the train moves his position is	$\begin{array}{c} (a) & 220 \text{ N} \\ (c) & 250 \text{ N} \\ (d) & 300 \text{ N} \end{array}$
changing with respect to the man outside.	DSSSB TGT 2021 (Female, 25/09/2021) Shift-I N.Sci.
* Here the point of reference is the man sitting outside.	Ans. (c) : Given,
* Ram is at rest with respect to the train because their	m = 0.08 kg,
relative position is not changing.	u = 50 m/s,
An object at rest remains at rest, or if in motion remains	$\mathbf{v} = 0,$
in motion at a constant velocity unless and until an	and $s = 40 \text{ cm}$
external force is applied on it.	3rd equation of motion is-
49. Find the maximum height a ball will reach if it	$2as = v^2 - u^2$
is thrown vertically up at a speed of 4 m/s?	$a = -\frac{u^2}{2s}$
$(Given g = 10m/s^2)$	$a = -\frac{1}{2s}$
(a) 1.6 m (b) 0.4 m	-~
(c) 0.6 m (d) 0.8 m DSSSB TGT 2021 (Female,25/09/2021)N.Sci.	$a = \frac{50 \times 50}{2 \times 40 \times 10^{-2}} (Retardation)$
DSSSB TGT 2022 (Female, 26/09/2022) Shift-I N.Sci.	
Ans. (d) : (For vertical motion 'S' is replaced by h)	The resistive force, $F = m.a$
$v^2 - u^2 = 2aS$	$F = 0.08 \times \frac{50 \times 50}{2 \times 40 \times 10^{-2}}$
	$2 \times 40 \times 10^{-2}$
$(0)^{2} - (4)^{2} = 2 \times (-10) \times h (a = -g)$	F = 250 N
h = 0.8m	53. Which of the following is not an example of
50. The force of attraction (F) between two	conservative force?
particles having masses m_1 and m_2 is given by	(a) Force of friction (b) Force of gravity
(If r is the distance between them and G	(c) Force of spring (d) Coulomb force
is a universal constant)	DSSSB TGT 2022 (Female, 26/09/2022) Shift-I N.Sci.
(a) $G\frac{m_1m_2}{r}$ (b) $G\frac{m_1m_2}{r^3}$	Ans. (a) : The frictional force is a non-conservative
r r^3	force.
(c) $G\frac{m_1m_2}{2}$ (d) $G.m_1.m_2.r^2$	
(c) $G \frac{m_1 m_2}{r^2}$ (d) $G.m_1.m_2.r^2$	• A non-conservative force is one for which work
DSSSB TGT 2021 (Female, 25/09/2021) Shift-II N.Sci.	depends on the path taken.
	7

• Work done against friction depends on the length of	56.
the path between the starting and ending point because of this dependence on the path there is no potential energy associated with non- conservative force.	
54. The term impending motion means:	
(a) Motion that would not take place (but does actually take place) under the applied force, if	
friction were absent. (b) Motion that would take place (but does not	Ans.
actually take place) under the applied force, if	
friction were present.	Since
(c) Motion that would take place (but does not actually take place) under no applied force, if	
friction were absent. (d) Motion that would take place (but does not	
actually take place) under the applied force, if friction were absent.	
DSSSB TGT 2022 (Female, 26/09/2022) Shift-I N.Sci.	
Ans. (d) : Static friction does not exist by itself. When	
there is no applied force there is no static friction. It comes to play as soon as the external force is applied.	
The component of contact force normal to the surface is	
called normal reaction and the component parallel to the	57.
surface is called friction.	
Static friction opposes the impending motion impending	
motion means the motion that would take place (but	
does not actually takes place) under applied force if friction were absent.	
55. A body is projected vertically upwards with a	
velocity u. Find its speed when it is at half of	
the maximum height.	
(a) $\frac{u}{2}$ (b) $\frac{u}{4}$	
(a) u (d) u	Ans.
(c) $\frac{u}{\sqrt{2}}$ (d) $\frac{u}{2\sqrt{2}}$	X (= s
DSSSB TGT 2018 (Female, 27/09/2018) Shift-I N.Sci.	∴ s =
Ans. (c) : For a body projected upward from horizontal,	
$\theta = 90^{\circ}$	s = 0
Hence, $H_{max} = \frac{u^2 \sin^2 \theta}{2g}$	As ne
	no pe
$=\frac{u^2}{2g} (\sin 90^\circ = 1)$	
by equation,	
$v^2 = u^2 - 2gh$ (from equation $h = \frac{H_{max}}{2}$)	
$= u^2 - 2g \frac{u^2}{4g}$	
$=u^2-\frac{u^2}{2}$	58.
2	
$v^2 = \frac{u^2}{2}$	
2	
$v = \frac{u}{\sqrt{2}}$	D

. A particle starts from rest and moving with uniform acceleration and attains velocity 20 m/s after travelling some distance. Find its velocity at mid-point of the journey distance.

(a)
$$10 \text{ m/s}$$
 (b) $10\sqrt{2} \text{ m/s}$
(c) 5 m/s (d) 20 m/s

DSSSB TGT 2018 (Female, 27/09/2018) Shift-I N.Sci. Ans. (b) : Given,

initial velocity,
$$u = 0$$

Final velocity, $v = 20$ m/s
nce, $v^2 = u^2 + 2aS$
 $\Rightarrow (20)^2 = 0 + 2aS$
 $2aS = 400$ (i)
At mid-point of journey, $= \frac{S}{2}$
 $v_m^2 = 2a \times \frac{S}{2}$
 $v_m^2 = (2aS) \times \frac{1}{2} = 400 \times \frac{1}{2}$ [from (i)]
 $v_m = \sqrt{200} = 10\sqrt{2}$ m/s

57. A body is dropped freely from a height 'X' m. If it takes Y seconds to reach the ground. The time it takes to reach half of the height of the tower is (Take $g = 10m/s^2$)

(a)
$$\frac{Y}{2}s$$
 (b) $\frac{Y}{\sqrt{2}}s$
(c) $\frac{Y}{4}s$ (d) $\frac{Y}{\sqrt{10}}s$

DSSSB TGT 2018 (Female, 27/09/2018) Shift-III N.Sci.

Ans. (b) : Given, a body is dropped freely from a height X (= s) and reach the ground in Y seconds (= t') \therefore s = ut + $\frac{1}{2}$ gt'² s = 0 + $\frac{1}{2}$ gt'² \Rightarrow X = $\frac{1}{2}$ g Y² As per question, $\frac{s}{2} = ut + \frac{1}{2}$ gt² $\Rightarrow \frac{X}{2} = 0 + \frac{1}{2}$ gt² X = gt² $\Rightarrow \frac{g}{2}$ Y² = gt² $\Rightarrow t = \frac{Y}{\sqrt{2}}$ second 58. The velocity of a body of mass 100 g is increased from 5 m/s to 36 km/hr in 5s. The force acting on the body is : (a) 0.1 N (b) 0.2 N

(a) 0.1 N	(b) 0.2 N
(c) 0.5 N	(d) 0.8 N

DSSSB TGT 2018 (Male, 29/09/2018)Shift-I N.Sci.

Ans. (a) : Given,
$$m = 100g = \frac{100}{1000} kg$$

 $v_1 = 5 m/s, v_2 = 36 km/hr = 36 $\frac{5}{18} = 10m/s$
Acceleration, $a = \frac{v_1 - v_1}{1} = \frac{10 - 5}{5} = 1m/s^2$
Force, F = mass acceleration
 $F = \frac{100}{1000} \times 1 = 0.1N$
59. Water drops fall from the nozzle of a shower 5
m high on to the floor. The drops are released
at regular intervals of time such that the first
drop reaches the ground when sixth drop is
released from the nozzle. Taking g = 10m/s^2$
(a) 1.8 m (b) 4.2 m
(c) 2.6 m (d) 3.4 m
DSSSB TGT 2018 (Male, 2909/2018)shift-11 N.Sci.
Ans. (b) : Given, $F = 100$
 $4^{\circ} drop$
 $3^{\circ} drop$
 $4^{\circ} drop$
 $3^{\circ} drop$
 $4^{\circ} drop$
 $3^{\circ} drop$
 $4^{\circ} drop$
 $3^{\circ} drop$
 $2^{\circ'} drop$
 $3^{\circ'} drop$

Ans. (b) : Law of conservation of linear momentum is	$F = \frac{dp}{dt}$
used	$\Gamma = \frac{1}{dt}$
• The law of conservation of momentum states that	where F is the force while p is linear momentum
when two objects collide in an isolated system, the total	$- d(\overline{r} \times \overline{p})$
momentum before and after the collision remains equal.	$\Rightarrow \overline{\mathbf{r}} \times \overline{\mathbf{F}} = \frac{\mathbf{d}(\overline{\mathbf{r}} \times \overline{\mathbf{p}})}{\mathbf{dt}}$
• The principle of conservation of momentum is a direct	ut
consequence of Newton's third law of motion. So when a rocket is fired from the earth, the law of conservation	{:: Torque $\tau = r \times F$, Angular Momentum L=r×p}
of linear momentum is used.	\rightarrow dL 2L LN m
	$\Rightarrow \tau = \frac{dL}{dt} = \frac{2L}{2} = L N - m$
65. Which is the frame of reference in which Newton's first law holds true?	69. A body is thrown vertically upward with
(a) Internal frame	velocity u. What is the greatest height H to
(b) Uniform frame	which it will rise?
(c) Intersticial frame	(a) u/g
(d) Inertial frame	(b) $u^{2}/2g$
DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy.	(c) u^2/g^2
Ans. (d) : Inertial frame- Newton's first law	(d) $u/2g$
\Rightarrow An Inertial frame of reference is a frame where	AEES TGT 2015 (Math, Physics)
Newton's first law hold. It means if no external force is	Ans. (d) : Given,
acting on a body it will stay at rest or remain in uniform	Initial Velocity = $u m/s$
motion.	Final Velocity = $v = 0$
66. Which of the following statement is correct	Acceleration = $-g m/s^2$
about action and reaction?	Let 'h' be the maximum height, thus by the equation of
(a) Both act on the same object	motion, we get- $x^2 = 2ab$
(b) Both may or may not have equal magnitude	$v^2 - u^2 = 2ah$
(c) Both Have same direction	$0 - u2 = 2 \times (-g) \times h$ u2 = 2gh
(d) Both act along the line joining the bodies	
DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural	$h - \frac{u^2}{u}$
Sci.	$h = \frac{u^2}{2g}$
DSSSB PGT 2021 (Female 29/06/2021 Shift-I) Phy.	70. Apparent weight of a body in a lift will be
Ans. (d) : Action and reaction both act along the line	double of its real weight when
joining the bodies.	(a) Lift comes down with accelerating g
• It explain the Newton's Third law which states that	
and the second sec	(b) Lift goes up with velocity 9.8m/sec
every action has an equal and opposite reaction.	(b) Lift goes up with velocity 9.8m/sec(c) Lift goes up with acceleration g
67. Which of the following statements is/are true?	(c) Lift goes up with acceleration g(d) Lift goes down with velocity 9.8m/sec
67. Which of the following statements is/are true?1. If a body changes its position with time it is	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics)
67. Which of the following statements is/are true?1. If a body changes its position with time it is said to be moving	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g.
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute motion 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have.
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute motion (a) 1 only 	(c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec <u>AEES TGT 2015 (Math, Physics)</u> Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a)
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only 	(c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) $= m (g + g)$
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only (c) Both 1 and 2 	(c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec <u>AEES TGT 2015 (Math, Physics)</u> Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) $= m (g + g)$ $= 2mg$
 67. Which of the following statements is/are true? 1. If a body changes its position with time it is said to be moving 2. Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 	(c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec <u>AEES TGT 2015 (Math, Physics)</u> Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. $R = m (g + a)$ $= m (g + g)$ $= 2mg$ \Rightarrow It is more compared to actual weight when the lift is
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural 	(c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec <u>AEES TGT 2015 (Math, Physics)</u> Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. $R = m (g + a)$ $= m (g + g)$ $= 2mg$ \Rightarrow It is more compared to actual weight when the lift is going up.
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g. When the lift is moving up with acceleration g then we have.
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body.	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5°
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30°
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 6 only 2 only 8 only DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical.
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters. So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics)
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 2 only Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters. So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : L/3 L/3 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics)
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 6 only 2 only 8 Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters. So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (d) L/2 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as,
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 6 only 2 only 8 only DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (d) L/2 KVS PGT 2014 (Physics) 	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as, θ₁ = 30°
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion 1 only 2 only 3 only 2 only 8 Both 1 and 2 Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (c) E Ans. (c) : Given, Change in angular momentum	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as, θ₁ = 30° For second projectile motion, the angle from horizontal
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (c) L/2 KVS PGT 2014 (Physics) Ans. (c) : Given, Change in angular momentum ΔL = (4.45 - 2.45) L = 2L	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as, θ₁ = 30° For second projectile motion, the angle from horizontal for same range is,
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters. So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (d) L/2 KVS PGT 2014 (Physics) Ans. (c) : Given, Change in angular momentum $\Delta L = (4.45 - 2.45)L = 2L$ Time interval $\Delta t = 2$ seconds	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = m (g + g) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as, θ₁ = 30° For second projectile motion, the angle from horizontal for same range is, θ₂ = 90° - 30
 67. Which of the following statements is/are true? If a body changes its position with time it is said to be moving Nothing is in absolute rest or in absolute motion (a) 1 only (b) 2 only (c) Both 1 and 2 (d) Neither 1 nor 2 DSSSB TGT 2021 (07/09/2021 Shift-II Male) Natural Sci. Ans. (c) :Moving Body:- When a body changes its position with its time, it is said to in motion or a moving body. Nothing is in absolute rest or in absolute motion as the frame of reference matters . So, Both 1 and 2 statement are true. 68. The angular momentum (L) of a wheel changes from 2.45L to 4.45L in 2 seconds. The magnitude of the torque acting on it will be : (a) L/3 (b) L/5 (c) L (c) L/2 KVS PGT 2014 (Physics) Ans. (c) : Given, Change in angular momentum $\Delta L = (4.45 - 2.45)L = 2L$	 (c) Lift goes up with acceleration g (d) Lift goes down with velocity 9.8m/sec AEES TGT 2015 (Math, Physics) Ans. (c) : Lift goes up with acceleration g. When the lift is moving up with acceleration g then we have. R = m (g + a) = 2mg ⇒ It is more compared to actual weight when the lift is going up. 71. A projectile projected at 30° with the horizontal achieves a horizontal range R. It can achieve the same horizontal range R if projected (with the same initial velocity) at the following angle with the vertical. (a) 15° (b) 22.5° (c) 30° (d) It cannot achieve the same horizontal range for any angle α < 60° with the vertical. AEES PGT 2015 (Physics) Ans. (d) : For the first projectile motion, the angle from horizontal is given as, θ₁ = 30° For second projectile motion, the angle from horizontal for same range is,