RRB MATHEMATICS Chapterwise Solved Papers

(Computer Based Test)

Chief Editor

A.K. Mahajan

Complied & Written By Anand Soni, Kamlesh Shrivastava, Vinit Shrivastava,

Computer Graphics By Balkrishna Tripathi & Vinay Sahu

Editorial Office

12, Church Lane Prayagraj-211002

S Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com/ www.yctfastbooks.com © All Rights Reserved with Publisher

Publisher Declaration

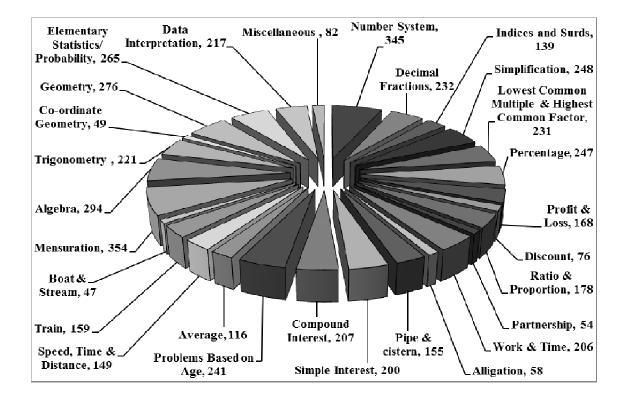
Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Laxmi Narayan Printing Press. In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

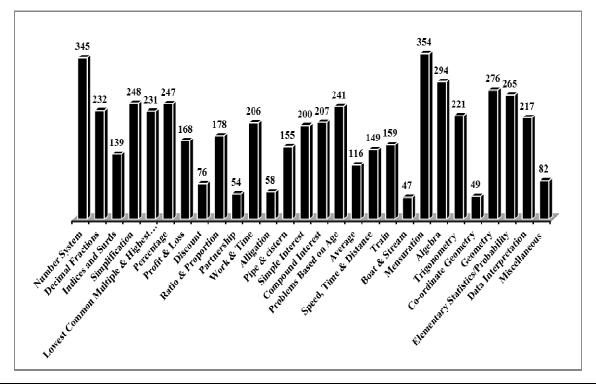
CONTENTS

■ Analysis chart of RRB : JE, ALP, NTPC, Group-D, RPF SI &	
Constable, Paramedical Pre Exam Questions Papers	7
RRB : JE, ALP, NTPC, Group-D, RPF SI & Constable, Paramedical	
Papers Through Pie Chart and Bar Graph	
Section-1 : Number System	
Type 1 Problems based on Divisibility	9
Type 2 Problems based on specificity of digits	
Type 3 Problems based on composite and prime numbers	
Type 4 Problems based on basic notion of numbers	21
Type 5 Problems based on Rational and Irrational numbers	
Type 6 Problems based on powers and exponents of numbers	41
Type 7 Problems based on unit digit and factorization of numbers	
Type 8 Problems based on place value and numerical value	
Type 9 Miscellaneous	
Section-2 : Decimal Fractions	51-85
Type 1 Problems based on finding the smallest and largest fractions	51
■ Type 2 Problems based on ascending and descending order of fractions	
Type 3 Problems based on Terminating and Recurring Decimal Values of Fractions	
Type 4 Problems based on Bar of Decimal numbers	60
■ Type 5 Problems based on finding the simplest value of the fraction	65
■ Type 6 Problems based on the addition of a fraction and its reciprocal	
■ Type 7 Problems based on the sum and difference of fractions	
■ Type 8 Problems based on the value of decimal and fractional expressions	
Type 9 Problems based on options	
Type 10 Problems based on finding the fraction	
Type 11 Miscellaneous	
Section-3 : Indices and Surds	
Type 1 Problems based on finding square root of numbers	
Type 2 Problems based on finding the square root of decimal numbers	
Type 3 Problems based on sum and product of square root of numbers	
Type 4 Problems based on finding the square root of fractional numbers	
Type 5 Miscellaneous	
Section-4 : Simplification	104-137
Type 1 Simple problems related to addition, subtraction, multiplication and division	
Type 2 Problems based on the rule of BODMAS	
Type 3 Problems based on formulas and on finding the value of a term of an expression	
Type 4 Problems based on simplification of decimal and fractional expressions	
Type 5 Simplification of numbers based on surds	
Type 6 Miscellaneous	

Section-5	5 : Lowest Common Multiple & Highest Common Factor	
Type 1	Common problems related to LCM	
	Remainder problems related to LCM	
Type 3	Common problems related to HCF	144
Type 4	Remainder problems related to HCF	149
Type 5	Decimal and Fractional Problems related to LCM and HCF	151
Type 6	Combined problems of LCM and HCF	
Type 7	Problems based on Ratio, Sum, Difference and Factor of LCM and HCF	
Type 8	Problems related to square tiles	161
Type 9	Problems based on Alarm/Bell/Light etc	162
Type 1) Divisibility problems based on LCM and HCF	164
Section-6	5 : Percentage	
Type 1	Problems based on Population	
	Problems based on Exam and Students	
Type 3	Problems based on Income, Expenditure and Savings	178
Type 4	Problems based on Percentage of Numbers	
Type 5	Problems based on Percentage change	
Type 6	Problems based on investment and business	
Type 7	Problems related to finding percentage quantity	
Type 8	Problems based on finding percentage	
Type 9	Problems based on percentage change in area	
Type 1) Problems based on voting	
Section-	7 : Profit & Loss	205 233
Section		203-235
	Problems based on finding the percentage of profit and loss	
Type 1		205
 Type 1 Type 2 	Problems based on finding the percentage of profit and loss	205 210
 Type 1 Type 2 Type 3 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price	
 Type 1 Type 2 Type 3 Type 4 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price	
 Type 1 Type 2 Type 3 Type 4 Type 5 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss	
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values	205 210 216 222 224 224 225
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles	205 210 216 222 224 224 225 226
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles Problems based on goods bought and sold at a particular rate	205 210 216 222 224 225 226 232
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles Problems based on goods bought and sold at a particular rate Miscellaneous	205 210 216 222 224 225 226 232 234-245
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles Problems based on goods bought and sold at a particular rate Miscellaneous : Discount	205 210 216 222 224 225 226 232 234-245 246-269
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles Problems based on goods bought and sold at a particular rate Miscellaneous B: Discount Problems based on ratio of two parts	205
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous : Discount Problems based on ratio of two parts Problems based on ratio of three parts.	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. : Discount. Problems based on ratio of two parts Problems based on ratio of three parts. Problems based on new ratio due to increase or decrease in original ratio	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252 255
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 Type 4 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price Problems based on finding the selling price Problems based on finding the amount of profit and loss Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles Problems based on goods bought and sold at a particular rate Miscellaneous : Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on consecutive ratio and proportion	205
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 3 Type 4 Type 5 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price. Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. : Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on Coins/balls etc.	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252 255 261 261
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price. Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. : Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on Coins/balls etc. Miscellaneous	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252 255 261 264 264
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price. Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. : Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on Coins/balls etc.	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252 255 261 264 264
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 	Problems based on finding the percentage of profit and loss Problems based on finding the cost price. Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. : Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on Coins/balls etc. Miscellaneous	205
 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Type 7 Type 8 Section-8 Section-9 Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 Section-1 Type 1 	Problems based on finding the percentage of profit and loss. Problems based on finding the cost price. Problems based on finding the selling price. Problems based on finding the amount of profit and loss. Problems based on finding the ratio of values. Problems based on profit or loss of cost/sale of two articles. Problems based on goods bought and sold at a particular rate Miscellaneous. 2: Discount Problems based on ratio of two parts Problems based on new ratio due to increase or decrease in original ratio Problems based on Coins/balls etc Miscellaneous.	205 210 216 222 224 225 226 232 234-245 234-245 246-269 246 252 255 261 261 264 267 270-279

Section-1	1 : Work & Time	
Type 1	Problems based on the involvement of two persons in the work	
• 1	Problems based on the involvement of three persons in the work	
	Problems based on the involvement of a group of persons in the work	
Type 4	Problems based on part of work and remaining work etc	
Type 5	Problems based on leaving and joining in the middle of the work	
Type 6	Problems based on work efficiency and wages etc	
Type 7	Miscellaneous	
Section-1	2 : Alligation	
Type 1	Problems based on the value and quantity of substances in a mixture	
Type 2	Problems based on finding ratio of substances in a mixture	
Type 3	Miscellaneous	
Section-1	3 : Pipe & Cistern	
Type 1	General Problems based on Pipe and Cistern	
Type 2	When one Pipe is fills and the other Pipe is empties	
Type 3	When more than two Pipes work together	
Type 4	When a Pipe is turned on or off in the middle	
Type 5	When the Pipe is opened alternately	
• 1	Problems based on capacity	
Type 7	Miscellaneous	
Section-1	4 : Simple Interest	
Type 1	Problems based on finding simple interest	
Type 2	Problems based on finding the Principal	
Type 3	Problems based on finding the amount	
• •	Problems based on finding the rate	
• •	Problems based on finding the time	
• •	Miscellaneous	
Section-1	5 : Compound Interest	
■ Type 1	Problems based on finding the Principal	
Type 2	Problems based on finding the Amount	
Type 3	Problems based on finding the Compound Interest	410
Type 4	Problems based on Simple and Compound Interest	418
Type 5	Problems based on the difference between simple and compound interest	
Type 6	Problems based on finding the rate	
Type 7	Problems based on finding the time	
Type 8	Miscellaneous	
Section-1	6 : Problems Based on Age	
Type 1	Problems based on finding the present age of a person	
Type 2	Problems based on finding the age of two persons	460
Type 3	Problems based on finding the sum and difference of ages	
• •	Problems based on ratio of ages	
	Problems based on finding the age at a particular time	
Type 6	Miscellaneous	477


Section-1	7 : Average	481-498
Type 1	Problems based on the average of consecutive numbers	
Type 2	Problems based on examination, students and marks	
Type 3	Problems based on average age and average weight	
Type 4	Problems based on finding the value of any one result	491
Type 5	Average problems based on table	
Type 6	Miscellaneous	
Section-1	8 : Speed, Time & Distance	499-527
Type 1	Problems based on finding speed	
Type 2	Problems based on finding time	504
Type 3	Problems based on finding distance	511
Type 4	Problems based on Average speed	
Type 5	Proportional questions of speed, time and distance	
Section-1	9 : Train	528-552
Type 1	Simple problems related to train	
Type 2	When the train crosses a person or a pole	530
Type 3	When the train crosses another moving person	532
Type 4	When the train crosses a platform or bridge	535
Type 5	When the train crosses a platform and a person or a pole, etc	
Type 6	Problems based on two trains having same direction	542
Type 7	When two trains start in opposite directions from two places	544
Type 8	Problems based on average speed of trains	549
Type 9	Miscellaneous	550
Section-2	20 : Boat & Stream	553-561
Type 1	Problems based on finding the speed of stream	
Type 2	Problems based on finding the speed of boat/person etc	556
Type 3	Problems based on finding the average speed	558
Type 4	Problems based on finding the ratio of the speeds	559
Type 5	Problems based on finding the distance and time	560
Section-2	1 : Mensuration	562-640
Type 1	Problems based on Triangles	
Type 2	Problems based on Quadrilateral	571
Type 3	Problems based on Circle	574
	Problems based on Square	
• •	Problems based on Rectangle	
	Problems based on Cube	
• 1	Problems based on Cuboid	
	Problems based on Cylinder	
• 1	Problems based on Cone	
• •	Problems based on Sphere/Hemisphere	
• •	Problems based on Prism/Pyramid	
	Miscellaneous	
Section-2	2 : Algebra	
Type 1	Problems based on Arithmetic and Geometric Progression	641
Type 2	Problems based on LCM and HCF of Algebraic Expressions	
Type 3	Problems based on Linear Equations	648
Type 4	Problems based on Algebraic formulas	650


Type 5 Problems based on Divisibility of Polynomials	
Type 6 Problems based on Factors of Polynomials	
Type 7 Problems based on Quadratic Equation and its Discriminant	668
Type 8 Problems based on Algebraic Expressions	680
Type 9 Problems based on Sets	
Type 10 Miscellaneous	
Section-23 : Trigonometry	690-734
Type 1 Problems based on Trigonometric Functions	
 Type 1 Problems based on Englishmetric Functions Type 2 Problems based on exponents of trigonometric functions 	
 Type 2 Problems based on Angular value 	
 Type 3 Problems based on Angular value Type 4 Problems based on angular values of consecutive trigonometric functions 	
 Type 4 Troblems based on angular values of consecutive trigonometric functions Type 5 Problems based on height and Distance	
 Type 5 Troben's based on neight and Distance	
Section-24 : Co-ordinate Geometry	
Type 1 Problems based on finding the coordinate point	
Type 2 Problems based on part made up of Dots	
Type 3 Problems based on finding the Equation	741
Type 4 Miscellaneous	
Section-25 : Geometry	
Type 1 Problems based on Triangles	746
 Type 1 Problems based on Quardrilateral 	
 Type 2 Problems based on Rhombus 	
 Type 2 Problems based on Parallelogram	
 Type 5 Problems based on Trapezium 	
 Type 6 Problems based on Circle 	
 Type 7 Problems based on tangent to circle 	
 Type 8 Problems based on Polygons 	
 Type 9 Problems based on Complementary/Supplementary Angle) 	
 Type 10 Miscellaneous 	
Section-26 : Elementary Statistics/Probability	
■ Type 1 Problems based on Mean of Data	
Type 2 Problems based on Median of Data	
Type 3 Problems based on Mode of Data	
Type 4 Problems based on Standard Deviation	
Type 5 Problems based on Range	
Type 6 Miscellaneous	
Section-27 : Data Interpretation	
■ Type 1 Problems based on Pie-Chart	838
Type 2 Problems based on Chart	
Type 3 Problems based on Bar Graph	
Type 4 Problems based on Line Graph	
Section-28 : Miscellaneous	

Analysis chart of Question Papers of Various Previous Exams of RRB				
S.N.	Exams	Exam year	Total question paper	Total Maths questions
1.	RRB NTPC 2019 Stage-2	2022	15	35 × 15 = 525
2.	RRB Group-D 2019	2022	99	$25 \times 99 = 2475$
3.	RRB NTPC 2019 Stage-1	2020-21	133	30 × 133 = 3990
4.	RPF Constable 2018	2019	17	35 × 17 = 595
5.	RPF SI 2018	2019	23	$35 \times 23 = 805$
6.	RRB JE 2018	2019	38	$38 \times 30 = 1140$
7.	RRB ALP 2018 Stage-2	2019	18	$18 \times 40 = 720$
8.	RRB Paramedical 2019	2019	7	$18 \times 7 = 126$
9.	RRB ALP/Tech. 2018 Stage-1	2018	30	$25 \times 30 = 750$
10.	RRB Group D 2018	2018	135	25 × 135 = 3375
11.	RRB NTPC 2015 Stage-2	2017	9	$35 \times 9 = 315$
12.	RRB NTPC 2015 Stage-1	2016	63	$30 \times 63 = 1890$
		Total	587	16,706

<u>Note</u> – In this book, out of total **587** papers of JE, ALP, NTPC, RPF Constable, RPF SI, Group D and Paramedical exams conducted by RRB, out of total **16706** questions asked from General Mathematics. Same behavior have been removed and chapterwise compilation of questions of different types has been presented. In this book, every effort has been made by the Examination Special Committee to accommodate maximum variety of questions, so that the examinees can be made aware of the variety of questions asked by RRB.

<u>Trend Analysis of Previous Year RRB : JE, ALP, NTPC,</u> <u>Group-D, RPF SI & Constable, Paramedical Papers</u> <u>Through Pie Chart and Bar Graph</u>

8

Type - 1	(c) $35 \frac{412}{\frac{412}{8}} = 51.5$ (Not completely divisible)
1. Which of the following numbers is divisible	8
completely by both 9 and 11 ?	(d) 35 <u>552</u>
(a) 277218 (b) 10098	$\frac{552}{2} = 69$ (Completely divisible)
(c) 12345 (d) 181998	8
RRB NTPC (Stage-II) 17/06/2022 (Shift-II)	Hence, option (c) is not divisible by 8.
Ans. (b) : Divisibility rule of 9 -	4. If the 7 digit number 504x5y3 is divisible by 11,
When the sum of the digits of a number is divisible by 9	then one of the values of the sum of x and y is:
then the number is also divisible by 9.	(a) 11 (b) 5 (c) 17 (d) 7
Divisibility rule of 11 -	RRB NTPC (Stage-II) –13/06/2022 (Shift-II)
When the difference between the sum of the digit in even and odd place of a number is 0 (zero) or a multiple	Ans. (c) : Given, 504x5y3
of 11, then the number will also be divisible by 11.	Divisibility rule of 11:- If the difference of the sum of
From option (b),	digits at even place and at odd place is zero or divisible
1 + 0 + 0 + 9 + 8 = 18	by 11 then the given number will be divisible by 11.
i.e. 18 is divisible by 9	504x5y3
\therefore Option (d) us divisible by 9.	(0 + x + y) - (5 + 4 + 5 + 3)
And	x + y - 17 = 0
10098 = (9+0) - (8+0+1) = 9-9 = 0	$\mathbf{x} + \mathbf{y} = 17$
Hence option (b) 10098, is divisible by both 9 and 11.	Hence, Sum of $x + y = 17$
2. Which of the following numbers is NOT	5. If 11-digit number 88p554085k6, $k \neq p$, is
divisible by 9 ?	divisible by 72, then what is the value of $(3k + 2\pi)^2$
(a) 49104 (b) 77832 (c) 25252 (d) 45200	2p)? (b) 7
(c) 35253 (d) 45390 DDD NTDC (Stars II) 12/06/2022 (Shift II)	(a) 12 (b) 7 (c) 13 (d) 23
RRB NTPC (Stage-II) –12/06/2022 (Shift-II)	RRB NTPC (Stage-II) –13/06/2022 (Shift-II)
Ans. (d) : Divisibility rule of 9 : A number whose sum of its digit is exactly divisible by 9 then the number is	Ans. (c) : Given,
always divisible by 9.	$\frac{88p554085k6}{88p554085k6} \qquad \text{Where, } k \neq p$
from options -	Note- The number which is divisible by 72 is also
(a) $49104 \rightarrow 4 + 9 + 1 + 0 + 4 = 18$, divisible by 9.	divisible by 8 and 9.
(b) $77832 \rightarrow 7 + 7 + 8 + 3 + 2 = 27$, divisible by 9.	Divisibility rule of 8- If the last three digit of the
(c) $35253 \rightarrow 3 + 5 + 2 + 5 + 3 = 18$, divisible by 9.	number are divisible by 8, then the number will be
(d) $45390 \rightarrow 4 + 5 + 3 + 9 + 0 = 21$, not divisible by 9.	divisible by 8.
3. Which of the following number is NOT	Divisibility rule of 9– If the sum of the all digits of a given number is divisible by 9, then number will be
divisible by 8?	divisible by 9.
(a) 35792 (b) 35112	₩ 8
(c) 35412 (d) 35552	
RRB NTPC (Stage-II) 15/06/2022 (Shift-III)	72
Ans. (c) : Divisibility rule of 8- If the last three digits of	
a number are divisible by 8, then the number is completely divisible by 8.	> 9
from the given options -	88p554085k6
(a) 35 <u>792</u>	On putting, $k = 3$
	$\frac{536}{2} = 67$ (Completely divisible by 8)
$\frac{792}{8} = 99$ (Completely divisible)	8
(b) $35 \frac{112}{112}$	and On putting $p = 2$
	$\frac{8+8+2+5+5+4+0+8+5+3+6}{2}$
$\frac{112}{8} = 14$ (Completely divisible)	9
0	۱ <u>۲</u>

Ans. (b) : Divisibility rule of 9 - If the sum of the digits $=\frac{54}{9}=6$ (Completively divisible) are divisible by 9, then the number is divisible by 9. Number - 4a5124356789734 Then. (3k + 2p)On divided by 9 - $= 3 \times 3 + 2 \times 2$ $\frac{4 + a + 5 + 1 + 2 + 4 + 3 + 5 + 6 + 7 + 8 + 9 + 7 + 3 + 4}{9}$ = 13Find the remainder, when $171 \times 172 \times 173$ is $=\frac{a+68}{9}$ \Rightarrow On putting a=4 \Rightarrow $\frac{4+68}{9}=\frac{72}{9}=8$ 6. divided by 17. (a) 9 (b) 8 Hence the value of a = 4(d) 7 (c) 6RRB Group-D 29/08/2022 (Shift-III) 10. If the 8 digit number 3x5479v4 is divisible by 88 and the 8 digit number 425139z2 is divisible Ans. (c) : According to the question, by 9, then find the maximum possible value of 171×172×173 (3x + 2y - z). 17 (a) 33 (b) 37 $\frac{(170+1)\times(170+2)(170+3)}{17}$ (c) 25 (d) 35 RRB Group-D 09/09/2022 (Shift-III) Ans. (a) : On dividing 3x5479y4 by 88 ie. 8 and 11 $1 \times 2 \times 3$ Divisibility rule of 8 - If the last three digits of the given 17 number are divisible by 8, then it will be divisible by 8. Maximum possible value = 817 $\frac{984}{8} = 123$ 6 (Remainder) \Rightarrow Hence option (c) is correct. Divisibility rule of 11 - The given number can only be completely divided by 11 if the difference of the sum of When a number is divided by a divisor, the 7. digits at odd place and sum of digits at even place in a remainder is 16. When twice the original number is 0 or mutiple of 11. number is divided by the same divisor, the remainder is 3. Find the value of that divisor $3x547984 \implies (4+9+4+x) \sim (8+7+5+3)$ (a) 29 (b) 51 $17+x \sim 23 = 0$ (c) 23 (d) 53 x = 6**RRB Group-D 30/08/2022 (Shift-II)** On dividing 425139z2 by 9 Ans. (a) : Let, the original number be N, the divisor be Divisibility rule of 9 :- If the sum of the digits of a d, quotient be q. number are divisible by 9, then the number is divisible N = dq + 16by 9. $\therefore 2 N = 2(dq + 16)$ $\frac{4+2+5+1+3+9+z+2}{9} = \frac{26+z}{9}$ 2 N = 2dq + 32When (2dq + 32) is divided d then remainder is 3. On putting z = 12dq is completely divisible by d, then $\frac{26+1}{9} = \frac{27}{9} = 3$ \therefore Required number = 32 - 3 = 29If the number 6484y6 is divisible by 8, then find 8. Hence. the least value of y? $3x + 2y - z = 3 \times 6 + 2 \times 8 - 1 = 33$ (a) 3 (b) 4 When a number n is divided by 5, the remainder is 2. When n^2 is divided by 5, the 11. (c) 1(d) 7 **RRB Group-D 02/09/2022 (Shift-II)** remainder will be: Ans. (c) : Divisibility rule of 8 - If the last three digits (a) 3 (b) 1 of the given number are divisible by 8 then it will be (c) 4 (d) 0divisible by 8. RRB NTPC 07.01.2021 (Shift-I) Stage Ist On putting Least value of y = 1Ans. (c) : Number = Divisor × Quotient + Remainder Number = 648416According to question, $n = 5 \times q + 2$ Divided by = $\frac{416}{8}$ = 52 On squaring both the sides, $n^2 = 25q^2 + 4 + 20q$ 9. If the 15 digit number 4a5124356789734 is On dividing by 5 – divisible by 9, then the value of "a" is $\frac{n^2}{5} = 5q^2 + \frac{4}{5} + 4q \text{ or } n^2 = 5(5q^2 + 4q) + 4$ (a) 1 (b) 4 (c) 5 (d) 3 RRB GROUP-D – 22/09/2022 (Shift-III) Hence, required remainder will be 4.

12. How many numbers of the first 100 positive Ans. (d) : Divisibility rule of 11-In a given number if integers are divisible by 3 or 4 without a the difference of sum of all digit even place and placed remainder? at odd place is zero or multiple of 11, then that number (a) 50 (b) 5 will also be divisible by 11. (c) 58 (d) 85 (9+2+8+6)-(3+4+x)25 - (7+x) = 11RRB NTPC 08.02.2021 (Shift-II) Stage Ist 18 - x = 11Ans. (a) : Total number of positive integers which is x = 18 - 11divisible by $3 = \frac{100}{3} = 33$ Hence, x = 7 $(41^{43} + 43^{43})$ is divisible by: 17. Total number of positive integers which is divisible by (a) 86 (b) 74 (c) 12 (d) 84 $4 = \frac{100}{4} = 25$ RRB NTPC 25.01.2021 (Shift-II) Stage Ist Ans. (d): $(x^n + a^n)$ is divisible by (x + a), if the value Total number of positive integers which is divisible by of n is odd $12 = \frac{100}{12} = 8$ \therefore 43 is a odd number, therefore $(41^{43} + 43^{43})$ will be divisible by 41 + 43 = 84Hence, the total number of positive integers which is 18. If pq is a two-digit number, then pq – qp will divisible by 3 or 4. be completely divisible by: =(33+25-8)(a) 9 (b) 7 = 50(d) 5 (c) 6 RRB NTPC 07.04.2021 (Shift-II) Stage Ist 13. How many numbers between 1 and 700 are completely divisible by 17? Ans. (a) : Let the two digit number (pq) = 10x + y(a) 42 (b) 41 Then, qp = 10y + x(c) 45 (d) 46 According to the question, RRB NTPC 29.01.2021 (Shift-II) Stage Ist pq – qp Ans. (b) : Numbers between 1 and 700 which are = 10x + y - (10y + x)exactly divisible by 17. = 10x + y - 10y - x17, 34697. = 9x - 9y $l = a + (n-1) \times d$ = 9 (x - y) $697 = 17 + (n-1) \times 17$ Hence pq – qp will be completely divisible by 9. $680 = (n-1) \times 17$ If n is a natural number then n³-n is always 40 = n - 1divisible by..... n = 41(a) 8 (b) 6 Hence, required number (n) = 41(c) 5 (d) 4 When 19³⁰⁰ is divided by RRB NTPC 05.04.2021 (Shift-II) Stage Ist 20, find the remainder. **Ans. (b) :** :: n is a natural number. (a) 2 (b) 1 $\therefore n^3 - n = n(n^2 - 1) = n(n+1)(n-1)$ (d) 4 (c) 3 n(n+1) (n-1) {Multiplication of three consecutive RRB NTPC 29.01.2021 (Shift-II) Stage Ist natural numbers} Ans. (b) : From question, On putting the value of n = 2 $\frac{19^{300}}{20} \Rightarrow \frac{(20-1)^{300}}{20} \Rightarrow 0 + (-1)^{300} = 1$ (Remainder) $n^{3} - n = n (n + 1) (n - 1) = 2 \times 3 \times 1 = 6$ Hence, it will always divisible by 6. Note- The multiplication of three consecutive natural 15. Which of the following is the greatest three numbers will be always divisible by 6. digit number that is divisible by 13? A number when divided by 7 leaves a remainder 4. What will be the remainder when 20. (a) 990 (b) 575 (c) 988 (d) 908 the square of the same number is divided by 7? RRB NTPC 18.01.2021 (Shift-II) Stage Ist (a) 2 (b) 4 Ans. (c) : Greatest three digit number = 999 (c) 1 (d) 3 On dividing by $13 = \frac{999}{13} = 76\frac{11}{13}$ RRB NTPC 29.01.2021 (Shift-I) Stage Ist Ans. (a) : Let, Quotient = n : 999 divided by 13 leaves remainder 11. \therefore The greatest three digit number divisible by 13 = 999Number = $Divisor \times Quotient + Remainder$ -11 = 988Number = $7 \times n + 4$ (Given, Remainder = 4) The number 93248x6 are divisible by 11. Then 16. On putting n = 1, digit x is equal to. Number = $7 \times 1 + 4 = 11$ (a) 5 (b) 2 On dividing the number by 7, (c) 8 (d) 7 RRB NTPC 03.02.2021 (Shift-I) Stage Ist Remainder = 4

Hence, on dividing the square of 11 by 7	25. In between 250–1000, how many numbers are completely divisible by 5, 6 & 7.
Remainder $=\frac{(11)^2}{7}=\frac{121}{7}=2$	(a) 5 (b) 7 (c) 6 (d) 3
21. The smallest positive number which must be	RRB NTPC 29.12.2020 (Shift-II) Stage Ist
added to the greatest number of 4 digits in order that the sum may be exactly divisible by	Ans. (d) : LCM of 5, 6, 7 –
307 is:	$\frac{2 5,6,7}{3 5,3,7}$
(a) 307 (b) 132 (c) 306 (d) 176 RRB NTPC 17.01.2021 (Shift-II) Stage Ist	$\frac{5}{5} \frac{5,5,7}{5,1,7}$
Ans. (b) : The greatest number of 4 digits = 9999	
307)9999(32	$\frac{7}{1,1,7}$
- <u>921</u>	$2 \times 3 \times 5 \times 7 = 210$
789	\therefore Numbers from 250 to 1000 which are divisible by 5,
614	6, 7 will be always divisible by 210 or in multiples of
175	210. Therefore, the numbers are 210×1 , 210×2 , 210×3 ,
Hence, the smallest number to be added = $307-175$	$210 \times 4, 210 \times 5$
= 132 22. How many numbers from 3 to 60 are odd	$210, 420, 630, 840, \dots$
numbers that are exactly divisible by 5?	Hence, the required numbers = 3 26. The largest four-digit number that is exactly
(a) 7 (b) 5 (c) 8 (d) 6 DDD NTDC 00 01 2021 (Shift I) Stage lat	divisible by 83 is:
RRB NTPC 09.01.2021 (Shift-I) Stage Ist Ans. (d) : Odd numbers between 3 to 60 which	(a) 9936 (b) 9954
divisible by 5.	(c) 9960 (d) 9966
5, 15, 25, 35, 45, 55	RRB NTPC 20.01.2021 (Shift-I) Stage Ist Ans. (c) : The largest four-digit number = 9999
So total number of odd numbers from 3 to 60 which are exactly divisible by $5 = 6$.	
23. How many numbers between 300 and 1000 are	83)9999(12
divisible by 7? (a) 204 (b) 201 (c) 101 (d) 100	83
(a) 994 (b) 301 (c) 101 (d) 100 RRB NTPC 09.01.2021 (Shift-I) Stage Ist	169
Ans. (d) : Total number of numbers between 1 and	166
1000 which are divisible by 7	39
$=\frac{1000}{7}=142$	Therefore required number $= 9999 - 39 = 9960$
Total number of numbers between 1 and 300 which are	Hence, 9960 is the largest four-digit number which is exactly divisible by 83.
divisible by 7 300	27. $(47)^{25} - 1$ is exactly divisible by:
$=\frac{300}{7}=42$	(a) 21 (b) 24 (c) 23 (d) 19
Hence, Total number of numbers between 1 and 300	RRB NTPC 18.01.2021 (Shift-I) Stage Ist
which are divisible by 7 between 300 and 1000 = $142 - 42 = 100$	Ans. (c) : $(47)^{25} - 1$
24. Find the greatest number of five digits, which is	$a^n - b^n$ is completely divisible by $(a - b)$
exactly divisible by 468. (a) 99684 (b) 99486	When $n = odd$ numbers, As per the question
(c) 99864 (d) 99468	n = 25(Odd number)
RRB NTPC 04.01.2021 (Shift-II) Stage Ist	a = 47, b = 1
Ans. (a) : The greatest number of five digits = 99999	Then, $h = 47 - 1 = 46 = 2 \times 22$
468)99999(213 936	$a - b = 47 - 1 = 46 = 2 \times 23$ Hence, $47^{25} - 1$ is divisible by 23.
$\frac{936}{639}$	28. If 111 1 (n digits) is divisible by 9, then the
468	least value of n is:
1719	(a) 18 (b) 12
1404	(c) 3 (d) 9 RRB NTPC 18.01.2021 (Shift-I) Stage Ist
315	Ans. (d) : When the sum of all the digits of a number is
Required number = 99999 - 315 = 99684	divisible by 9, then number will be divisible by 9.

Given number-	$=3^{71} \times 121$
• 1111 (n digits)	$=3^{71}\times11^{2}$
• When n = 1, number is 1, which is not divisible by 9.	Hence, given series will be divisible by 11.
• When n = 2, number is 11, which is a prime number	33. The smallest 5 digit number that leaves a
and thus not divisible by 9.	remainder of 6 when divided by 7 is :
• When $n = 3$, number is 111 and $1+1+1=3$, which is	
not divisible by 9.	(a) 10009 (b) 10002
	(c) 10003 (d) 10007
	RRB NTPC 28.12.2020 (Shift-I) Stage Ist
	Ans. (b) : Smallest number of 5 digits =10000
• When n = 9, number is 111111111 and 1+1+1+1+1+	10000]
1+1+1+1=9, which is divisible by 9	
Hence, the least possible value of n is 9.	→ Remainder=4
	Required number = $10000 + (6 - 4) = 10002$
29. A number when divided by 280 leaves 73 as the remainder. When the same number is divided	34. N is a whole number which when, divided by 6
by 35, the remainder will be:	leaves the remainder 4. Find the remainder
(a) 4 (b) 2	when 2N is divided by 6.
(a) $\frac{1}{(c)}$ (b) $\frac{2}{2}$ (c) $\frac{3}{2}$ (d) $\frac{7}{2}$	(a) 4 (b) 8
RRB NTPC 16.01.2021 (Shift-I) Stage Ist	(c) 2 (d) Zero
Ans. (c) : Let number = N	RRB NTPC 28.04.2016 Shift : 1
N = 280K + 73	Ans : (c) Let the quotient be "a" when N is divided by 6.
$= (35 \times 8) \text{ K} + 70 + 3$	$\therefore N = 6a + 4(i)$
= 35 (8K + 2) + 3	By equation (i) $\times 2$,
N = 35m + 3(i) (where, $m = 8 K + 2$)	$2N = 2 \times 6a + 8$
or $N = 35q + r$ (ii)	2N = 12a + 6 + 2
On comparing both equation,	2N = 6(2a+1) + 2
r = 3	Hence, the required remainder will be 2.
Hence, on dividing the same numbers by 35 the	35. Find the largest number of four digit that is
remainder will be 3.	completely divisible by 49.
30. The least number that is divisible by all the	(a) 9998 (b) 9994
numbers from 2 to 10 is-	(c) 9992 (d) 9996
numbers from 2 to 10 is-	RRB RPF-SI -10/01/2019 (Shift-II)
numbers from 2 to 10 is - (a) 2520 (b) 100	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II)
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999.
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II)
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7,	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 49)9999 (204
numbers from 2 to 10 is-(a) 2520 (b) 100 (c) 504 (d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7,8, 9, 10	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5)	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98 199 199
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98 199 199
numbers from 2 to 10 is-(a) 2520(b) 100(c) 504(d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, $8, 9, 10$ $= 2, 3, (2 \times 2), 5, (2 \times 3), 7, (2 \times 2 \times 2), (3 \times 3) \times (2 \times 5)$ $= 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$ 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98 199 199 $\frac{196}{3}$ 3
numbers from 2 to 10 is-(a) 2520(b) 100(c) 504(d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, $8, 9, 10$ $= 2, 3, (2 \times 2), 5, (2 \times 3), 7, (2 \times 2 \times 2), (3 \times 3) \times (2 \times 5)$ $= 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$ 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves(a) 9(b) 29	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 98 199 199
numbers from 2 to 10 is-(a) 2520(b) 100(c) 504(d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, $8, 9, 10$ = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5)= 2×2×2×3×3×5×7 = 252031. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves(a) 9(b) 29(c) 27(d) 11	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999.49)9999 (204 $\frac{98}{199}$ $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.
numbers from 2 to 10 is-(a) 2520 (b) 100 (c) 504 (d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7,8, 9, 10= 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5)= 2×2×2×3×3×5×7 = 252031.How many numbers greater than 2 and less than 30 are divisible by 1 and themselves(a) 9(b) 29(c) 27(d) 11RRB NTPC 10.01.2021 (Shift-I) Stage Ist	RRB RPF-SI -10/01/2019 (Shift-II)RRB Group-D - 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999.49)9999 (20449) $\frac{98}{199}$ 199 $\frac{196}{3}$ 199Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.36. What should be added to 135642 to get the
numbers from 2 to 10 is-(a) 2520(b) 100(c) 504(d) 9RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, $8, 9, 10$ = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) $= 2×2×2×3×3×5×7 = 2520$ 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves(a) 9(b) 29(c) 27(d) 11RRB NTPC 10.01.2021 (Shift-I) Stage IstAns. (a) : Prime number-The numbers which is only	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999.49)9999 (204 $\frac{98}{199}$ $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number. The numbers which is only divisible by 1 and itself are known as prime number.	RRB RPF-SI -10/01/2019 (Shift-II)RRB Group-D - 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999.49)9999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.36. What should be added to 135642 to get the largest six digit number?
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are-	RRB RPF-SI -10/01/2019 (Shift-II)RRB Group-D – 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999.49)9999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.36. What should be added to 135642 to get the largest six digit number?(a) 864350(b) 863357
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number -The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number -The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III)
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by:	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x.
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 49)9999 (204 98 199 196 3 199 Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number. The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 49)9999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 RB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642 x = 864357
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7 RRB NTPC 08.01.2021 (Shift-II) Stage Ist	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 49)9999 (204 $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642 x = 864357 37. Find the smallest four digit number that is
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7 RRB NTPC 08.01.2021 (Shift-II) Stage Ist Ans. (c) : $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II)Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 $\frac{98}{199}$ $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49.36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (c) 864357Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number : 135642 + x = 999999 x = 999999 – 135642 x = 86435737. Find the smallest four digit number that is divisible by 47.
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7 RRB NTPC 08.01.2021 (Shift-II) Stage Ist	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 49)9999 (204 98 199 196 3 199 Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642 x = 864357 37. Find the smallest four digit number that is divisible by 47. (a) 1200 (b) 1025
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7 RRB NTPC 08.01.2021 (Shift-II) Stage Ist Ans. (c) : $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ = $3^{71}(3^0+3^1+3^2+3^3+3^4)$	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)9999 (204 $49)9999 (204$ $\frac{98}{199}$ 199 $\frac{196}{3}$ Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642 x = 864357 37. Find the smallest four digit number that is divisible by 47. (a) 1200 (b) 1025 (c) 1034 (d) 1360
numbers from 2 to 10 is- (a) 2520 (b) 100 (c) 504 (d) 9 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Required number = LCM of 2, 3, 4, 5, 6, 7, 8, 9, 10 = 2, 3, (2×2), 5, (2×3), 7, (2×2×2), (3×3)×(2×5) = 2×2×2×3×3×5×7 = 2520 31. How many numbers greater than 2 and less than 30 are divisible by 1 and themselves (a) 9 (b) 29 (c) 27 (d) 11 RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans. (a) : Prime number-The numbers which is only divisible by 1 and itself are known as prime number. The prime numbers greater than 2 and less than 30 are- = 3, 5, 7, 11, 13, 17, 19, 23, 29 = Total 9 numbers Hence, the required number = 9 32. $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$ is divisible by: (a) 8 (b) 5 (c) 11 (d) 7 RRB NTPC 08.01.2021 (Shift-II) Stage Ist Ans. (c) : $3^{71}+3^{72}+3^{73}+3^{74}+3^{75}$	RRB RPF-SI -10/01/2019 (Shift-II) RRB Group-D – 18/09/2018 (Shift-II) Ans : (d) The largest 4-digit number is 9999. 49)99999 (204 49)9999 (204 98 199 196 3 199 Hence, the required number = 9999-3 = 9996, which is exactly divisible by 49. 36. What should be added to 135642 to get the largest six digit number? (a) 864350 (b) 863357 (c) 864357 (d) 864347 RRB Group-D – 29/10/2018 (Shift-III) Ans : (c) Let the required number is x. Adding x to 135642 to get a largest six digit number \therefore 135642 + x = 999999 x = 999999 - 135642 x = 864357 37. Find the smallest four digit number that is divisible by 47. (a) 1200 (b) 1025

Ans. (c) : The smallest four digit number = 1000	41. Which of the following numbers is not divisible
21	by 8?
47)1000	(a) 12676 (b) 11504
94	(c) 12832 (d) 12360 RRB RPF Constable -24/01/2019 (Shift-II)
60	Ans : (a) From options,
47	
13	(a) $\frac{12676}{8} = 1584.5$
Hence, the smallest four digit number divisible by 47,	
= 1000 + (47 - 13) 1000 + 34 = 1034	(b) $\frac{11504}{8} = 1438$
38. Find the least 6 digit number that is a multiple	
of 18.	(c) $\frac{12832}{8} = 1604$
(a) 100000 (b) 999900 (c) 100008 (d) 100006	
RRB NTPC 29.04.2016 Shift : 1	(d) $\frac{12360}{8} = 1545$
Ans : (c) The smallest 6 digit number = 100000	Hence, the number 12676 is not divisible by 8.
5555	42. 276x1, is divisible by 3. What is the sum of the
18)100000	possible values of x?
90	(a) 18 (b) 21
100	(c) 12 (d) 15 DDD DDE SU 12/01/2010 (SL:64 D)
90	RRB RPF SI-12/01/2019 (Shift-I) Ans. (d) If the sum of all digits of a number is divisible
100	by 3, then the number will be divisible by 3.
90	276x1, is divisible by 3.
100	2+7+6+x+1=16+x
90	The number will be completely divisible by 3, by putting the possible values of x as 2, 8, and 5.
$\overline{10}$	Hence, the sum of the possible values of x as 2, 8, and 5. Hence, the sum of the possible values of $x = 2+8+5=15$
The remainder is 10, hence $18 - 10 = 8$ is added to the	43. By dividing 14528 by a certain number, Suresh
number will make it completely divisible.	gets 83 as quotient and 3 as remainder. What is
Hence, the required number = 100000 + 8 = 100008 39. A student divided a number by 12 instead of 21	the divisor?
and received 35. Find the correct answer.	(a) 165 (b) 185 (c) 195 (d) 175 RRB RPF SI -06/01/2019 (Shift-III)
(a) 20 (b) 15 (c) 26 (d) 25	Ans : (d) Let the divisor is ' x '.
RRB JE - 26/05/2019 (Shift-II)	Given- Dividend = 14528
Ans : (a) Let the number be x. According to the question,	Quotient = 83
On dividing by 12,	Remainder = 3 Dividend = (Divisor × Quotient + Remainder)
x	$\Rightarrow 14528 = (x \times 83) + 3$
$\frac{1}{12} = 35$	$\Rightarrow 83x = 14528 - 3$
$x = 35 \times 12$	$\Rightarrow 83x = 14525$
x = 420 The number is 420	$\Rightarrow x = \frac{14525}{22} \Rightarrow x = 175$
Dividing 420 by 21-	$\Rightarrow x = \frac{1}{83} \Rightarrow x = 1/5$
$\frac{420}{2} = 20$	44. If the number x4461 is divisible by 11, find the
21	value of x.
Hence, the correct answer = 20	(a) 2 (b) 4 (c) 3 (d) 5 DDD C = D = 17/00/2018 (c) if 1)
40. Find the least number to be added to 231228 to make it exactly divisible by 33.	RRB Group-D – 17/09/2018 (Shift-I) Ans : (d) Rule of divisibility by 11-
(a) 3 (b) 4 (c) 2 (d) 1	If the difference between sum of digits at even places
RRB JE - 27/05/2019 (Shift-III)	and the sum of digits at odd places of a number is 0 or
Ans : (a) From question,	is divisible by 11, then that number will also be
7006	divisible by 11. The number – x 4 4 6 1
33)231228	x + 4 + 1 - (4 + 6) = 0
231	x + 5 - 10 = 0
$\overline{\times \times \times 228}$	x = 5
<u>198</u>	45. Which number is divisible by 9? (a) 56112 (b) 89445
<u>30</u>	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
Hence, the required number $= 33 - 30 = 3$	RRB Group-D – 03/10/2018 (Shift-II)

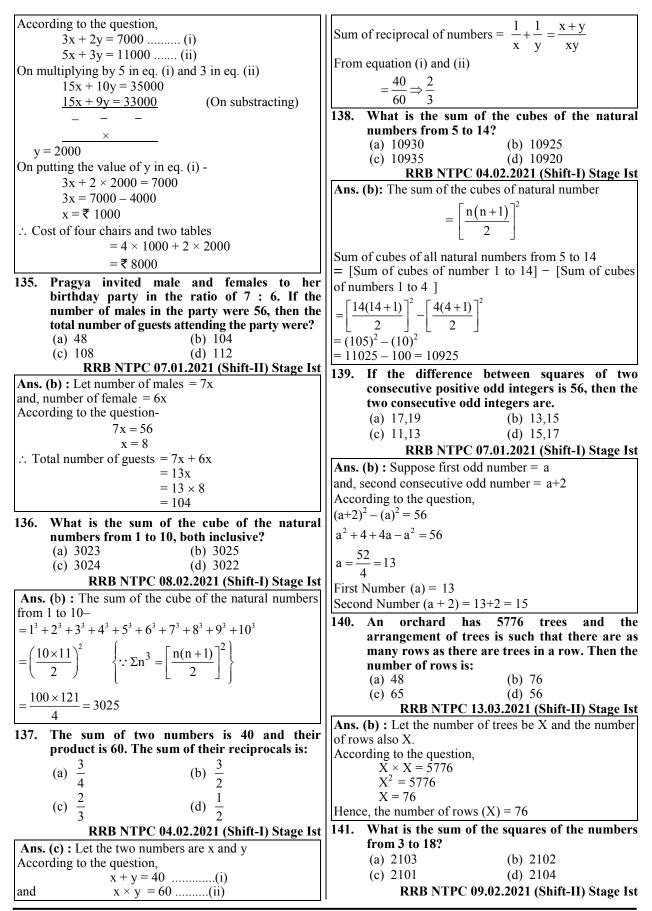
Ans : (c) If the sum of all the digits of a number is	49. Find the least number to be added to 1739 so
divisible by 9, the number will also be completely	that it is exactly divisible by 11.
divisible by 9.	(a) 11 (b) 2
Hence, from options-	(c) 1 (d) 10 \mathbf{DDD} NTDC 20.02 2016 Shift \cdot 1
(a) The sum of the digits of $56112 = 15 (\times)$ (b) The sum of the digits of $89445 = 30 (\times)$	RRB NTPC 30.03.2016 Shift : 1 Ans : (d) To get the required number divide 1739 by 11
(c) The sum of the digits of $49653 = 27 ()$	then subtract the remainder from the divisor.
(d) The sum of the digits of $58556 = 29$ (×)	then subtract the remainder from the divisor.
Hence, the number divisible by $9 = 49653$	158
46. Which of the following numbers is divisible by 6?	11)1739
(a) 12378 (b) 12363	11
(c) 12370 (d) 12388	×63
RRB Group-D – 05/12/2018 (Shift-I)	55
Ans : (a) Divisibility rule by 6 – If a given number is divisible by both 2 and 3 then the number will also be	
divisible by 6.	×89
Divisibility rule by 2 – If the unit digit of a given	88
number is divisible by 2, then the number will also be	Hence, the required number $\overline{\text{will}}$ be $11 - 1 = 10$.
divisible by 2.	50. Find the remainder, when 3 ¹⁰ is divided by 7.
Divisibility rule by 3 – If the sum of all the digits of the number is divisible by 3, then the number will also be	(a) 4 (b) 3
divisible by 3.	(c) 5 (d) 6
From option (a)- $1 + 2 + 3 + 7 + 8 = 21$	RRB NTPC 18.04.2016 Shift : 3
21 7	Ans : (a) $3^{10} = 3 \times 3$
$=\frac{21}{3}=7$	= 59049
Hence, the number 12378 is divisible by 6.	
47. Choose the missing digit 'x' from the options	7
given for the number 987x54, so that the	= 4 remainder
number is completely divisible by 6.	51. Which of the following numbers is divisible by 12?
(a) 2 (b) 5 (c) 3 (d) 1 $PPP C_{recurr} P = \frac{19/00}{2018} (Shift P)$	(a) 93412 (b) 63412 (c) 73412 (d) 83412
RRB Group-D – 18/09/2018 (Shift-I) Ans. (c) : The given number will be divisible by 6 if it	RRB ALP & Tec. (31-08-18 Shift-II)
is divisible by 2 and 3.	Ans. (d) : The number which is divisible by 12, should
Divisibility rule by $2 - $ If the unit digit of a number is	be divisible by 3 and 4 also.
divisible by 2, then the number will also be divisible by 2.	If the sum of all the digits of a number is divisible by 3,
The unit digit of given number is 4, which is divisible	the number will also be divisible by 3.
by 2. Divisibility rule by $3 - If$ the sum of all the digits of the	If the last two digit of a number are divisible by 4, the
	number will also be divisible by 4.
given number is divisible by 3, then the number will also be divisible by 3.	number will also be divisible by 4. From option (d),
given number is divisible by 3, then the number will	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3.
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4.
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12.
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$	number will also be divisible by 4. From option (d), Then 8+3+4+1+2 = 18, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3.	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to	number will also be divisible by 4. From option (d), Then 8+3+4+1+2 = 18, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III)
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly?	number will also be divisible by 4. From option (d), Then 8+3+4+1+2 = 18, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 <u>RRB ALP & Tec. (30-08-18 Shift-III)</u> Ans : (b) If the sum of all the digits of a number is
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17	number will also be divisible by 4. From option (d), Then 8+3+4+1+2 = 18, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 <u>RRB ALP & Tec. (30-08-18 Shift-III)</u> Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9.
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3	number will also be divisible by 4. From option (d), Then 8+3+4+1+2 = 18, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 <u>RRB ALP & Tec. (30-08-18 Shift-III)</u> Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b),
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true.
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) 43	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$,
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c)	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is:
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) 43	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) $\frac{43}{29)1265}$ 116	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5 (c) -15.8 (d) -15.6
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) $\frac{43}{29)1265}$ $\frac{116}{\times 105}$	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 <u>RRB ALP & Tec. (30-08-18 Shift-III)</u> Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5 (c) -15.8 (d) -15.6 <u>RRB ALP & Tec. (09-08-18 Shift-III)</u>
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) $\frac{43}{29)1265}$ 116	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5 (c) -15.8 (d) -15.6 RRB ALP & Tec. (09-08-18 Shift-II) Ans : (c) According to the question,
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) $\frac{43}{29)1265}$ $\frac{116}{\times 105}$	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5 (c) -15.8 (d) -15.6 RRB ALP & Tec. (09-08-18 Shift-II) Ans : (c) According to the question, $3x^2 + ax + 4 = 0$ (i)
given number is divisible by 3, then the number will also be divisible by 3. $\Rightarrow \frac{9+8+7+x+5+4}{3} = \frac{33+x}{3}$ From option (c) on putting x = 3 $\frac{36}{3} = 12$ Hence, the value of x will be 3. 48. What number should be deducted from 1265 to make it divisible by 29 exactly? (a) 15 (b) 16 (c) 18 (d) 17 RRB NTPC 05.04.2016 Shift : 3 Ans : (c) $\frac{43}{29)1265}$ $\frac{116}{\times 105}$ $\frac{87}{18}$	number will also be divisible by 4. From option (d), Then $8+3+4+1+2 = 18$, Which is divisible by 3. The last 2-digit of the number are 12, Which is also divisible by 4. Hence, the number 83412 is divisible by 12. 52. Which of the following numbers is divisible by 9? (a) 56765 (b) 47862 (c) 54321 (d) 87654 RRB ALP & Tec. (30-08-18 Shift-III) Ans : (b) If the sum of all the digits of a number is divisible by 9, the number will be divisible by 9. Hence, from option (b), 47862 \Rightarrow 4+7+8+6+2 = 27, which is divisible by 9. Hence option (b) will be true. 53. If $3x^2 + ax + 4$ is perfectly divisible by $x - 5$, then the value of a is: (a) -12 (b) -5 (c) -15.8 (d) -15.6 RRB ALP & Tec. (09-08-18 Shift-II) Ans : (c) According to the question,

Hauss	57. If 3 is added to each odd digit and 1 is
Hence, $r = 5 = 0$	subtracted from each even digit in the number
$ \Rightarrow x - 5 = 0 \Rightarrow x = 5 $	42514563, what will be difference between the
Putting the value of x in equation (i),	highest and lowest digits thus formed?
$3(5)^2 + a \times 5 + 4 = 0$	(a) 2 (b) 7 (c) 5 (d) 8
75 + 5a + 4 = 0	RRB GROUP-D - 17/08/2022 (Shift-I)
5a = -79	Ans. (b) : Given number = 42514563
a = -15.8	According to the question, the number obtained by
54. The product of 4 consecutive numbers is	adding 3 to the odd digit and substracting 1 from the
always divisible by which of the following	even digit of the number is $= 31843856$
numbers? (1) 22 (1) 24 (1) 49	Hence required difference $= 8 - 1 = 7$
(a) 10 (b) 22 (c) 24 (d) 48 PDP PPE SI $05/01/2010$ (Sb;ft I)	58. If 3 is added to each odd digit and 2 is subtracted from each even digit in the number
RRB RPF SI -05/01/2019 (Shift-I) Ans : (c) Let 4 consecutive numbers are n, (n+1), (n+2)	6452851, what will be difference between the
and $(n+3)$ respectively.	largest and smallest digits thus formed?
According to the question,	(a) 8 (b) 6
The Product of four consecutive numbers $n(n+1)(n+2)(n+2)$	(c) 4 (d) 2
= n(n+1)(n+2)(n+3) Where $n = 1,2,3,$	RRB GROUP-D $- 27/09/2022$ (Shift-I)
Putting $n = 1,$	Ans. (a) : The number obtained by adding 3 to the odd digit and substracting 2 from the even digit of the
Product,	number is
= 1 (1+1) (1+2) (1+3)	6 4 5 2 8 5 1
$= 1 \times 2 \times 3 \times 4 = 24$ Butting $p = 2$	$\frac{-2 - 2 + 3 - 2 - 2 + 3 + 3}{4 \ 2 \ 8 \ 0 \ 6 \ 8 \ 4}$
Putting n = 2, Product of numbers,	
$= 2 \times 3 \times 4 \times 5 = 24 \times 5 = 120$	Hence the difference of largest and smallest digits
Hence, the product of 4 consecutive numbers is always	= 8-0 = 8
divisible by 24.	
55. When the number (5) ⁵⁰¹ is divided by 126 then the remainder will be?	59. If 1 is subtracted from each odd digit and 1 is added to each even digit in the number
(a) 117 (b) 121	92379654, what will be the sum of the digits
(c) 89 (d) 125	which are second from the left and third from
RRB ALP CBT-2 Mec. & Diesel 21-01-2019 (Shift-I)	the right? (a) 6 (b) 8
Ans. (d) :	$\begin{array}{cccc} (a) & 0 & (b) & 0 \\ (c) & 10 & (d) & 5 \end{array}$
$(5)^{501} (5^3)^{167} (-1)^{167}$	RRB GROUP-D – 18/09/2022 (Shift-II)
$=\frac{(5)^{501}}{126}=\frac{(5^3)^{167}}{126}=\frac{(-1)^{167}}{126}$	Ans. (c) : The number obtained by adding 1 to the even
	digit and substracting 1 from the odd digit of the
$=\frac{-1}{126}$	number is 92379654 9 2 3 7 9 6 5 4
126 Remainder = 125	<u>-1+1-1-1-1+1-1+1</u>
Remainder 125	8 3 2 6 8 7 4 5
Type 2	So the required sum = $3 + 7$
Type – 2	
56. If each even digit is divided by 2 and 2 is added	60. The sum of the digits of a two-digit number is 12. The number obtained by interchanging its
to each odd digit in the number 4723361, what	
will be the sum of the largest and the smallest	number is:
digits thus formed? (a) 12 (b) 10 (c) 11 (d) 9	(a) 76 (b) 67
(a) 12 (b) 10 (c) 11 (d) 9 RRB GROUP-D $-$ 11/10/2022 (Shift-I)	(c) 27 (d) 57 RRB GROUP-D – 16/09/2022 (Shift-II)
Ans. (b) : Given, 4723361	
According to the question,	Ans. (d) : Let the two digit number be $10x + y$ Number oblained by interchanging the digits = $10y + y$
New number obtained by dividing each even digit by 2	Number oblained by interchanging the digits = $10y + x$ According to the question,
and adding 2 to each odd digit.	x + y = 12 (i)
$\left(\frac{4}{2}(7+2), \left(\frac{2}{2}\right)(3+2)(3+2), \frac{6}{2}(1+2) \Rightarrow 2915533\right)$	And, On reversing the digits,
$ 2 \langle 1 \rangle \langle 2 \rangle $	
	(10y + x) - (10x + y) = 18
Hence Sum of largest digit and smallest digit = $9 + 1$ = 10	(10y + x) - (10x + y) = 18 y - x = 2 (ii) On adding eq. (i) and (ii)

x + y = 12	Ans. (a) : In Counting from 301 to 399, the digit 3
	comes a total of 119 times.
$\underline{-x+y=2}$	66. Find the two-digit number such that the sum of
2y = 14	its digits is 8 and the digits of the number get
y = 7	reversed when 36 is added to it.
	(a) 71 (b) 35 (c) 62 (d) 26
$\mathbf{x} = 5$	RRB NTPC 15.02.2021 (Shift-II) Stage Ist
Hence, number = $10x + y = 10 \times 5 + 7 = 57$	
61. In a five digit number, the digit in the hundred's	Ans. (d) : Let number = $10x+y$
place is 2 and the digit in the unit's place is twice	Accoding to the question, $x + x = 9$ (i)
the digit in the hundred's place. The digit at thousands place is zero. The digit in the ten	x+y=8(i) (10x+y) + 36= 10y+ x
thousand's place is the sum of the digit in the	(10x + y) + 30 - 10y + x 9y - 9x = 36
hundred's place and the digit in the unit's place.	y - x = 4(ii)
The digit in the ten's place is the digit in the ten	On solving equation (i) and equation (ii)
thousand's place minus 1. The number is:	$\mathbf{x} = 2$
(a) 60234 (b) 60224	y = 6
(c) 60254 (d) 60264	Hence, required number = $10x + y = 10 \times 2 + 6 = 26$
RRB NTPC 09.02.2021 (Shift-I) Stage Ist	67. If the number 2893#\$ is divisible by 8 and 5,
Ans. (c) : Let us assume the number = abcde	then one possible choice of the digits that come
As per question,	in the place of # and \$ can be:
c = 2	(a) 0, 2 (b) 2, 2
$e = 2 \times c$	(c) 0, 0 (d) 2, 0
$e = 2 \times 2$	RRB NTPC 13.03.2021 (Shift-II) Stage Ist
e = 4	Ans. (d) : Divisibility rule of '5' \Rightarrow if a number has '0'
b = 0	or '5' in its unit digit then it is completely divisible by 5.
$\begin{array}{c} \mathbf{a} = 2 + 4\\ \mathbf{a} = 6 \end{array}$	Divisiblity rule of $8' \Rightarrow$ if the last three digits of a given
d = 0 d = 6 - 1	number are divisible by '8' then number will be always
d = 5	divisible by 8. from option 'd'
Putting all values, then the required number $= 60254$	On putting the value of $\# = 2$ and $\$ = 0$
62. What is the smallest four digit number formed	
by using the digits 3, 5, 0, 6?	$\frac{289320}{5} \Longrightarrow 57864$
(a) 3056 (b) 0356	
(c) 0536 (d) 3506	$\frac{289320}{8} \Rightarrow 36165$
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	
Ans. (a) : The smallest four-digit number formed by	Hence, option (d) will be correct.
3,5,0,6 = 3056	68. If the largest 4-digit number is subtracted
63. What is the smallest five-digit number formed	from the smallest 6-digit number, then the
by using the digits 2, 3, 4, 0, 5?	remainder will be:
(a) 23045 (b) 20435 (c) 02345 (d) 20345	(a) 90000 (b) 99991
RRB NTPC 04.02.2021 (Shift-I) Stage Ist	(c) 80001 (d) 90001
Ans. (d) : Largest 5 digit number = 99999	RRB NTPC 04.02.2021 (Shift-II) Stage Ist
Smallest 5 digit number = 10000	Ans. (d) : The smallest number of $6 - \text{digit} = 100000$
The smallest five digit number that can be formed from	The largest number of $4 - \text{digit} = -9999$
the digits 2, 3, 4, 0, 5 is = 20345	Required number $= 90001$
64. Find sum of the smallest and the largest	69. How many significant digits are there to the
positive numbers of 6 digits which contains	right of the decimal point in the product of
only digits 0, 4, 6 and each of these digits	95.75 and 0.02554?
appears at least once.	(a) 5 (b) 3 (d) ϵ
(a) 666444 (b) 604604 (c) 666666 (d) 1066646	(c) 4 (d) 6 DDP NTDC 11 02 2021 (Shift I) Stage Ist
(c) 6666666 (d) 1066646 RRB NTPC 09.02.2021 (Shift-II) Stage Ist	RRB NTPC 11.02.2021 (Shift-I) Stage Ist Ans. (d) : 95.75 × 0.02554
Ans. (d) : According to the question-	$\begin{array}{l} \textbf{Alls. (d): 95.73 \times 0.02334} \\ = 2.445455 \end{array}$
\therefore Smallest 6 digit no = 400006	So the number obtained as the product of 95.75 and
Greatest 6 digit no = 666640	0.0254 will have 6 significant digits to the right of the
\therefore Required sum = 400006 + 666640 = 1066646	decimal point.
65. How many times is digit 3 comes in counting	70. What is the value of the digits A and B?
from 301 to 399?	$BA \times B3 = 57 A$
(a) 119 (b) 11	(a) $A = 2, B = 4$ (b) $A = 3, B = 5$
(c) 121 (d) 21	(c) $A = 5, B = 2$ (d) $A = 5, B = 3$
RRB NTPC 10.01.2021 (Shift-II) Stage Ist	RRB NTPC 09.02.2021 (Shift-I) Stage Ist
	_

Ans. (c) : From option (c) Putting the values of A and B	Ans : (c) Let the two consecutive numbers be x and
in the equation.	x+1.
A = 5, B = 2	According to the question-
$BA \times B3 = 57A$	3x = 2(x+1) + 5
$25 \times 23 = 575$	
575 = 575	\Rightarrow 3x = 2x + 7
Hence, option (c) will be correct.	$\Rightarrow x = 7$
	Hence, the required consecutive numbers will be 7 and 8.
71. The difference between the greatest and the	76. How many times does the digit 2 come in place
smallest six-digit numbers is:	
(a) 988888 (b) 999999 (c) 988888 (b) 9999999	of tens in counting from 1 to 100?
(c) 888888 (d) 899999	(a) 20 (b) 11
RRB NTPC 04.02.2021 (Shift-I) Stage Ist	(c) 10 (d) 19
Ans. (d) : The largest six digit number is 999999	RRB NTPC 31.03.2016 Shift : 1
The smallest six digit number is 100000	Ans : (c) From the digit come in place of tens in
∴ Required difference = 999999 – 100000 = 899999	counting, 1 to $10 = 0$ time
72. The sum of the greatest and smallest numbers	From 11 to $20 = 1$ time
of six digits is:	From 21 to $30 = 9$ times
(a) 100000 (b) 199999	From 31 to $100 = 0$ times
(c) 9999999 (d) 1099999	\therefore Total required number = 1 + 9 = 10
RRB NTPC 08.02.2021 (Shift-I) Stage Ist	77. How many times does the digit 5 come in the
	counting from 1 to 100?
Ans. (d) : According to question,	(a) 21 (b) 22
Greatest number of six-digit = 999999	$\begin{array}{cccc} (a) & 21 \\ (b) & 20 \\ (c) & 20 \\ (c) & 19 \\ ($
Smallest number of six-digit = 100000	RRB RPF SI-16/01/2019 (Shift-I)
Hence required sum = $999999 + 100000$	Ans : (c) The total numbers in which 5 comes from 1
= 1099999	
73 The least number consisting of five digit	to 49 = 5
73. The least number consisting of five - digit	From 50 to 60, such number = 11
which is divisible by 97 is x. What is the sum of the division of π^2	And from 61 to 100, such number = 4
the digits of x?	Hence, total required number = $5 + 11 + 4 = 20$
(a) 13 (b) 15	
(c) 17 (d) 16	Type - 3
RRB ALP CBT-2 Physics & Maths 21-01-2019 (Shift-III)	1 ype - 3
Ans. (c) : Minimum five - digit number = 10000	
	78. Find the total number of prime numbers less
97)10000(103	than 50.
-97	(a) 13 (b) 15
	(c) 17 (d) 14
300	RRB Group-D 06/09/2022 (Shift-III)
-291	
$\frac{-291}{\times 9}$	Ans. (b) : Total number of prime number less than 50 is
	15 which is as follows -
Hence, five - digit number that is divisible by 97	2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47
x = 10000 + (97 - 9)	79. What is the positive difference between the sum
x = 10000 + 88	of all prime numbers between 11 and 20 (both
x = 10088	included) and the sum of all prime numbers
Required sum $= 1 + 0 + 0 + 8 + 8$	between 30 and 50 (both included)?
= 17	(a) 139 (b) 141
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
74. How many total tens digit in the calculation from series 1 to 99?	RRB GROUP-D – 15/09/2022 (Shift-III)
(a) 98 (b) 90	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Ans. (a) : The sum of all prime numbers between 11 $(11 + 12) + (17 + 10) = (0)$
RRB RPF Constable -17/01/2019 (Shift-II)	and 20 (both included) = $(11 + 13 + 17 + 19) = 60$
NND NTT COUSTADIE -1 //01/2019 (SAIIT-11)	The sum of all prime number between 30 and 50 (both
Ans : (b) The number of tens digit from 1 to $10 = 1$	included) = $(31^{1} + 37 + 41 + 43 + 47) = 199$
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$	included) = $(31 + 37 + 41 + 43 + 47) = 199$ \therefore Required positive difference = $199 \sim 60$
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$	
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99	$\therefore \text{ Required positive difference} = 199 \sim 60 \\ = 139$
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90	 ∴ Required positive difference = 199 ~ 60 = 139 80. The greatest prime number less than 200 is:
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99	$\therefore \text{ Required positive difference} = 199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99 $= 1 + 80 + 9 = 90$ 75. Find two consecutive numbers where thrice the first number is more than twice the second	 ∴ Required positive difference = 199 ~ 60 = 139 80. The greatest prime number less than 200 is:
 Ans : (b) The number of tens digit from 1 to 10 = 1 The number of tens digit from 11 to 90 = 80 The number of tens digit from 91 to 99 = 9 Hence, the total number of tens from series 1 to 99 = 1 + 80 + 9 = 90 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5. 	$\therefore \text{ Required positive difference} = 199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99 $= 1 + 80 + 9 = 90$ 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5.(a) 5 and 6(b) 6 and 7	 ∴ Required positive difference = 199 ~ 60 = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99 $= 1 + 80 + 9 = 90$ 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5.(a) 5 and 6(b) 6 and 7(c) 7 and 8(d) 9 and 10	$\therefore \text{ Required positive difference} = 199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist Ans. (a) : The greatest prime number less than 200 is
Ans : (b) The number of tens digit from 1 to $10 = 1$ The number of tens digit from 11 to $90 = 80$ The number of tens digit from 91 to $99 = 9$ Hence, the total number of tens from series 1 to 99 $= 1 + 80 + 9 = 90$ 75. Find two consecutive numbers where thrice the first number is more than twice the second number by 5.(a) 5 and 6(b) 6 and 7	$\therefore \text{ Required positive difference} = 199 \sim 60$ = 139 80. The greatest prime number less than 200 is: (a) 199 (b) 193 (c) 197 (d) 191 RRB NTPC 21.01.2021 (Shift-II) Stage Ist Ans. (a) : The greatest prime number less than 200 is

81.	Which of the following numbers is prime?	Ans. (c) : The number of all prime numbers less than 55
	(a) 323 (b) 571	is 16
	(c) 513 (d) 715	i.e. \Rightarrow (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,
	RRB NTPC 02.03.2021 (Shift-II) Stage Ist	47, 53)
Ans.	(b) : According to option,	88. The number of pairs of twin primes between 1
	is a prime number. Whereas 323 is divisible by 17,	
	is divisible by 3 and 715 is divisible by 5.	and 100 are:
	· · ·	(a) 7 (b) 8 (c) 10 (d) 0
82.	Find the smallest three digit prime number?	(c) 10 (d) 9
	(a) 107 (b) 109	RRB NTPC 26.07.2021 (Shift-I) Stage Ist
	(c) 103 (d) 101	Ans. (b) : The number of pairs of twin primes between
	RRB NTPC 23.07.2021 (Shift-II) Stage Ist	1 and 100 are 8.
Ans	(d) : The smallest three-digit prime number $= 101$	The numbers are -
		$\{(3,5),(5,7),(11,13),(17,19),(29,31),(41,43),(59,61),(71,73)\}$
83.	Which of the following pairs of numbers are	
	co-prime?	Note- Twins prime numbers are that numbers whose
	(a) 28, 81 (b) 12, 27 (c) 21, 57	difference is 2.
	(c) 21, 56 (d) 36, 20	89. The number that has factors other than 1 and
	RRB NTPC 23.07.2021 (Shift-II) Stage Ist	itself is called a number.
	(a) : Co-prime numbers are the numbers whose	(a) Prime Number (b) Composite Number
com	mon factor is only 1.	(c) Even Number (d) Odd Number
Hend	ce, in the given option (28, 81) are co-prime	RRB NTPC 26.07.2021 (Shift-I) Stage Ist
num	bers.	Ans. (b) : Composite Number: - Numbers which have
84.	One-third of the sum of all the prime numbers	more than two factors.
•	greater than 5 but less than 18 is the square of:	Ex- 4, 6, 8
	(a) 3 (b) 5	Prime Number:- Numbers which have only two factor
	(c) 6 (d) 4	1 and itself is called prime number.
	RRB NTPC 08.04.2021 (Shift-I) Stage Ist	90. Find the number of prime number less than 20.
		(a) 9 (b) 7
	(d) : Prime numbers greater than 5 but smaller	(a) = (b) = (c)
	18 = 7, 11, 13, 17	RRB NTPC 06.04.2021 (Shift-II) Stage Ist
Acco	ording to the question-	Ans. (d) : Prime mumber less than 20.
7+	+11+13+17	
=	3	2, 3, 5, 7, 11, 13, 17 and 19
	5	Hence the number of prime number less than $20 = 8$
_ 48	$r = 16 = (4)^2$	91. Three prime number are arranged in
	= 10 - (4)	descending order. If the product of the first two
	ce, required number $= 4$	is 323 and that of the last two is 221, then what
L		is the value of the biggest prime number?
85.	Which of the following is a prime number?	(a) 17 (b) 19 (c) 12 (d) 22
	(a) 143 (b) 173	(c) 13 (d) 23
	(c) 123 (d) 213	RRB NTPC 04.03.2021 (Shift-I) Stage Ist
	RRB NTPC 15.03.2021 (Shift-I) Stage Ist	Ans. (b) : Let the consecutive prime numbers are x, y
Ans.	(b) : Prime number are the numbers, which are	and z in which x is biggest prime number.
only	divisible by 1 and itself.	According to the question,
Fron	n the given options-	$x \times y = 323$
	143 is divisible by 11, so it is not a prime number.	Taking
	173 is divisible by 1 and itself, so it is a prime	x = 19
	number.	y = 17
	123 is divisible by 3, so it is not a prime number.	$19 \times 17 = 323$
	213 is divisible by 3, so it is not a prime number.	Taking $y = 17$ and $z = 13$
		And $17 \times 13 = 221$
86.	Find the sum of prime no. between 50 and 60.	So, the biggest prime number is $=$ 19
	(a) 118 (b) 114 (c) 110 (d) 112	92. How many of the integers between 109 and 121,
	(c) 110 (d) 112	both inclusive, are prime numbers?
	RRB NTPC 31.01.2021 (Shift-I) Stage Ist	(a) 1 (b) 0
	(d): The prime number between 50 and 60–	(a) 1 (b) 0 (c) 2 (c) 2 (c) 3
	nd 59	RRB NTPC 08.02.2021 (Shift-I) Stage Ist
Requ	uired Sum = $53 + 59 = 112$	
87.	Find the number of all prime numbers less	Ans. (c): Two integers (109, 113) between 109 and 121
07.	than 55.	both inclusive are prime numbers.
	(a) 18 (b) 17	93. Which of the following numbers is prime?
		(a) 263 (b) 243 (c) 272
		(c) 253 (d) 273
	RRB NTPC 30.12.2020 (Shift-I) Stage Ist	RRB RPF Constable -17/01/2019 (Shift-III)
NI		0 VCT


given number with its nearest square. For example option (a), 263 (Which is between the squares of 16 and 17). If $e^2 - 256$ $17^2 - 289$ Then, divide the given number by all the prime numbers is $17^2 - 289$ Then, divide the given number is not divisible by any number that is a prime number. $e^3 - 263$ (is less than the square of 17). Which is not divisible by 2.57, 11 and 13. Hence, it is a prime number. (a) 93 (b) 89 (c) 91 (d) 97 RR B (Fig Coupt-) 20(09)(2018 (Shift-II) Ans : (d) The number which is divisible by only 1 and iself is called prime numbers. (a) Always 0 (b) Always 16 (c) Always en number. (c) Always en number. (d) Always of number. (e) 463 (d) 22 (b) 290 (c) 463 (c) 200 RRB RPF Constable -2001/2019 (Shift-II) Ans : (d) The number menumbers are 15 and 40 . (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 463 (c) 200 (c) 43, 5, 7, 11, 13 RRB RPF Constable -2001/2019 (Shift-II) Ans : (d) The number $12, 7$ (b) $32, 5, 7, 9$ (a) $12, 80, 16, 67, 71, 73, 70, 83, 80, 97$ RRB TPF Constable -2001/2019 (Shift-II) Ans : (a) Find we sum of the prime numbers between 50 and 80. (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NPF C 04.04.2016 Shift : 2 Ans : (b) Ag mrime numbers are in first 200 and prime numbers. (a) The number first $10, 37, 7, 11, 13, 75, 7, 83, 89, 97$ Ams: (b) Ag mrime numbers are in first 200 and prime numbers $10, 77, 73, 73, 73, 78, 83, 89, 97$ Ams: (b) Ag mrime numbers are in first 200 and prime numbers $10, 7, 71, 73, 73, 78, 83, 89, 97$ Ams: (b) Ag mrime numbers are in first 200 and antion (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 RRB NTPC 19.04.2016 Shift : 2 Ans: (b) Ag mrime numbers are in first 200 and antion (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 RRB NTPC 19.04.2016 Shift : 2 Ans: (b) Ag mrime numbers are in first 200 and antion (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 RRB NTPC 19.04.2016 Shift : 2 Ans: (d) The number mumbers are in first 200 and antion (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 RRB NTPC 19.0			
Spectra (a), 263 (Which is between the squares of 16 and 17)(c) $3025, 4920$ (c) $59, 97$ (c) $3025, 4920$ (c) $59, 97$ (c) $59, 97$ (c) $59, 97$ (c) $3025, 4920$ (c) $59, 97$ (c) $79, 97$ (c) $79, 92$ <th>Ans : (a) To identify a prime number, compare the</th> <th>100. Which of the following pairs are co-primes?</th>	Ans : (a) To identify a prime number, compare the	100. Which of the following pairs are co-primes?	
17) 16 ² = 256 17 ² = 289 Then, divide the given number is not divisible by any hend with is a prime number. 26 Si (is less than the square of 17) Which is not divisible by 235, 7, 11 and 13. Hence, it is a prime number. 27 Find the largest two-digit prime numbers 28 Find the largest two-digit prime numbers 29 Find the largest two-digit prime numbers 20 How may be product of the smallest prime 20 How map to face prime number? 21 Mars: (a) The number (except 10) and any whole number? 22 How mays cold number: 23 How 25 (b) 27 24 KB RPF Constable -24001/2019 (Shift-II) Ans: (c) The number sum of the prime numbers? 28 How 29 (b) 390 29 How mary total prime numbers between 50 and 80. 20 How many total prime numbers are in first 200 21 How many total prime numbers 2. Ans: (d) The number (12, 7) = 1 26 Find the sum of the prime numbers between 50 and 80. 28 + 59 + 61 + 67 + 71 + 73 + 79 = 463 29 How mary total prime numbers are in first 200 and prime numbers. 29 How mary total prime numbers are first 200 and 200 prime numbers. 20 How many total prime numbers are in first 200 and prime numbers. 21 Ans: (d) The number (12, 7) = 1 20 How many prime numbers 2. 21 Ans: (d) The number (12, 7) = 1 21 How first 8 odd prime numbers. 21 Ans: (d) The number (12, 7) = 1 21 How first 8 odd prime numbers. 21 Ans: (d) The number (12, 7) = 1 21 How first 8 odd prime numbers. 23 How of the rare more than two divisors. 21 Ar 3: (b) Har 3 High 12 How 12			
	-		
$ \begin{array}{llllllllllllllllllllllllllllllllllll$	17)		
If CF is 1. In option (c) 59, 97 is the appropriate co-prime pair in in particle of the given number is not divisible by any 2-363 (is less than the square of 17) which is not divisible by 2.3, 5.7, 11 and 13. Hence, it is a prime number.IIIC is 1. In option (c) 59, 97 is the appropriate co-prime pair in (b) 709 (c) 729 (c) 729 (c) 729 (c) 729 (c) 739 RB Group-D - 200/2018 (Shift-I) (a) 93 (b) 89 (c) 912 (c) 912 (c) 729 (c) 740 (c)	$16^2 = 256$	Ans : (c) Such two numbers are called co-prime whose	
Then, divide the given number by all the prime number. below 16 and 17. If the number is not divisible by any marker then it is a prime number. 3 = 263 (is less than the square of 17) 3 = 763 (is less than the square of 17) 3 = 763 (is less than the square of 17) 3 = 763 (is less than the square of 17) 3 = 763 (is less than the square of 17) 3 = 763 (is less than the square of 17) 3 = 763 (is less than the square of 19) 3 = 763 (is less than the square of 19) 3 = 763 (is less than the square of 19) 3 = 763 (is less than the square of 19) 3 = 763 (is less than the square of 19) 3 = 763 (is less than the largest two digit prime number. (a) 0 The number are that the largest two digit prime number -97 3 = 77 3 = 77 (is 1) $3 = 70$ (is 1) $3 = 300(c) 23 = 300 (is 0) 376 (i) 373 (i) 338 (i) 973 = 73$ (i) $3 = 77$ (ii) $3 = 733 = 616$ (ii) $1 = 113$ (ii) $1 = 763 = 616$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 113$ (iii) $1 = 1133 = 10$ (iii) $1 = 113$ (iii) $1 = 11$			
The number of the following numbers is divisible? The below if and if 7. If the number is not divisible by 3, 9, 57, 11 and 13. Hence, it is a prime number. (a) 3 (b) 89 (c) 91 (d) 97 RRB JF - 230(5/2019 (Shift-II) Ans : (d) The number while is divisible by only 1 and itself is called prime number. (a) Ans : (d) The number while number? (a) Always 0 (b) Always 0 (c) Always odd number RRB RPF Constable - 20/01/2019 (Shift-II) Ans : (d) The sum of which four odd prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 RPF Constable - 20/01/2019 (Shift-II) Ans : (d) The sum of which four odd prime numbers is an odd composite numbers 3.5 	$17^2 = 289$	In option (c) 59, 97 is the appropriate co-prime pair in	
below 16 and 17. If the number, is a prime number. a) Second 17. Which is not divisible by all and 13. Hence, it is a prime number. (a) 93 (b) 89 (c) 91 (d) 97 (a) 93 (b) 89 (c) 91 (d) 97 (a) 93 (b) 89 (c) 91 (d) 97 Ans : (d) The number which is divisible by only 1 and itself scalled prime numbers. (a) 102. How many prime numbers are in first 100 matural numbers are 25. (b) Always 0 (c) 4.43 (d) 164 (d) 164 (d) 163 (d) 174 (d) 164 (d) 164 (d) 164 (d) 164 (d) 165 (d) 174 (d) 165 (d) 174 (d) 165 (d) 174 (d) 185	Then divide the given number by all the prime numbers	the alternatives.	
number then it is a prime number. 2 - 23 (is less than the square of 17) Which is not divisible by 2, 3, 5, 7, 11 and 13. Hence, it is a prime number. (a) 93 (b) 89 (c) 91 (d) 97 RRB Group-D - 26/11/2018 (Shift-II) Ans : (d) The number which is divisible by only 1 and Hence, it is clear that the largest two digit prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of the smallest prime number 97 SW but will be the product of any whole number? (a) Always of dumaber (b) Always even number: (c) Always even number: (d) Always of dumaber RB RPF Costable -20/01/2019 (Shift-II) Ans : (c) The smallest prime numbers between 50 and 80- S3 + 59 + 61 + 67 + 71 + 73 + 79 - 463 SW field be sum of the prime numbers between 50 and 80- S3 + 59 + 61 + 67 + 71 + 73 + 79 - 463 ST RB RTPC Clastable -180/12019 (Shift-II) Ans : (d) First 8 odd prime numbers are between (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13, (d) 3, 7, 11, 13 RRB NTPC 14.2016 Shift : 2 Ans : (d) First 8 odd prime numbers are between (a) 45 (b) 49 (c) 50 (d) 46 RRB NTPC 23.03.2016 Shift : 2 Ans : (d) The raime numbers are in first 200 d) d) d) f (c) 7 (d) 8 d) 100 inter are more than two divisors. (b) The number singt 200 odd natural numbers (a) 45 (b) 49 (c) 50 (d) 46 RRB NTPC 23.03.2016 Shift : 2 Ans : (d) Tren prime numbers are between 60 and 100? (a) 45 (b) 49 (c) 50 (d) 46 RRB RCroup D' 0' 71/22018 (Shift : 1) Ans : (d) Trent prime numbers are in first 200 d) at (c) 7 (b) 141 (c) 181 RB ALP & free.(21-88 Shiff-II) Ans :	below 16 and 17 If the number is not divisible by any		
$ \begin{bmatrix} -2 & 23 & (is less than the square of 17) \\ Which is not divisible by 3, 5, 7, 11 and 13. \\ Hence, it is a prime number. \\ (a) 93 & (b) 80 & (c) 91 & (d) 97 \\ RRB 2F - 23/05/2019 (Shift-I) \\ Ans : (d) The number which is divisible by only 1 and tiself is called prime number. \\ (a) 93 & (b) 80 & (c) 91 & (d) 97 \\ RRB 4F - 23/05/2019 (Shift-I) \\ Ans : (d) The number which is divisible by only 1 and tiself is called prime number. \\ (a) Always 0 & (b) 84 will be the product of the smallest prime number? (a) Always 0 & (b) 340 & (c) 71 & (c) 72 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 27 & (c) 26 & (c) 7 & (c) 28 & (c) 77 & (c) 28 & (c) 77 & (c) 88 & (c) 77 & (c) 18 & (c) 716 & (c) 12 & (c) 127 & (c) 128 & (c) 77 & (c) 18 & (c) 77 & (c) 19 & (c) 12 & (c) 75 & (c) 100 & (c) 75 & (c) 16 & (c) 77 & (c) 19 & (c) 100 & (c) 77 & (c) 10$			
Which is not divisible by 2, 3, 5, 7, 11 and 13. Hence, it is prime number: (a) 93 (b) 89 (c) 91 (d) 97 RRB <i>L</i> - 23002/2019 (Shift-11)Ans. (c) The number which is divisible by 0 and 81.(a) Always 16 (c) 91 (d) 97 RRB <i>L</i> - 23002/2019 (Shift-11)Ans. (c) The numbers are in first 100 natural numbers?(a) Always 0 (b) Always 10 (c) Always even number(a) Always 0 di number(a) Always 0 di number (c) Always even number (c) Always even number (c) Always even number (d) Always odd number (d) Alw			
Hence, it is a prime number.Hence, it is clear that the largest two digit prime number = 97 95. What will be the product of the smallest prime number = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 Ans: (a) Prime numbers in first 100 natural numbers?(a) Always 0(a) Always 0(a) Always 0(b) 21, 42, (c) (3, 9, (c			
94. Find the largest two-digit prime number, (a) 93 (b) 89 (c) 91 (d) 9710. How many prime numbers are in first 100 (a) 93 (b) 27 (c) 24 (d) 26Ans: (d) The number which is divisible by only 1 and itself is called prime number. Hence, It is clear that the largest two digit prime number (except 0) and any whole number? (a) Always 0 (b) Always 0 (c) Always 0 (c) Always 0 (c) Always 0 (d) Always 0d number (e) Always 0d number (e) Always 0 (d) Always 0d number (e) Always 0d number (f) Ans: (c) The smallest prime numbers $-2, 0/1/2019$ (Shift-II) Ans: (c) The smallest prime numbers $-2, 0/1/2019$ (Shift-II) Ans: (c) The smallest prime numbers between 50 and 80. (a) 392 (b) 390 (c) 4/8 RPF Constable -20/01/2019 (Shift-II) Ans: (c) Sum of prime numbers between 50 and 80 - $34, 29$ (b) 390 (c) $4, 3, 5, 7$ (b) $3, 5, 7, 9$ (c) $3, 5, 11, 13$ (d) $3, 7, 11, 13$ RRB NTPC 04.04.2016 Shift : 2 Ans: (d) Fom option-(d) $3+7+111+13 = 34$ Net (a) In the given options odd composite numbers $34, 7$ (b) $35, 7, 9$ (c) $3, 5, 11, 13$ (d) $3, 7, 11, 13$ RRB NTPC 04.04.2016 Shift : 2 Ans: (d) Fine number divided by itself and 1. (e) It has no divisor. (f) The number divided by only itself and 1. (g) How many total prime numbers? (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 RRB NTPC 06.04.2016 Shift : 2 (a) 50, (f) 7, 17, 37, 98, 38, 99, 71 (0), 103, 107, 107, 137, 192, 33, 349, 951, 157, 163, 167, 17, 37, 99, 83, 89, 97Network of the following is an odd composite numbers (a) 75 (d) 100 (a) 47 (b) 98 (c) 75 (d) 100 (a) 76 (d) 16Ans: (b) First 8 odd prime numbers are in first 200 (d) atarral numbers $3 + 5 + 7 + 11 + 13 = 34$ 98. In a prime number divided by only itself and 1. (c) It has no divisor. (d) Is not a positive integer. (a) 45 (b) 49 (c) 50 (d) 46 <b< th=""><th></th><th>Ans. (c) The number- 729 is divisible by 3, 9 and 81.</th></b<>		Ans. (c) The number- 729 is divisible by 3, 9 and 81.	
natural numbers?natural numbers?natural numbers?(a) 93(b) 89(c) 91(d) 97 Ans : (d) The number which is divisible by only 1 and itself is called prime number.(a) 25(b) 27 Hence , It is clear that the largest two digit prime number = 97(c) 24 RB Group-D - 26/11/2018 (Shift-III) 95. What will be the product of the smallest prime (a) Always 0(c) 7, 17, 37, 99, 83, 89, 97(c) 24, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 Ans : (a) Newsy 50(c) Always even number(c) (3, 90(c) (3, 91(d) (43, 129) Ans : (c) The smallest prime numbers = 2. (b) and 2 is always an even number.(d) (21, 42)(c) (3, 90(d) (43, 129) Ans : (c) Sum of prime numbers between 50 and 80. (c) 463(d) 396(e) (3, 90(c) (3, 92(b) 390(e) 463(d) 396(d) 396(e) 12(d) 15 Ans : (e) Sum of prime numbers between 50 and 80. (c) 3, 5, 5, 11, 13(d) 3, 7, 11, 13(d) 15 Ans : (d) From option- (d) $3+7+11+13=34$ (d) 15 Find the sum of first 8 odd prime numbers97. The sum of which four odd prime numbers is (d) Is not apositive integer. RRB NTPC 130.03.2016 Shift : 2Ans : (d) In the given options odd composite numbers (a) 13 (d) 15, 7, 7, 9, 83, 89, 97 98. In a prime number is divided by only itself and 1. (c) I has no divisor. (d) Is not apositive integer. RRB NTPC 60.04.2016 Shift : 199. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans : (d) The prime numbers is a prime (a) 161 <th></th> <th></th>			
Ans: (d) The number Article 22 border 201Ans: (d) The number which is divisible by only 1 and itself is called prime number.Hence, It is clear that the largest two digit prime number $= 97$ 95. What will be the product of the smallest prime number (except 0) and any whole number?(a) Always 0 (b) Always 0 (c) Always od number(b) Always 0 (c) Always od number(c) Always 0 (d) Always 0 (e) Always od number. (a) 392 (b) 390 (c) 463 (d) 392 (e) 463 (d) 392 (e) 463 (d) 392 (e) 463 (d) 396 (e) 463 (d) 396 (e) 390 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13, 17, 13, 123, 149, 141, 141, 141, 141, 141, 141, 141			
(a) Ans: (d) The number which is divisible by only 1 and itself is called prime number.(a) 26 RB Group-D - $26/11/2018$ (Shift-III)(b) Always 1(c) 24 (c) 25 (c) 27 (c) 27 (c) 29 (c) $31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97(c) Always 0(a) Always 0(b) Always 1(c) Always 0(c) Always 0(c) Always 0(c) Always 0(c) Always 0(c) Always 0 do number(c) Always 0 do number(a) 122 (b) 390(c) 463 (c) 4390(a) 392 (b) 390(a) 392 (b) 390(c) 3, 5, 11, 13 (d) 3, 7, 11, 13RB NTPC 18.01.2017 Shift : 1Ans : (d) From option- (d)(a) 13, 5, 7, 7 (b) 3, 5, 7, 9(a) 1, 3, 5, 7, 7 (b) 3, 5, 7, 9(c) 7(c) 3, 5, 11, 13 (d) 3, 7, 11, 13RB NTPC 18.01.2017 Shift : 1Ans : (d) From option- (d)(a) 7(b) Sa (d) 46(a) 1, 3, 7, 11, 13, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7,$	RRB JE - 23/05/2019 (Shift-II)		
itself is called prime number. Hence, It is clear that the largest two digit prime numbers in first 100 natural numbers = 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 57, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 37, 41, 43, 47, 53, 59, 57, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 57, 10, 31, 43, 43, 47, 53, 59, 57, 10, 31, 43, 43, 47, 53, 59, 57, 10, 31, 43, 43, 47, 53, 59, 57, 10, 31, 43, 43, 47, 53, 59, 57, 10, 31, 43, 43, 47, 53, 59, 51, 51, 51, 51, 51, 51, 51, 51, 51, 51			
Hence, It is clear that the largest two digit prime number 97 3. What will be the product of the smallest prime number (except 0) and any whole number? (a) Always 0 (b) Always 0 (c) Always odd number RUB RPF Constable - 20/01/2019 (Shift-II) Ans : (a) The smallest prime number = 2. The result of the product of any whole number(except (a) and 2 is always an even number. 3. 6. Find the sum of the prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 RUB RPF Constable - 18/01/2019 (Shift-II) Ans : (c) Sum of prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 RUB RPF Constable - 18/01/2019 (Shift-II) Ans : (c) Sum of prime numbers between 50 and 80 = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 97. The sum of which four odd prime numbersis 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (b) The number divided by itself and 1. (c) It has no divisor. (d) There are more than two divisors. (d) The number individed by itself and 1. (e) It has no divisor. (f) The number individed by itself and 1. (f) In the numbers in first 200 odd natural 106. How many prime numbers is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (b) 6 (c) 7 RUB NTPC 06.04.2016 Shift : 2 Ans : (d) Tore prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (b) 6 (c) 7 RUB NTPC 06.04.2016 Shift : 2 Ans : (d) Tore prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (b) 6 (c) 7 RUB NTPC 06.04.2016 Shift : 1 Ans : (d) Tore prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RUB Group 'D 07/12/2018 (Shift-1) Ans : (d) Tore prime numbers are in first 200 odd natural numbers? (a) 40 (d) 161 RUB ALP & Tec. (21-08-18 Shift-11) RUB ALP & Tec. (21			
number = 9795. What will be the product of the smallest prime number (except 0) and any whole number? (a) Always 0 (b) Always 0 (c) Always ven number (c) Always ven number = 2, (d) Always 0 and number = 2, (d) Always od number = 2, (e) Always od number = 2, (f) the result of any whole number(except 0) and 2 is always an even number.103. Find out which of the following sets form co- prime numbers. (a) 12, 7) (b) (21, 42) (c) (3, 9)Ans : (c) The smallest prime numbers between form (a) 392 (b) 390 (c) 463 RPF Constable -18/01/2019 (Shift-1) Ans : (a) 2000 (c) 463 RPF Constable -18/01/2019 (Shift-1) Ans : (a) 2000 (c) 463, 5, 71, 13, 13, 2000 (c) 463, 5, 71, 13, 13, 2000 (c) 463, 5, 71, 13, 13, 2000 (c) 3, 5, 11, 13, (d) 3, 7, 11, 13 (RB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) 11 thas no divisor. (d) 15 not a positive integer. RRB NTPC 30.03.2016 Shift : 2 (d) 15 not a positive integer. (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 (d) 15 not a positive integer. (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 (d) 15 form option- (d) (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 (d) 16 not atural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 (d) 161 (c) 181 (d) 161 (c) 181 (d) 161 (c) 181, 191, 193, 197, 199 = 4599. How many total prime numbers are in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 103, 117, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 4590. How many total prime numbers are in first 200 (d) Attarral numbers = 3, 5, 7	Hence, It is clear that the largest two digit prime		
The result of the prime numbers 25 .(a) Always 0(b) Always 0(c) Always 0(c) Always 0(c) Always 0(d) Always 0(e) Always 0(f) Always 0(h) Always 0			
Interference, total such numbers are 2.5.(a) Always 0(b) Always 1(b) Always 1(c) Always even number(c) Always odd number(c) Always odd number 2(d) Always odd number(c) Always odd number 2(e) Always odd number 2(c) Always odd number 2(f) Ans: (c) The smallest prime numbers 2(c) Always an even number.(f) Ans: (c) The sum of the prime numbers between 50(a) 392(h) Always (c) Add (d) 396(c) 463(g) Add (f) Always (f) Alway	95. What will be the product of the smallest prime		
(a) Always 0 (b) Always 1 (c) Always even number (c) Always odd number RRB RPF Constable - 20/01/2019 (Shift-II Ans: (c) The smallest prime number = 2, The result of the product of any whole number(except) (a) ad2 is always an even number. 96. Find the sum of the prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 1 Ans: (d) From option- (d) 3+7+11+13=34 98. In a prime numbers. (a) 1 ner eare more than two divisors. (b) The number divided by istelf and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 03.03.2016 Shift : 2 Ans: (d) The prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 Ans: (d) The prime numbers is 40 prime numbers between 60 and 100 = 61, 67, 71, 73, 79, 83, 89, 97 How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 Ans: (d) The prime numbers is a prime number? (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers is a prime numbers (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers is a prime numbers (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers is a prime numbers (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers is a prime numbers (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers is a prime numbers (a) 45 (b) 49 (c) 50 (c) 46 (b) 141 (c) 181 (d) 161 Rub ALP & Tec. (21-08-18 Shift-II) Ans: (c) Prime numbers are divisible by 1 and itself only. Example: 5, 11, 13, 19			
(b)Always 1(c)Always odd number(d)Always odd number(d)Always odd number(d)RRB RFF Constable -20/01/2019 (Shiff-I)Ans : (c)Ibe sumlest prime number = 2,The result of the product of any whole numbers between 50(a)12 is always an even number.96.Find the sum of the prime numbers between 50(a)392(b)390(c)463(d)396RRB RPF Constable -18/01/2019 (Shiff-I)Ans : (c) Sum of prime numbers between 50 and 80 =53 + 59 + 61 + 67 + 71 + 73 + 79 = 46397.The sum of which four odd prime numbers is 34?(a)1, 3, 5, 7(b)3, 5, 11, 13(c)3, 5, 7, 9(c)3, 5, 11, 13(d)There are more than two divisors. (b)(a)There are more than two divisors. (b)(a)There are more than two divisors. (c)(a)There are more than two divisors. (d)(a)15 not a positive integer. RRB NTPC 06.04.2016 Shift : 2Ans : (d)(b) 49(c)50(d)15 not a positive integer. RRB Group 'D' 07/12/2018 (Shiff-1)Ans : (d)(b) 49(c)50(d)45(d)45(d)161(e)121(f)121(h)141(c)121(d)161RRB Crop 'D' 07/12/2018 (Shiff-1)(a)45 <th></th> <th></th>			
(d) Always odd number RRB RPF Constable -20/01/2019 (Shift-II) Ans: (c) The smallest prime number = 2, The result of the product of any whole number(except 0) and 2 is always an even number. 96. Find the sum of the prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 RRB RPF Constable -18/01/2019 (Shift-II) Ans: (c) Sum of prime numbers between 50 and 80 = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 97. The sum of which four odd prime numbers is 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 Ans: (d) From option (d) 3 + 7 + 11 + 13 = 34 98. In a prime number (a) There are more than two divisors. (b) The number divided by istelf and 1. (c) (1 has no divisor. (d) Is not a positive integer. RRB NTPC 04.04.2016 Shift : 2 Ans: (d) From option (d) 3 + 7 + 11 + 13 = 34 98. In a prime number (a) There are more than two divisors. (b) The number divided by istelf and 1. (c) (1 has no divisor. (d) Is not a positive integer. Ans: (d) The numbers is divided by inglef and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 (c) 7 (d) 8 Ans: (d) The prime numbers in first 200 dd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 101. 102. 103. 103. 104. 103. 107. 105. 106. How many prime numbers is a prime 107. 1	(b) Always 1	$\begin{array}{c} \text{prime numbers.} \\ (a) (12, 7) (b) (21, 42) \end{array}$	
RRB NTPC 18.01.2017 Shift : 1RRB NTPC 18.01.2017 Shift : 1Ans: (c) The smallest prime number:96. Find the sum of the prime numbers between 50and 80.(a) 392(b) 390(c) 463(d) 396(a) 392(b) 493(d) 396(a) 392(c) 463(d) 396RRB RFF Constable 18/01/2019 (Shift-I)Ans: (c) Sum of prime numbers between 50 and 80 =53 + 59 + 61 + 67 + 71 + 73 + 79 = 46397. The sum of which four odd prime numbers:34?(a) 1, 3, 5, 7(b) 3, 5, 11, 13(c) 3, 5, 11, 13(d) 1, 3, 5, 7(e) 3, 5, 11, 13(d) There are more than two divisors.(b) The number suitive integer.(c) 1 thas no divisor.(d) 1s not a positive integer.(d) 45(d) 45(e) 15Ans: (b)A prime numbers:(a) 45(b) 49(c) 50(d) 45(d) 45(d) 45(d) 45(d) 46(d) 47(e) 16(f) 711/2/2018 (Shift-I)Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 45(b) 49(c) 50(d) 46(d) 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 173, 179, 181, 191, 193, 197, 199 = 45Ans: (c) Prime numbers is a prime numbers is a prime numbers is a prime numbers is a prime number is in first 200 odd natural numbers in fir			
Rel NTP Constable - 20/01/2019 (Simiter)Ans: (a) The sum of the prime number:(a) a 2 is always an even number: Ans: (a) Co-prime numbers. The set of two such numbers whole numbers whole Numbers whole Numbers whole Numbers whole Numbers whole Numbers (12, 7) = 1 96. Find the sum of the prime numbers between 50 and 80. (c) 463 (d) 396 (c) $16 + 67 + 71 + 73 + 79 = 46397. The sum of which four odd prime numbers is347(a) 1, 3, 5, 7 (b) 3, 5, 7, 9(c) 3, 5, 11, 13 (d) 3, 7, 11, 13RRB NTPC 04.04.2016 Shift : 2Ans: (d) From option- (d)3 + 7 + 11 + 13 = 3498. In a prime number.(a) The rame of wided by itself and 1.(c) It has no divisor.(b) The number divided by itself and 1.(c) It has no divisor.(d) Is not a positive integer.RRB NTPC 03.03.2016 Shift : 2Ans: (b)A prime numbers in first 200 odd natural numbers?(a) 45 (b) 49 (c) 50 (d) 46RRB Group 'D' 07/12/2018 (Shift-11)Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 45 (b) 49 (c) 50 (d) 46RRB Group 'D' 07/12/2018 (Shift-11)Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 45 (b) 49 (c) 50 (d) 46RRB Group 'D' 07/12/2018 (Shift-11)Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 45 (b) 49 (c) 50 (d) 46(c) 50 (d) 46, (d) 161Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 45 (c) 77, 17, 3, 79, 83, 89, 97, 101, 103, 107, 173, 199, 184, 191, 193, 197, 199 = 45Ans: (c) Prime numbers are divisible by 1 and itself only.(c) 7112/2018 (Shift-11)(c) 1181 (d) 161Ans: (c) Prime$			
Alls (10) The similars prime numbers $2, 1$ numbers whose HCF is 1, is called co-prime numbers.96. Find the sum of the prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 (c) $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ In umbers whose HCF is 1, is called co-prime numbers. (a) 132 (b) 17 (c) 12 (d) 15 Ans : (c) Sum of prime numbers between 50 and $80 = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ In the given options odd composite numbers. (a) $1, 3, 5, 7$ (b) $3, 5, 7, 9$ (c) $3, 5, 11, 13$ (d) $3, 7, 11, 13$ RRB NTPC 04.04.2016 Shift : 2 Ans : (d) From option . (d) $3 + 7 + 11 + 13 = 34$ In a prime number (a) The raume nore than two divisors. (b) The number divided by itself and 1. (c) I thas no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime numbers in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RB Group TD 07/12/2018 (Shift-1) (A rus : (a) Total prime numbers in first 200 odd natural numbers $3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 17, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 710, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45$			
1111 costin of inder product number (12, 7) = 1 101 and 2 is always an even number. 96. Find the sum of the prime numbers between 50 and 80. (a) 392 (b) 390 (c) 463 (d) 396 RB RPF Constable -18/01/2019 (Shift-I) Ans : (c) Sum of prime numbers between 50 and 80 = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 97. The sum of which four odd prime numbers is 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 (a) 1, and y rime number will be 15. Find the sum of first 8 odd prime numbers. (a) 1, and y rime number will be 15. Find the sum of first 8 odd prime numbers. (a) 1, and y rime number will be 15. Find the sum of first 8 odd prime numbers. (a) 1, and y rime number. (a) 1, and y rime number will be 15. (a) The are more than two divisors. (b) The number sidvided by itself and 1. (c) T thas no divisor. (d) Is not a positive integer. (a) 45 (b) 49 (c) 50 (a) 45 (b) 49			
10010413104Which of the following is an odd composite number?96.Find the sum of the prime numbers between 50 (a) 392 (b) 390 (c) 463 (c) 463 (d) 396104Which of the following is an odd composite number?Ans : (c) Sum of prime numbers between 50 and 80 = $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ 104.Which of the following is an odd composite number?97.The sum of which four odd prime numbers is $34?$ (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2Ans : (d) In the given options odd composite numbers (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2Ans : (d) From option- (d) $3 + 7 + 11 + 13 = 34$ 77 (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2Ans : (b) A prime number divided by itself and 1.107 (d) Is not a positive integer. RRB NTPC 06.04.2016 Shift : 199.How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-1)99.How many total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, (4), 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 109, 113, 127, 181, 191, 193, 197, 199 = 45104.Nich of the following numbers are divisible by 1 and itself only. Example: - 5,11,13,19			
number ? number ?(a) 392(b) 390(c) 463(d) 396(c) 463(d) 396 RRB RPF Constable -18/01/2019 (Shift-I)Ans : (c) Sum of prime numbers between 50 and 80 =53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 97. The sum of which four odd prime numbers is 34? (a) 1, 3, 5, 7(b) 3, 5, 7, 9(c) 3, 5, 11, 13(d) 3, 7, 11, 13 RB NTPC 04.04.2016 Shift : 2Ans : (d) From option- (d) $3+7+11+13=34$ 98. In a prime number 98. In a prime number(a) There are more than two divisors.(b) The number divided by istelf and 1.(c) I thas no divisor.(d) Is not a positive integer. Ans: (b)A prime numbers is divided by only itself and 1.99. How many total prime numbers?(a) 45(a) 45(b) 49(c) 50(d) 45(a) 45(b) 49(c) 50(d) 45(a) 45(b) 49(c) 50(d) 45(a) 45(b) 49(c) 50(d) 46 RRB Group 'D' 07/12/2018 (Shift-I)Ans: (a) Total prime numbers in first 200 odd natural numbers?(a) 121(b) 141(c) 181 RRB ALP & Ce. (21-08-18 Shift-II)Ans: (c) Prime numbers are divisible by 1 and itself(d) 151 RRB MTPC 20.0 dd natural numbers?(a) 52, 53, 61, 67, 71, 73, 79, 83, 89, 97 A triange are divisible sign and 1.			
and ob. (a) 392(b) 390(c) 463(d) 396RB RPF Constable -18/01/2019 (Shift-I) (Sum of prime numbers between 50 and 80 = $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ (a) 1.3(b) 17Ans : (c) Sum of prime numbers between 50 and 80 = $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ (a) 1.5, 57, 9(b) 3, 5, 7, 997. The sum of which four odd prime numbers is $34?$ (a) 1, 3, 5, 7(b) 3, 5, 7, 9(c) 3, 5, 11, 13(d) 3, 7, 11, 13 (C) 3, 5, 11, 13(d) 3, 7, 11, 13 (C) 75Ans : (d) From option- (d) $3 + 7 + 11 + 13 = 34$ (d) First 8 odd prime numbers = 3, 5, 7, 11, 13, 17, 19, 2398. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime numbers? (a) 45(b) 49(c) 50(d) 46Ans : (a) Total prime numbers? (a) 45(c) 50(d) 46Ans : (a) Total prime numbers? (a) 45(b) 49(c) 50(d) 46Ans : (a) Total prime numbers? (a) 45(b) 49(c) 50(d) 46Ans : (a) Total prime numbers? (a) 45(b) 49(c) 50(d) 46(a) Total prime numbers? (a) 45(b) 49(c) 50(d) 46(a) 13, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 19, 181, 191, 193, 197, 199 = 45(c) Prime numbers are divisible by 1 and itself only. Example: 5,11,13,19			
(a) 392 (b) 396 RRB RPF Constable -18/01/2019 (Shift-I) Ans : (c) Sum of prime numbers between 50 and 80 = 53 + 59 + 61 + 67 + 71 + 73 + 79 = 463 97. The sum of which four odd prime numbers is 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 Ans : (d) From option- (d) 3 + 7 + 11 + 13 = 34 98. In a prime number divided by itself and 1. (c) I thas no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (d) The prime numbers in first 200 odd natural numbers is divided by only itself and 1. 99. How many total prime numbers in first 200 odd natural numbers $3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45$ (a) 12 (d) 15 RRB NTPC 18.01.2017 Shift : 2 Ans : (d) In the given options odd composite numbers (a) 15 (d) Is not a positive integer. (b) The number sin first 200 odd natural numbers $3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 17, 19, 23, 29, 31, 37, 41, 43, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45$ (b) 41 (c) 12 (d) 15 (c) 12 (d) 161 (c) 12 (d) 161 (c) 12 (d) 161 (c) 12 (d) 161 (c) 12 (d) 161 (d) 161 (e) 12 (d) 161 (f) 12 (f) 161 (g) 121 (f) 141 (g) 121 (f) 141 (h)			
RRB RPF Constable -18/01/2019 (Shift-1) Ans : (c) Sum of prime numbers between 50 and 80 = $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ 97. The sum of which four odd prime numbers is $34?$ (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 Ans : (d) From option- (d) 3 + 7 + 11 + 13 = 34 98. In a prime number divided by itself and 1. (c) 7 (d) 8 RRB NTPC 30.03.2016 Shift : 2 (d) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (d) 46 RRB Group D' 07/12/2018 (Shift-1) (a) 45 (b) 49 (c) 50 (c) 141 (c) 181 (d) 161 <th cols<="" th=""><th></th><th></th></th>	<th></th> <th></th>		
Ans: (c) Sum of prime numbers between 50 and 80 = $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ 97. The sum of which four odd prime numbers is $34?$ (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (c) 11 has no divisor. (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. (A prime number is divided by only itself and 1.Ans: (d) The prime numbers are between positive integers 60 and 100? (a) 45 (b) 49 (c) 50 (d) 46 (RRB Group 'D' 07/12/2018 (Shift-1)Ans: (d) The prime numbers will be between 60 and 100 = 61, 67, 71, 73, 79, 83, 89, 97, Hence, Total 8 prime numbers will be between 60 and 100 = 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45Ans: (d) In the given options odd composite numbers (a) 100 RRB NTPC 19.04.2016 Shift: 2 Ans: (d) From option- (d) $3 + 7 + 11 + 13 = 34$ 98. In a prime number. (a) 45 (b) 74 (c) 18 not a positive integer. (a) 45 (b) 49 (c) 50 (c) 40 (c) 50 (c) 40 (c) 50 (c) 40 (d) 41 (c) 18 (d) 16199. How many total prime numbers in first 200 (d) a tatural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, (7, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, (109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, (173, 179, 181, 191, 193, 197, 199 = 45(a) 5000000000000000000000000000000000000			
Nais : (c) Sum of prime numbers between 30 and 30 - $53 + 59 + 61 + 67 + 71 + 73 + 79 = 463$ will be 15.will be 15.97. The sum of which four odd prime numbers is $34?$ (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 ill be 15.ill be 15.97. The sum of which four odd prime numbers is $34?$ (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 ill be 15.ill be 15.98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1.ill be 15.ill be 15.98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1.ill be 15.ill be 15.99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 44 (c) 50 (d) 45 (c) 50 (d) 45 (c) 71/12/2018 (Shift-I)ill be 15.ill be 15.90. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (c) 40 (c) 50 (d) 446 (c) 50 (d) 45 (c) 71/12/2018 (Shift-I)ill be 15.ill be 15.91. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (c) 50 (d) 40 (c) 181 (d) 161ill c) 141 (c) 181 (d) 16192. How many total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 			
97. The sum of which four odd prime numbers is 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 (d) 3, 7, 11, 13 (d) 3, 7, 11, 13 (d) 3, 7, 11, 13 (e) 3, 5, 11, 13 (f) 3, 7, 11, 13 (f) 14 (f) 14 (h) 14 (f) 14 (f) 14 (f) 14 (f) 14 (f) 14 (f) 14 (f) 14 (f) 14 (f) 14 (h) 14 (f) 14 (f) 14 (h) 14 (f) 14 (h) 14 (f) 14 (f) 14 (h) 14 (f) 14 (h) 14 (h			
97. The sum of which four out prime humbers is 34? (a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 RRB NTPC 04.04.2016 Shift : 2 (a) 1, 3, 5, 7 (c) 3, 5, 11, 13 RRB NTPC 04.04.2016 Shift : 2Ans : (d) From option- (d) $3+7+11+13 = 34$ 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I)Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 7, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 and isolutionand isolution (c) State of the following numbers in a prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 7, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45		105. Find the sum of first 8 odd prime numbers.	
(a) 1, 3, 5, 7 (b) 3, 5, 7, 9 (c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 Ans : (d) From option- (d) 3+7+11+13 = 34 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) Ans : (c) Ans : (b) Ans : (c) Ans : 			
(c) 3, 5, 11, 13 (d) 3, 7, 11, 13 RRB NTPC 04.04.2016 Shift : 2 Ans : (d) From option- (d) 3+7+11+13 = 34 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (d) The prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Ans : (c) Prime numbers are divisible by 1 and itself only. Example:- 5,11,13,19			
RRB NTPC 04.04.2016 Shift : 2Ans : (d) From option- (d) $3+7+11+13=34$ 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer.(d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1.99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45106. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45Image: Complex integes in first 200 (c) first complex in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45		RRB NTPC 19.04.2016 Shift : 2	
Ans : (d) From option- (d) $3+7+11+13 = 34$ 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer.Ans : (b) A prime number is divided by only itself and 1.99. How many total prime numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' $07/12/2018$ (Shift-I)Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, $47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45Ans : (d) The prime numbers are in first 200 odd natural numbers?(a) 45 (b) 49 (c) 50 (d) 46RRB Group 'D' 07/12/2018 (Shift-I)Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45Image: A star in the star in $		Ans : (b) First 8 odd prime numbers = 3, 5, 7, 11, 13,	
3+7+11+13=34 = 98 98. In a prime number (a) There are more than two divisors. (b) The number divided by itself and 1. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (d) 45 (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) (d) 161 Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Ans : (c) Prime numbers are divisible by 1 and itself only.		-) -) -	
98. In a prime number			
 (a) There are more than two divisors. (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 			
 (b) The number divided by itself and 1. (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 (b) The prime numbers are divisible by 1 and itself only. Example: - 5, 11, 13, 19 			
 (c) It has no divisor. (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 (c) 7 (d) 8 RRB NTPC 06.04.2016 Shift : 1 Ans : (d) The prime numbers between 60 and 100 = 61, 67, 71, 73, 79, 83, 89, 97 Hence, Total 8 prime numbers will be between 60 and 100. 107. Which of the following numbers is a prime numbers is first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 			
 (d) Is not a positive integer. RRB NTPC 30.03.2016 Shift : 2 Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 			
RRB NTPC 30.03.2016 Shift : 2Ans : (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I)Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, $47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,173, 179, 181, 191, 193, 197, 199 = 45Ans : (d) The prime numbers between 60 and 100 = 61,67, 71, 73, 79, 83, 89, 97Hence, Total 8 prime numbers will be between 60 and100.Ans : (a) Total prime numbers in first 200 odd naturalnumbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43,47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,173, 179, 181, 191, 193, 197, 199 = 45Ans : (d) The prime numbers between 60 and 100 = 61,67, 71, 73, 79, 83, 89, 97100.$			
Ans: (b) A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans: (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 67, 71, 73, 79, 83, 89, 97 Hence, Total 8 prime numbers will be between 60 and 100. 107. Which of the following numbers is a prime numbers in first 200 odd natural numbers? (a) 121 (b) 141 (b) 161 RRB ALP & Tec. (21-08-18 Shift-II) Ans: (c) Prime numbers are divisible by 1 and itself only. (b) 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45			
A prime number is divided by only itself and 1. 99. How many total prime numbers are in first 200 odd natural numbers? (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) Ans: (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Hence, Total 8 prime numbers will be between 60 and 100. Image: A for the following numbers is a prime number in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Hence, Total 8 prime numbers will be between 60 and 100. Image: A for the following numbers is a prime number in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Image: A for the following numbers are divisible by 1 and itself only.			
99. How many total prime numbers are in first 200 odd natural numbers? 100. (a) 45 (b) 49 (c) 50 (d) 46 107. Which of the following numbers is a prime numbers in first 200 odd natural numbers? (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 100. 101. 102. 103. 104. 105. 106. 107. 108. 109. 113. 113. 113. 113. 113. 113. 114. 115. 115. 116. 117. 118. 119. 111. 111. 111. 112. 113. 113. 114. 115. 115. 116. 117. 118. 118. 119. <			
Join and y total prime numbers are in first 200 odd natural numbers? Information (a) 45 (b) 49 (c) 50 (d) 46 (a) 45 (b) 49 (c) 50 (d) 46 RRB Group 'D' 07/12/2018 (Shift-I) (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 Interview of the following numbers is a prime number? (a) 121 (b) 141 (b) 161 RRB ALP & Tec. (21-08-18 Shift-II) Ans: (c) Prime numbers are divisible by 1 and itself only. (b) 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45			
$\begin{array}{c} \text{(a)} \ 45 \ (b) \ 49 \ (c) \ 50 \ (d) \ 46 \\ \hline \textbf{RRB Group 'D' 07/12/2018 (Shift-I)} \\ \text{Ans : (a)} \ \text{Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, \\ 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, \\ 109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, \\ 173, 179, 181, 191, 193, 197, 199 = 45 \end{array}$	odd natural numbers?		
$\begin{array}{c} \text{(a)} 43 & \text{(b)} 49 & \text{(c)} 30 & \text{(c)} 40 &$			
Ans : (a) Total prime numbers in first 200 odd natural numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, $47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,$ $109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,$ $173, 179, 181, 191, 193, 197, 199 = 45$ (c) 181(d) 161 RRB ALP & Tec. (21-08-18 Shift-II) Ans : (c) Prime numbers are divisible by 1 and itself only. Example:- 5,11,13,19			
RRB ALP & Tec. (21-08-18 Shift-II)numbers = 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, $47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107,$ $109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167,$ $173, 179, 181, 191, 193, 197, 199 = 45$ RRB ALP & Tec. (21-08-18 Shift-II)RRB ALP & Tec. (21-08-18 Sh			
Ans: (c) Prime numbers are divisible by 1 and itself only. 173, 179, 181, 191, 193, 197, 199 = 45 Ans: (c) Prime numbers are divisible by 1 and itself only. Example:- $5,11,13,19$		RRB ALP & Tec. (21-08-18 Shift-II)	
109, 113, 127, 131, 137, 139, 149, 151, 157, 163, 167, 173, 179, 181, 191, 193, 197, 199 = 45 only.		Ans : (c) Prime numbers are divisible by 1 and itself	
173, 179, 181, 191, 193, 197, 199 = 45			

From options, Number of packets required for 304 pencils Factors of the numbers, $=\frac{304}{8} = 38$ Packets. 181 = 1, 181121 = 1, 11, 121 From 3/4 of a number P, Ramakrishna 113. 141 = 1, 3, 47, 141subtracts 2/3 of another number Q and obtain 161 = 1, 7, 23, 161 5/8 as the difference. What is the answer Hence from the above it is clear that '181' is a prime Ramakrishna should obtain if he subtracts number. eight times of Q from nine times of P? 108. Which of the following pairs is NOT a pair of (b) $\frac{25}{4}$ (d) $\frac{25}{3}$ twin primes? (a) (a) 11, 13 (b) 71, 73 (d) 191, 193 (c) 131, 133 (c) $\frac{20}{3}$ RRB ALP & Tec. (21-08-18 Shift-II) Ans: (c) From option (c), RRB NTPC (Stage-II) -12/06/2022 (Shift-II) Factor of 131 = 131, 1 and Ans. (a) : According to the question, Factors of 133 = 1, 7, 19, 133. $P \times \frac{3}{4} - Q \times \frac{2}{3} = \frac{5}{8}$ Hence, this pair is not a pair of twin primes. 109. Which of the following is the prime number series from 1 to 20? $\Rightarrow \frac{3P}{4} - \frac{2Q}{3} = \frac{5}{8} \Rightarrow \frac{9P - 8Q}{12} = \frac{5}{8}$ (a) 3, 5, 7, 11, 13, 17, 19 (b) 2, 5, 7, 9, 11, 13, 17, 19 $\implies 9P - 8Q = \left(\frac{5}{8}\right) \times 12 \implies 9P - 8Q = \frac{60}{8}$ (c) 2, 3, 5, 7, 11, 13, 17, 19 (d) 1, 2, 3, 5, 7, 11, 13, 17, 19 RRB ALP & Tec. (20-08-18 Shift-I) $\therefore 9P - 8Q = \frac{15}{2}$ Ans : (c) Prime numbers:- The number which is divisible by 1 and itself only. Hence, from options, the required series will be 114. In a class of 80 students $\frac{1}{10}$ of the class likes 2,3,5,7,11,13,17,19. 110. Calculate the difference between the largest chocolate D and $\frac{1}{20}$ of the class likes chocolate and the smallest two-digit prime number. (a) 82 (b) 83 E. What is the difference between the number (c) 84 (d) 86 of students who like chocolate D and the RRB RPF Constable -17/01/2019 (Shift-I) number of students who like chocolate E? **Ans : (d)** The largest two digit prime number = 97 (a) 2 (b) 9 The smallest two digit prime number = 11(c) 5 (d) 4 Hence, the required number = 97 - 11 = 86RRB NTPC (Stage-2) 17/06/2022 (Shift-I) 111. Which of the following number is not composite? Ans. (d) : Students who likes chocolate D = $80 \times \frac{1}{10}$ (b) 203 (a) 209 (c) 161 (d) 109 = 8RRB ALP & Tec. (14-08-18 Shift-I) Students who likes chocolate $E = 80 \times \frac{1}{20}$ Ans : (d) The number is called composite number. which is formed by multiplying whole numbers. = 4Hence, $209 = 11 \times 19$ Hence the required difference = 8-4 = 4 $203 = 7 \times 29$ Sunita won 3/5 of the marbles that were there $161 = 7 \times 23$ 115. But, 109 cannot be expressed in the form of factors in the beginning of the game. Ravi won 2/3 of the remaining marbles while Sunny won the (except 1). So it is not composite remaining 60 marbles. How many marbles did Sunita Win? Type - 4 (a) 255 (b) 240 112. If each packet contains the same number of (c) 285 (d) 270 pencils and there are 96 pencils in all in 12 RRB NTPC (Stage-II) -12/06/2022 (Shift-I) packets, how many packets will one have to Ans. (d): Let, number of marbles be x. purchase if one requires 304 pencils? Won by Sunita $=\frac{3x}{5}$ (a) 39 (b) 38 (c) 33(d) 36 Number of remaining marbles $= x - \frac{3x}{5} = \frac{2x}{5}$ RRB NTPC (Stage-II) -16/06/2022 (Shift-II) **Ans. (b)**: Pencils present in 12 packets = 96 Won by Ravi = $\frac{2x}{5} \times \frac{2}{3} = \frac{4x}{15}$: Pencils present in 1 packet = $\frac{96}{12}$ = 8 Pencils

According to the question,	118. A 3 digit number is such that the ratio of its
$\frac{3x}{5} + \frac{4x}{15} + 60 = x$	units digit, tens digit and hundreds digit is 1 : 2 : 3. The sum of this number and the reversed
$\frac{-5}{5} + \frac{15}{15} + 60 = x$	number obtained by reversing the order of its
$60 = \mathbf{x} - \left(\frac{3\mathbf{x}}{5} + \frac{4\mathbf{x}}{15}\right)$	digits is 1332. Find the number.
$00 - x - \left(\frac{5}{5} + \frac{15}{15}\right)$	(a) 246 (b) 414
(a) 13x	(c) 123 (d) 369 DDP C_{rown} D $26/08/2022$ (Shift HD)
$60 = x - \frac{13x}{15}$	RRB Group-D 26/08/2022 (Shift-III)
2x	Ans. (d) : Let three digit number = $100 \times 3x + 10 \times 2x + x$
$\therefore \frac{2x}{15} = 60 \Rightarrow x = 450$	= 300x + 20x + x
3	= 321 x
Number of marbles Won by Sunita = $450 \times \frac{3}{5} = 270$	New number obtained by reversing the digits
116. The difference between two numbers is 18. If	$= 100 \times x + 10 \times 2x + 3x$
the difference between their squares is 360, find	= 100x + 20x + 3x
the larger number.	= 123x
(a) 18 (b) 15 (d) 16	According to the question,
(c) 19 (d) 16 RRB GROUP-D – 29/09/2022 (Shift-I)	321x + 123x = 1332 $444x = 1332$
Ans. (c) : Let the smaller number = y	X = 3
and larger number = x	Hence number = $100 \times 3 + 10 \times 2 \times 3 + 3 \times 3$
According to the question,	= 300 + 60 + 9
x - y = 18 (i) $x^2 - y^2 = 360$	= 369
	119. A man plants 21,025 mango trees in his garden
(x + y)(x - y) = 360	in such a way that there are as many rows as
(x + y) 18 = 360 x + y = 20(ii)	there are mango trees in each row. Find the
On adding equation (i) and equation (ii) -	number of rows.
x + y = 20	(a) 135 (b) 125 (c) 145 (d) 130
x - y = 18	RRB Group-D 30/08/2022 (Shift-II)
	Ans. (c) : Let the number of rows in garden = x
2x = 38 $x = 19$	And number of tree in each row = x
y = 20 - x	According to the question,
= 20 - 19	$\mathbf{x} \times \mathbf{x} = 21025$
= 1	$\mathbf{x} = \sqrt{21025}$
Hence larger number = 19 and smaller number = 1	x = 145
117. A 91 cm long wire is cut into two pieces so that	Hence, Number of rows in garden = 145
the length of one piece is three-fourth of the other. Find the length of the shorter piece.	120. The sum of two numbers is 27. Five times one
(a) 36.23 m (b) 39 cm	number is equal to 4 times the other. The smaller of the two numbers is :
(c) 42.17 cm (d) 38 cm	(a) 12 (b) 11 (c) 13 (d) 15
RRB Group-D 22/08/2022 (Shift-I)	RRB Group-D 30/08/2022 (Shift-II)
Ans. (b) : Let the length of second piece = $x \text{ cm}$	Ans. (a) : Let the numbers be x and y
Length of first piece = $x \times \frac{3}{4} = \frac{3x}{4}$	According to the question :
According to the question,	$\therefore \rightarrow x + y = 27 $ (i) $\therefore \rightarrow 5x = 4y $ (ii) On solving equation (i) and (ii) :
	$\therefore \rightarrow 5x = 4y$ ()
$\Rightarrow \frac{3x}{4} + x = 91$	5x - 4y = 0 - (11)
\Rightarrow 7x = 91 × 4	y = 15
	x = 12
$\Rightarrow x = \frac{91 \times 4}{7}$	Hence, the smaller number is 12.
length of second piece $(x) = 52$ cm	121. There are two consecutive natural numbers
Length of first sizes 52.3	such that the sum of their squares is 313. Find
Length of first piece = $52 \times \frac{3}{4}$	smaller of these two numbers.
= 39 cm	(a) 12 (b) 14 (c) 15 (d) 13 $PPP C = P 24/98/2022$ (SLife P)
Hence the length of the shorter piece = 39 cm	RRB Group-D 24/08/2022 (Shift-I)

Let two consecutive natural numbers are x and $(x + 1)$ According to the question. $x^2 + (x + 1)^2 = 313$ $x^2 + x^2 + 1 + 2x = 313$ $2x^2 + 2x = 312$ $x^2 + x = 156$ $x(x + 1) = 13 \times 12$ Hence, smaller of these two numbers = 12 122. In a competitive exam, 3 marks are to be awarded for every correct answer and for every wrong answer, 1 mark will be deduced. Sindhu scored 80 marks in this exam. Had marks been awarded for each incret answer. Sindhu would have scored 90 marks. iff Sindhu attempted all the questions, then the number of question in the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 00/09/2022 (Shift-II) Ans. (a) : Let the correct question = x incorrect question = y According to the queation, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 6y = 270(iii) 12x - 6y = 270(iii) 2y = 50 On multiplying by 4 in equation (i), ad 3 in eq. (ii) 12x - 6y = 270(iii) 12x - 6y = 270(iii) $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $(x - 7)x = 15 \times 6$ 2x = 90 x = 45 126. The sum of two numbers is 32 and one of them exceeds the other by 18. Find the greater number. (a) 25 (b) 28 (c) 24 (d) 27		۱ <u>٫ </u>
$ \begin{aligned} x^{2} + (x + 1)^{2} = 313 \\ x^{2} + x = 133 \\ 2x^{2} + x = 136 \\ x^{2} + x = 156 \\ \hline x^{2} + x = 166 \\ \hline x^{2} + x = 156 $	Ans. (a) :	$h - \frac{70}{10}$
$ \begin{aligned} x^{2} + (x + 1)^{2} = 313 \\ x^{2} + x = 133 \\ 2x^{2} + x = 136 \\ x^{2} + x = 156 \\ \hline x^{2} + x = 166 \\ \hline x^{2} + x = 156 $	Let two consecutive natural numbers are x and $(x + 1)$	$U = \frac{1}{2}$
$ \begin{aligned} x^{2} + (x + 1)^{2} = 313 \\ x^{2} + x = 133 \\ 2x^{2} + x = 136 \\ x^{2} + x = 156 \\ \hline x^{2} + x = 166 \\ \hline x^{2} + x = 156 $	According to the question.	$b = 3\overline{5}$
$\begin{aligned} \frac{2x^2 + 2x = 312}{x^2 + x = 156} \\ \frac{x - 12}{x - 12} \end{aligned}$ $\begin{aligned} 124. The sum of two positive numbers is 45 and their difference is 19. What are the numbers? \\ (a) 25, 20 (b) 32, 13 (b) 32, 13 (c) 30, 15 (c) 30, 16 (c) 30$	$x^{2} + (x + 1)^{2} = 313$	Cost of one chair = ₹35
$\begin{aligned} \frac{2x^2 + 2x = 312}{x^2 + x = 156} \\ \frac{x - 12}{x - 12} \end{aligned}$ $\begin{aligned} 124. The sum of two positive numbers is 45 and their difference is 19. What are the numbers? \\ (a) 25, 20 (b) 32, 13 (b) 32, 13 (c) 30, 15 (c) 30, 16 (c) 30$	$x^2 + x^2 + 1 + 2x = 313$	
$x^{2} + x = 136$ $x(x + 1) = 13 \times 12$ $x(x + 1) = 13 \times 12$ Hence, smaller of these two numbers = 12 Hence, number of question in the test (x + y = 45)(i) answer. Sindhu would have scored 90 marks. If sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (c) 70 (c) 35 (c) 70 (c) 70 (c) 40 (c) 12x - 4y = 20 (c) 100 (c) 1400 (c)	$2x^2 + 2x = 312$	
$\begin{aligned} x(x+1) = 13 \times 12 \\ \hline x=2 $		
Exerctly line constant of these two numbers = 12 Hence, smaller of these two numbers = 12 122. In a competitive exam, 3 marks are to be awarded for every correct answer and for every wrong answer, 1 mark will be deducted. Sindhu scored 80 marks in this exam. Had 4 marks been awarded for each correct answer and 2 marks deducted for each incorrect answer. Sindhu would have scored 90 marks. If Sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 REB Group-D 09/09/2022 (Shift-II) Ans. (a) : Let the correct question = x incorrect question = y According to the question, 3x - y = 80 (i) 2x + y = 50 y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{2} = 35$ Hence number of question in the test (xry) = 35 + 25 -60 123. The cost of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs? $x = \frac{105}{2} = 35$ Hence number of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs? x = 4 - 3 2x + 5 - 470 x = 4 + 53 - 540 2a + 5 - 470 $\frac{2a + 5 - 470}{2a + 5 - 470}$ $\frac{2a + 5 - 470}{2a + 5 - 470}$ 		
Iterce, smaller of these two numbers = 12 RRB Group-D 01/09/2022 (Shift-HI) RRB Group-D 01/09/2022 (Shift-HI) According to the question , and the stare :and the question in the test are :(a) 60(b) 55(c) 70 RRB Group-D 09/09/2022 (Shift-HI) According to the question , and the question = yAccording to the question = y(b) 10According to the question, if in the test are :(a) 60(b) 70 RRB Group-D 09/09/2022 (Shift-HI) Ans. (a) 1 Let the correct question = x(a) 60(b) 55(c) 70 RRB Group-D 09/09/2022 (Shift-HI) Ans. (a) 1 Let the correct question = x(a) 60(b) 55(c) 70 RRB Group-D 09/09/2022 (Shift-HI) According to the question , $3x - y = 80$ (ii)(a) multing they alue of y in equation (i), $3x + 28 - 35$ Hence number of question in the test(x+y) = 35 + 25= 60 123. The cost of 2 tables and 1 chair is \$470. What is the cost of 2 tables and 1 chair is \$470. What is the cost of 2 tables and 1 chair is \$470. What is the cost of 2 tables and 1 chair is \$470. What is the respectively.(a) \$2.45(b) \$2.05(c) $(c) \in T15$ (c) $(d) \in T1808/2022$ (Shift-HI)Ans. (a) : Let the cost by one table and chair be a and by cost first and three tables cost Rs. 1.850. Five chairs and two tables. cost first and three tables cost Rs. 1.850. Five chairs and two tables. cost first and two t		
122. In a competitive exam, 3 marks are to be awarded for every correct answer and for every wrong answer, 1 mark will be deducted. Sindhu scored 80 marks in this exam. Had marks been awarded for each correct answer and 2 marks deducted for each incorrect answer. Sindhu would have scorer 20 pmarks. (a) 60 (b) 55 (c) 70 (d) 50 (c) 70 (d) 715 (c) 70 (d) 715 (c) 715 (c) 715 (c) 7175 (c) 717		
awarded for every correct answer and for every wrong answer. I mark will be deduced: Sindhu scored 80 marks in this exam. Had marks been awarded for each correct answer answer. Sindhu would have scored 90 marks. If Sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 (c) 70 (d) 55 (c) 70 (d) 45 (c) 70 (d) 31 and 3 in eq. (ii) 12x - 4y = 320 (iii) 12x - 4y = 320 (iii) 12x - 4y = 320 (iii) 12x - 4y = 325 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $(a) \frac{7}{245} (b) \frac{7}{205}(c) \frac{7}{175} (c) \frac{7}{175} (d) \frac{7}{205}(c) \frac{7}{175} (e) \frac{100}{2022} (Shift-HI)According to the first condition,2a + 5b = 540(a) \frac{2a + 5b = 470}{(a)}(b) \frac{7}{200} (c) \frac{100}{(a)} (d) \frac{100}{(a)}(c) \frac{1400}{(a)} (d) \frac{100}{(a)} (d) \frac{100}{(a)}(c) \frac{1400}{(a)} (d) \frac{100}{(a)} (d) \frac{100}{(a)}$		· · · · · · · · · · · · · · · · · · ·
every wrong answer, 1 mark will be deducted. Sindhu sored 30 marks in this exam. Had marks been awarded for each correct answer and 2 marks deducted for each incorrect answer. Sindhu would have scored 90 marks. If mumber of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-II)(i) Charlen 1 and equation (i), $2x = 64$ $y = 45$ $y = 45$ $y = 45$ $y = 45$ $y = 45$ $y = 45$ $y = 45$ $2x = 64$ 232 (ii) On adding equation (i) and a quation (i), $32 + y = 45$ $y = 45 - 32 = 13$ Hence the correct question $= x$ incorrect question $= y$ According to the question, $4x - 2y = 90$ (ii) $12x - 6y = 270$ (iii) $12x - 4y = 320$ $x = 105$ $x = 100$ $x = 45$ 126. The sum of two numbers is 32 and one of them exceeds the other by 18. Find the greater number. $(a) ? 24 = 50$ $2a = 50$ $x = 105$ $x = 101000000000000000000000000000000000$		
Sindhu scored 80 marks in this exam. Had 4 marks been awarded for each correct awares answer. Sindhu would have scored 90 marks. If Sindhu attempted all the question, the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-I) RRB Group-D 09/09/2022 (Shift-I) According to the question in the test (x+y) = 35 - 25 (c) $\frac{1}{2y-50}$ (iv) $\frac{+}{2y-50}$ (or substracting) $\frac{1}{2y-50}$ (c) $\frac{1}{2x-4y=320}$ (c) ii) 12x-4y=320 (c) iii) 12x-4y=320 (c) $12x-4y=320$ (
marks been awarded for each correct answer and 2 marks deducted for each incorrect answer. Sindhu would have scored 90 marks. If Sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-I) Ans. (a) : Let the correct question = x incorrect question = y According to the question, 3x - y = 80 (i) 4x - 2y = 90 (ii) 12x - 6y = 270 (iii) 12x - 6y = 270 (iv) $\frac{-+}{2y = 50}$		
and 2 marks deducted for each incorrect answer. Sindhu would have scored 90 marks. If Sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-I) Ans. (a) : Let the correct question = x incorrect question = y According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 4y = 320(iii) 12x - 6y = 270(iv) $-\frac{+}{2y = 50}$ y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 33 + 25 (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RB Group-D 18/08/2022 (Shift-II) Ans. (c) : Let the cost by one table and chair be a and respectively. According to the first condition, 2a + 5b = 540 (a) 2a + 5b = 470 (a) 700 (b) $5205(b) 2a + 5b = 320$ (ii) On substracting equation (i), 2a + 5b = 540 (a) 2a + 5b = 470 (b) 2a + 5b = 470 (c) 700 (c) $1,400$ (d) $1,300$		
answer. Sindhu would have scored 90 marks. If Sindhu attempted all the questions, then the number of questions in the test are : (a) 60 (b) 55 (c) 70 (d) 50 REB Group-D 09/09/2022 (Shift-I) Ans. (a) : Let the correct question = x According to the question, 3x - y = 80 (i) 4x - 2y = 90 (ii) 12x - 6y = 270 (iv) $\frac{-y}{2y = 50}$		On adding equation (i) and equation (ii),
Sindhu attempted all the questions, then the number of question in the test are : (a) 60 (b) 55 (c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-I) According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 4x - 2y = 90(ii) 12x - 4y = 320(iii) 12x - 6y = 270(iv) $-\frac{-}{2y = 50}$ (or substracting) y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 (a) $\overline{\xi} 245$ (b) $\overline{\xi} 205$ (c) $\overline{\xi} 175$ (d) $\overline{\xi} 185$ (a) $\overline{\xi} 245$ (b) $\overline{\xi} 205$ (c) $\overline{\xi} 175$ (d) $\overline{\xi} 185$ According to the first condition, 2a + 3b = 540 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470(ii) Ans. (a) $1 Let the cost by one table and chair be a and three tables cost Rs. 1,850. Find the cost Rs 1,850. Find $		/x = 64
number of questions in the test are : (a) 60 (b) 55 (c) 70 (c) 55 (c) 70 (c) 150 (c) 70 (c) 70 (c) 70 (c) 150 (c) 70 (c)		x = 64/2 = 32
(a) 60 (b) 55 (c) 70 (c) 55 (c) 70 (c) 55 (c) 70 (c) 55 (c) 70 (c) 50 (c) 50 (c) 70 (c) 12x - 4y = 30 (c) (i) 12x - 4y = 320 (c) (ii) (c) (x + 4y - 4y) (c) (x + 4y) (c) (c) (x + 4y)		On putting the value of x in equation (i),
(c) 70 (d) 50 RRB Group-D 09/09/2022 (Shift-I) Ans. (a) : Let the correct question = x incorrect question = y According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 4y = 320(ii) 12x - 4y = 320(iii) 12x - 4y = 320(iii) 12x - 4y = 320(iii) 12x - 6y = 270(iv) $\frac{-y}{-y = 50}$ (on substracting) y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 REB Group-D 01/09/2022 (Shift-II) Ans. (a) : Let the greater number = a and smaller number = b According to the first condition, 2a + 3b = 540(i) According to the first condition, 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470(ii) 2a + b = 470(iii) 2a - b = 18(iii) 2a - b = 18(iii) 2a - b = 18(iii) 2a + b = 540(iii) 2a + b = 470(iii) 2a + b = 470(iii) 2a - b = 18(iii) 2a - b		
RRB Group-D 09/09/2022 (Shift-I)Ans. (a) : Let the correct question = x incorrect question = yAccording to the question, $3x - y = 80$ (i) $4x - 2y = 90$ (ii)12x - 4y = 320 (iii) $12x - 4y = 320$ (iv) $\frac{-}{2y = 50}$ (on substracting) $y = 25$ 0n putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test $(x+y) = 35 + 25$ $= 60$ 123. The cost of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RC Group-D 01/09/2022 (Shift-III)Ans. (c) : Let the cost by one table and chair be a and b respectively.According to the first condition, $2a + b = 470$ $= \frac{-}{2a + 5-2470}$ 101112. The cost of condition, $2a + b = 470$ $= \frac{-}{2a + 5-270}$ 12. The cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (c) 175 (c) ₹ 175 (c) 7 (c) ₹ 175 (c) 7 (c		y = 45 - 32 = 13
Ans. (a) : Let the correct question = x incorrect question = y According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 4y = 320(iii) 12x - 4y = 320(iii) 12x - 6y = 270(iv) $\frac{-+}{2y = 50}$ y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + b = 470(i) On substracting equation (ii), from equation (i), 2a + b = 470(ii) On substracting equation (iii) from equation (i), 2a + b = 470(ii) 2a - b = 470(ii) 2a + b = 470(ii) 2a + b = 470(ii) 2a - b = 470(ii)		Hence the numbers are 32 and 13.
According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 4y = 320(ii) 12x - 6y = 270(iv) $\frac{-}{2y = 50}$ y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 (x+y) = 35 + 20 (x+y) = 35 + 30 (x+y) = 35 + 20 (x+y) = 35	i ()	
According to the question, 3x - y = 80(i) 4x - 2y = 90(ii) 12x - 4y = 320(iii) 12x - 4y = 320(iii) 12x - 6y = 270(iv) $\frac{-}{2y = 50}$ (on substracting) y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 REB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the second condition, 2a + b = 470(i) On substracting equation (ii), 2a + b = 470(ii) On substracting equation (ii), 2a + b = 470(ii) (a) 700 (b) 1,700 (c) 1,400 (d) 1,300	· · ·	125. Find the number whose $\frac{1}{r^{d}}$ part is 6 more than
$\frac{3x - y = 80 \dots (i)}{4x - 2y = 90 \dots (ii)}$ On multiplying by 4 in equation (i) and 3 in eq. (ii) $\frac{12x - 4y = 320 \dots (iii)}{12x - 4y = 320 \dots (iv)}$ $\frac{-+ -}{-} (on substracting)$ $\frac{2y = 50}{y = 25}$ On putting the value of y in equation (i), $\frac{3x = 80 + 25}{x = \frac{105}{3} = 35}$ Hence number of question in the test $(x + y) = 35 + 25$ $\frac{-60}{2}$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shiff-III) According to the first condition, 2a + b = 470(i) According to the second condition, 2a + b = 470(i) According to the second condition, 2a + b = 470 <u></u> ${}$ (a) 700 (b) 1,700 (c) 1,400 (d) 1,300		3
$\begin{array}{c} 4x - 2y = 90 \dots (ii) \\ 0n \ \text{multiplying by 4 in equation (i) and 3 in eq. (ii)} \\ 12x - 4y = 320 \dots (ii) \\ 12x - 6y = 270 \dots (iv) \\ \frac{-}{-y} - (\text{on substracting}) \\ y = 25 \\ 0n \ \text{putting the value of y in equation (i),} \\ 3x = 80 + 25 \\ x = \frac{105}{3} = 35 \\ \text{Hence number of question in the test} \\ (x+y) = 35 + 25 \\ = 60 \\ \textbf{123. The cost of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while that of 2 tables and 1 chair is ₹540, while the cost of 5 chairs? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 \\ \textbf{RRB Group-D 01/09/2022 (Shift-III)} \\ Ans. (c) : Let the cost by one table and chair be a and breepetively. \\ According to the first condition, 2a + b = 540 \\ 2a + b = 540 \\ \hline 2a + b = 470 \\ \hline - 1 + 5 + 540 \\ \hline - 1 + $		its $\frac{1}{2}$ th nart
On multiplying by 4 in equation (i) and 3 in eq. (ii) 12x - 4y = 320 (iii) 12x - 6y = 270 (iv) $\frac{-+}{2y = 50}$ y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 REB Group-D 18/08/2022 (Shift-III) Ans. (a) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 $\frac{-a + -470}{2}$ $\frac{-a + -470}{2}$ $\frac{-a}{2}$ Constitution (i) And (i) and eq. (ii), 2a + b = 470 $\frac{-a}{2}$ Constitution (iii) from equation (i), 2a + b = 470 $\frac{-a}{2}$ Constitution (iii) from equation (ii), 2a + b = 470 $\frac{-a}{2}$ Constitution (iii) from equation (ii), 2a + b = 470 $\frac{-a}{2}$ Constitution (iii) from equation (ii), $\frac{-a}{2}$ Constitution (iii) from equation (ii), $\frac{-a}{2}$ Constitution (iii) from equation (ii), $\frac{-a}{2}$ Constitution (iv) (iv) (iv) (iv) (iv) (iv) (iv) (iv)		$\frac{1}{5}$ part.
$12x - 4y = 320 \dots (iii)$ $12x - 6y = 270 \dots (iv)$ $\frac{-}{2y = 50}$ (on substracting) $\frac{2y = 50}{y = 25}$ On putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540$ $\frac{2a + b = 470}{\frac{-2}{3} + \frac{2}{3} + \frac{2}$	4x - 2y = 90 (ii)	(a) 50 (b) 45 (c) 40 (d) 35
$12x - 4y = 320 \dots (11)$ $12x - 6y = 270 \dots (11)$ $\frac{-4}{2y = 50} (\text{or substracting})$ $y = 25$ On putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540$ $\frac{2a + b = 470}{\frac{-2}{3} + \frac{2}{3} + \frac{2}{5} + \frac{2}{5}$ $(a) 72 (b) 72 (c) \frac{2}{3} + \frac{2}{5} + \frac{2}{5}$ $(b) ₹ 205 (c) ₹ 175 (c) ₹ 175 (c) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + b = 540 (a) 700 (b) 1,700 (c) 1,400 (d) 1,300$		RRB Group-D 06/09/2022 (Shift-II)
$\frac{12X - 6y = 2/0 \dots (iv)}{\frac{-}{2}y = 50}$ (on substracting) $\frac{2y = 50}{y = 25}$ On putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540$ $\frac{2a + b = 470}{\frac{-}{2} + b = 470}$ (a) 700 (b) $1,700$ (c) $1,400$ (d) $1,300$		
${2}$ (on substracting) $\frac{2y = 50}{2y = 25}$ On putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + b = 470(ii) Con substracting equation (ii) from equation (i), 2a + b = 470(ii) $\frac{2a + b = 470}{}$ (a) 700 (b) 1,700 (c) 1,400 (d) 1,300	$12x - 6y = 270 \dots (iv)$	
y = 25 On putting the value of y in equation (i), 3x = 80 + 25 $x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and brespectively. According to the first condition, 2a + 3b = 540 (i) According to the second condition, 2a + 3b = 540 (ii) On substracting equation (ii) from equation (i), 2a + b = 470 (ii) On substracting equation (iii) from equation (i), 2a + b = 470 (ii) a = 70 ${}$ (a) 700 (b) 1,700 (c) 1,400 (d) 1,300	- + – (on substracting)	
$y = 2.5$ On putting the value of y in equation (i), $3x = 80 + 25$ $x = \frac{105}{3} = 35$ Hence number of question in the test $(x+y) = 35 + 25$ $= 60$ 126. The sum of two numbers is 32 and one of them exceeds the other by 18. Find the greater number.123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III)Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540$ (i) According to the second condition, $2a + 3b = 540$ (ii)On substracting equation (ii) from equation (i), $2a + 3b = 540$ $\frac{2a + b = 470}{\frac{-2}{2} - \frac{2}{2}}$ 125. Three chairs and two tables cost Rs. 1,850. Five chairs and three tables cost Rs. 2,850. Find the cost of two chairs and two tables. (a) 700 (b) 1,700 (c) 1,400 (d) 1,300		$x \times \frac{1}{2} - x \times \frac{1}{5} = 6$
$2x = 90$ $x = \frac{105}{3} = 35$ Hence number of question in the test $(x+y) = 35 + 25$ $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? $(a) ₹ 245 \qquad (b) ₹ 205 \\ (c) ₹ 175 \qquad (d) ₹ 185 $ RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540$ $(a) 2a + b = 470$ $(b) 2a + b = 470$ $(b) 2a + b = 470$ $(c) - {2}$ Condition $(c) - 1400 \qquad (b) 1,700$ $(c) - 1,400 \qquad (b) 1,700$		5 6
$x = \frac{105}{3} = 35$ Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 (i) On substracting equation (ii) from equation (i), 2a + 3b = 540 (ii) On substracting equation (ii) from equation (i), 2a + b = 470 (ii) 2a + 0 = 470 (ii) a = 0 (b) 1,700 (c) 1,400 (d) 1,300		
$x = \frac{103}{3} = 35$ Hence number of question in the test $(x+y) = 35 + 25$ $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 (a) 2a + b = 470 (b) 2a + 3b = 540 (c) 2a + b = 470 (c)	3x = 80 + 25	
Hence number of question in the test (x+y) = 35 + 25 = 60 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + 3b = 540(ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470(ii) 2a + 0 = 540 2a + b = 470(ii) 2a + 0 = 540 2a + 0 = 470 2a + 0 = 540 2a + 0 = 540 2a + 0 = 470 2a + 0 = 540 2a + 0 = 170 (a) 700 (b) 1,700 (c) 1,400 (c) 1,400 (c) 1,400 (c) 1,400 (c) 1,400 (c) 1,300	105 25	x = 45
number. (x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) On substracting equation (ii) from equation (i), 2a + 3b = 540 (a) $2a + b = 470$ 2a + b = 470 2a + b = 470 2	$x = \frac{3}{3} = 35$	126. The sum of two numbers is 32 and one of them
(x+y) = 35 + 25 $= 60$ 123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 (2a + b = 470 (2a + b = 470) (2a + b = 470) (2a + b = 470 (2a + b = 470) (2a + b = 470) (2	Hence number of question in the test	exceeds the other by 18. Find the greater
$ \begin{array}{c} \textbf{(a)} 25 \textbf{(b)} 28 \textbf{(c)} 24 \textbf{(d)} 27 \\ \hline \textbf{RRB Group-D 18/08/2022 (Shift-III)} \\ \hline \textbf{RB Group-D 18/08/2022 (Shift-III)} \\ \hline \textbf{Ars. (c)} : Let the cost of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? \\ \hline \textbf{(a)} ₹ 245 \textbf{(b)} ₹ 205 \\ \hline \textbf{(c)} ₹ 175 \textbf{(d)} ₹ 185 \\ \hline \textbf{RRB Group-D 01/09/2022 (Shift-III)} \\ \hline \textbf{Ans. (c)} : Let the cost by one table and chair be a and b respectively. \\ According to the first condition, 2a + 3b = 540 \\ \hline \textbf{2a + b = 470} \\ \hline 2a + b = 470$		
RRB Group-D 18/08/2022 (Shift-III)123. The cost of 2 tables and 3 chairs is ₹540, while that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III)Ans. (a) : Let the greater number = a and smaller number = b According to the question, $a + b = 32 \dots (i)$ $a - b = 18 \dots (ii)$ Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, $2a + 3b = 540 \dots (ii)$ On adding eq. (i) and eq. (ii), $2a + 3b = 540 \dots (ii)$ On substracting equation (ii) from equation (i), $2a + 3b = 540$ $2a + b = 470 \dots (ii)$ New Yee tables cost Rs. 1,850. Five chairs and three tables cost Rs. 2,850. Find the cost of two chairs and two tables. (a) 700 (b) 1,700 (c) 1,400 (d) 1,300		(a) 25 (b) 28 (c) 24 (d) 27
that of 2 tables and 1 chair is ₹470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470(ii) 2a + b = 470(b) 2a + b = 470(c) 2a + b = 470(b) 1,700 (c) 1,400 (d) 1,300		RRB Group-D 18/08/2022 (Shift-III)
that of 2 tables and 1 chair is \$470. What is the cost of 5 chairs ? (a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470 ${2}$ 		
(a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + b = 470 $-\frac{-2}{-2}$ -		
(a) ₹ 245 (b) ₹ 205 (c) ₹ 175 (d) ₹ 185 RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540(i) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 $-\frac{-}{2}$ 2a + b = 470 $-\frac{-}{2}$ 2a + b = 470 $-\frac{-}{2}$ 2a + b = 470 $-\frac{-}{2}$ (a) 700 (b) 1,700 (c) 1,400 (d) 1,300		According to the question,
(c) $\langle 1/5 \rangle$ (d) $\langle 185 \rangle$ RRB Group-D 01/09/2022 (Shift-III) Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 (ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 		$a + b = 32 \dots (i)$
Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 (i) According to the second condition, 2a + b = 470 (ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 		a - b = 18 (ii)
Ans. (c) : Let the cost by one table and chair be a and b respectively. According to the first condition, 2a + 3b = 540 (i) According to the second condition, 2a + b = 470 (ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 a = 25 So, b = 7 Hence the greater number is 25. 127. Three chairs and two tables cost Rs. 1,850. Five chairs and three tables cost Rs. 2,850. Find the cost of two chairs and two tables. (a) 700 (b) 1,700 (c) 1,400 (d) 1,300	· · · · · · · · · · · · · · · · · · ·	On adding eq. (i) and eq. (ii),
According to the first condition, 2a + 3b = 540(i) According to the second condition, 2a + b = 470(ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 		2a = 50
2a + 3b = 540 According to the second condition, $2a + b = 470$ $2a + b = 470$ $2a + 3b = 540$ $2a + b = 470$ $\frac{-a}{-b} = -\frac{-a}{-b}$ $2a + b = 470$ $\frac{-a}{-b} = -\frac{-a}{-b}$ $\frac{-a}{-b} = --$		a = 25
According to the second condition, 2a + b = 470 (ii) On substracting equation (ii) from equation (i), 2a + 3b = 540 2a + b = 470 		So,
$2a + b = 470 \dots (ii)$ On substracting equation (ii) from equation (i), 2a + 3b = 540 $2a + b = 470$ $$		b = 7
$2a + b = 470 \dots (11)$ On substracting equation (ii) from equation (i), 2a + 3b = 540 $2a + b = 470$ $$		Hence the greater number is 25.
chairs and three tables cost Rs. 2,850. Find the cost of two chairs and two tables. $\begin{array}{c} 2a+b=470\\ \\ \hline $		
$\begin{array}{c} 2a+3b=540\\ \underline{2a+3b}=540\\ \underline{-2a+3b}=470\\ -2$	On substracting equation (ii) from equation (i),	
$\begin{array}{c} 2a + b = 470 \\ $	2a + 3b = 540	
${(c)}$ (c) 1,400 (d) 1,300		
	2a + 0 - 4/0	
KRB Group-D 13/09/2022 (Shift-III)	$\frac{1}{2h = 70}$	
	20-70	KRB Group-D 13/09/2022 (Shift-III)

	131. If the sum of two numbers is 25 and the
respectively.	product is 136, then the sum of their cubes is :
According to the question,	(a) 5425 (b) 5524
$3C + 2T = 1850 \dots (i)$	(c) 4525 (d) 4524
5C + 3T = 2850 (ii)	RRB GROUP-D – 11/10/2022 (Shift-I)
On substracting eq. (i) \times 3 from eq. (ii) \times 2 -	Ans. (a) : Let the numbers be a and b respectively.
10C + 6T = 5700	According to the question
9C + 6T = 5550	a + b = 25
C = ₹150	a + b = 23 ab = 136
So, $T = \overline{\xi}700$	
Hence the cost of two chairs and two tables	:: $[a^3 + b^3 = (a+b)(a^2 + b^2 - ab)]$
$= 150 \times 2 + 700 \times 2$	$(a+b)^2 = (25)^2$ (On squaring both side)
$= 130 \times 2 + 700 \times 2$ = 300 + 1400	$a^2 + b^2 + 2ab = 625$
	$a^2 + b^2 = 625 - 272$
=₹1700	$a^2 + b^2 = 353$
128. A number is split into two parts such that one	$a^3 + b^3 = 25 \times (353 - 136)$
part is 14 more than the other, and the ratio of	$a^3 + b^3 = 25 \times 217$
the two parts is 7 : 5. Find the number.	$a^3 + b^3 = 5425$
(a) 49 (b) 35 (c) 84 (d) 54	132. The product of two consecutive positive natural
RRB GROUP - D – 29/09/2022 (Shift–II)	
Ans. (c) :	numbers is 72. The greater of the two numbers is:
Let number be x	
First part = $x + 14$	(a) 12 (b) 24
Second part = x	(c) 9 (d) 8
According to the question,	RRB GROUP-D – 18/09/2022 (Shift-II)
x + 14 7	Ans. (c) : Let the two consecutive positive natural
$\frac{x+14}{x} = \frac{7}{5}$	number be x and $(x + 1)$ respectively.
5x + 70 = 7x	So, According to the question,
2x = 70	x(x+1) = 72
x = 35	$x^2 + x - 72 = 0$
129. If one-third of a number is 6 more than the	$x^2 + 9x - 8x - 72 = 0$
number itself, then find the number.	(x+9)(x-8) = 0
(a) -7 (b) -6 (c) -5 (d) -9	$\therefore \mathbf{x} = 8$
RRB GROUP-D – 27/09/2022 (Shift-I)	Hence the greater number = $x + 1$
Ans. (d) : Let the number be x.	$\Rightarrow 8 + 1 = 9$
According to the question,	
v	133. The sum of two numbers is 20 and their
$\frac{x}{3} = x + 6$	difference is 16. The ratio of the larger number
3	to the smaller number is:
$\frac{x}{2} - x = 6$	(a) 1:9 (b) 11:2
	(c) 2:11 (d) 9:1
$\frac{-2x}{3} = 6$	RRB GROUP-D – 15/09/2022 (Shift-III)
	Ans. (d) : Let the two numbers be x and y
	According to the question,
x = -9	$x + y = 20 \dots (i)$
130. Ujjwal has ₹5,250 in currency notes of	
denominations ₹50, ₹100 and ₹200. The	On adding eq. (i) and eq. (ii)
number of notes of each denomination are	2x = 36
equal. How many notes in total does Ujwal	x = 18
have ?	$\therefore y = 20 - 18 = 2$
(a) 30 (b) 45 (c) 60 (d) 15	Hence the Required ratio = $18 : 2$
RRB GROUP-D – 11/10/2022 (Shift-I)	= 9:1
Ans. (b) : Let Ujjwal have ₹ 3x notes because notes of	
each denomination are equal.	134. Three chairs and two tables cost ₹7,000 and
According to the question,	five chairs and three tables cost ₹11,000. What
50x + 100x + 200x = 5250	is the cost of four chairs and two tables ?
350x = 5250	(a) ₹ 9,600 (b) ₹ 9,000
x = 15	(c) ₹ 6,000 (d) ₹ 8,000
\therefore Total number of notes = 3x	RRB Group-D 08/09/2022 (Shift-II)
$= 15 \times 3$	Ans. (d) : Let the price of chair and table be x and y
$= 15 \times 5$ = 45	respectively.
- 43	

Ans. (d)	By equation (i) and (ii)
Sum of squares of the first 'n' terms = $\frac{n(2n+1)(n+1)}{(n+1)}$	$\Rightarrow \qquad a = \frac{25 + 15}{2} = 20$
6	
Sum of squares of numbers form 3 to 18 = $(1^2 + 2^2 + 3^2 + 4^2 + \dots + 18^2) - (1^2 + 2^2)$	$b = \frac{25 - 15}{2} = 5$
	Hence, the ratio of the numbers $a : b = 20 : 5 = 4 : 1$ 145. The sum of two number is 16 and their product
$=\frac{18(18\times2+1)(18+1)}{6}-5$	is 63. The sum of their reciprocal is equal to:
$=\frac{18\times37\times19}{6}-5$	(a) $\frac{16}{63}$ (b) $\frac{63}{16}$
	63 16 8 60
= 2109 - 5 = 2104	(c) $\frac{8}{63}$ (d) $\frac{60}{63}$
142. The sum of two numbers is 20 and their	RRB NTPC 04.01.2021 (Shift-I) Stage Ist
product is 96. What is the difference between	Ans. (a) : Let the numbers be x and y According to the question,
the two numbers? (a) 4 (b) 5	x + y = 16 (i) and $x \times y = 63$ (ii)
(c) 6 (d) 8	
RRB NTPC 08.02.2021 (Shift-II) Stage I Ans. (a) : Let the two numbers are x and y.	then, $\frac{1}{x} + \frac{1}{y} = ?$
According to the question,	5
x + y = 20	$\frac{x+y}{xy} = \frac{16}{63}$
xy = 96	146. The difference between two numbers which are
From, $x - y = \sqrt{(x + y)^2 - 4xy}$	in the ratio 5 : 3 is 50. What is the product of the numbers?
$=\sqrt{\left(20\right)^2-4\times96}$	(a) 1035 (b) 9375 (c) 8575 (d) 9975
$= \sqrt{400 - 384}$	RRB NTPC 08.04.2021 (Shift-II) Stage Ist
$=\sqrt{16}$	Ans. (b) : Let the numbers are 5x, 3x As per question,
= 4	5x - 3x = 50
143. If the sum of two numbers is 30 and the product is 50, then the sum of their reciprocals	x = 25
is:	Hence, the product of two numbers $= 5x \times 3x = 15x^2$ = $15 \times 25^2 = 9375$
(a) $\frac{3}{5}$ (b) $\frac{5}{2}$	
(a) $\frac{3}{5}$ (b) $\frac{5}{3}$ (c) $\frac{2}{5}$ (d) $\frac{5}{2}$	147. $\frac{3}{5}$ of a number is 10 more than half of the
(c) $\frac{2}{5}$ (d) $\frac{2}{2}$	second number. If 8 is subtracted from $\frac{3}{7}$ of the
RRB NTPC 29.01.2021 (Shift-II) Stage I	first number, then it becomes 4 less than half of
Ans. (a) : Let the numbers be x and y – Given,	the second number. What is the sum of the two numbers?
x + y = 30(i)	(a) 56 (b) 57
xy = 50(ii) The sum of reciprocals of numbers	(c) 54 (d) 55 RRB NTPC 08.04.2021 (Shift-II) Stage Ist
$= \frac{1}{x} + \frac{1}{y} = \frac{x + y}{y}$	Ans. (b) : Let the no. be x and y
= - + - =	According to the question, 3 V
$=\frac{30}{30}=\frac{3}{30}$	$\frac{3}{5}x - \frac{y}{2} = 10$
50 5	6x - 5y = 100(i)
144. The sum of two numbers is 25 and their difference is 15. The ratio of the numbers is?	7 2
(a) 3:2 (b) 5:3	6x - 7y = 56(ii) On subtracting equation (ii) from equation(i)
(c) 4:1 (d) 2:3 RRB NTPC 04.01.2021 (Shift-I) Stage Ist	2y = 44
Ans. (c) : Let the numbers be a and b.	y = 22
According to the question, a + b = 25 (i)	x = $\frac{100+5\times22}{6}$ = 35 {from equation (i)}
a - b = 15 (ii)	Hence, sum of two numbers = $x+y=35+22=57$

148. The ratio of five numbers are 1:2:3:4:5 and	152. Find the least number which must be added to
their sum is 30. Find the sum of second and	the number 6412 to get a perfect square.
fifth number?	(a) 149 (b) 129
(a) 15 (b) 14	(c) 181 (d) 150
(c) 13 (d) 12	RRB NTPC 12.01.2021 (Shift-II) Stage Ist
RRB NTPC 05.04.2021 (Shift-II) Stage Ist	Ans. (a) : $(80)^2 = 6400$
Ans. (b) : Let the number are x, $2x$, $3x$, $4x$, $5x$.	$(81)^2 = 6561$
According to the question,	Hence on adding $6561 - 6412 = 149$, 6412 will be the
x+2x+3x+4x+5x=30	perfect square.
$15x=30 \Rightarrow x = 2$	153. Out of four consecutive numbers, the sum of
Then the sum of (second+fifth) number = $2x+5x=7x$	the first two numbers is equal to the fourth
= 7×2=14	number. What is half of the sum of the four
149. There are 2401 students in a school. The PT	numbers.
teacher wants all of them to stand in rows and	(a) 14 (b) 7
columns. Find the number of rows, if the	(c) 9 (d) 2
number of rows is equal to the number of	RRB NTPC 12.01.2021 (Shift-II) Stage Ist
columns.	Ans. (b) : Let four consecutive numbers be x , $(x + 1)$,
(a) 29 (b) 39	(x+2) and $(x+3)$
(c) 49 (d) 19	According to question,
RRB NTPC 10.02.2021 (Shift-II) Stage Ist	x + (x + 1) = x + 3
Ans. (c) : Let number of Rows $= x$	x = 2
then number of columns $= x$	Half of the sum of four number = $\frac{4x+6}{2} = 2x+3$
Number of students in school = $2401(given)$	=
\therefore Number of rows × Number of columns = 2401	$= 2 \times 2 + 3$
\therefore x × x = 2401	= 7
$x^2 = 2401$	154. 24 mango trees, 56 apple trees and 72 orange
x = 49	trees have to be planted in rows such that each
Hence, the number of rows $(x) = 49$	row contains the same number of trees of one
150. The sum of two numbers is 27 and the	variety only. Find the minimum number of
difference of their squares is 243. What is the	rows in which the above mentioned trees may be planted
	be planted.
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9	be planted. (a) 15 (b) 18
difference of their squares is 243. What is the difference between the numbers?	be planted. (a) 15 (b) 18 (c) 17 (d) 19
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) :
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows)
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i)	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) :
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given,	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii)	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8×9
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii),	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii)	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27 (i) $x^2 - y^2 = 243$ (x-y) (x+y) = 243 (ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii),	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27 (i) $x^2 - y^2 = 243$ (x-y) (x+y) = 243 (ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers?
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27 (i) $x^2 - y^2 = 243$ (x-y) (x+y) = 243 (ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers $= x-y = 9$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y=9$ 151. What is the sum of the squares of the numbers	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12?	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers– \Rightarrow 1, 2, 3, 4 Cube,
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers– \Rightarrow 1, 2, 3, 4 Cube, $(1)^3 = 1$
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers– \Rightarrow 1, 2, 3, 4 Cube, $(1)^3 = 1$ $(2)^3 = 8$
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers– \Rightarrow 1, 2, 3, 4 Cube, $(1)^3 = 1$ $(2)^3 = 8$ $(3)^3 = 27$
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$ From, Sum of the square of the first n natural numbers	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers- \Rightarrow 1, 2, 3, 4 Cube, (1) ³ = 1 (2) ³ = 8 (3) ³ = 27 (4) ³ = 64
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$ From, Sum of the square of the first n natural numbers	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8 × 3 8 × 7 8 × 9 8 (3 + 7 + 9) = Total number of trees Total number of rows = 3 + 7 + 9 = 19 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers- ⇒ 1, 2, 3, 4 Cube, (1) ³ = 1 (2) ³ = 8 (3) ³ = 27 (4) ³ = 64 Sum of cubes of the first four natural numbers
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers- \Rightarrow 1, 2, 3, 4 Cube, (1) ³ = 1 (2) ³ = 8 (3) ³ = 27 (4) ³ = 64 Sum of cubes of the first four natural numbers = 1 + 8 + 27 + 64
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27(i) $x^2 - y^2 = 243$ (x-y) (x+y) = 243(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y=9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$ From, Sum of the square of the first n natural numbers $= \frac{n(n+1)(2n+1)}{6}$	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8 × 3 8 × 7 8 × 9 8 (3 + 7 + 9) = Total number of trees Total number of rows = 3 + 7 + 9 = 19 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers- ⇒ 1, 2, 3, 4 Cube, (1) ³ = 1 (2) ³ = 8 (3) ³ = 27 (4) ³ = 64 Sum of cubes of the first four natural numbers
difference of their squares is 243. What is the difference between the numbers? (a) 42 (b) 9 (c) 72 (d) 3 RRB NTPC 05.02.2021 (Shift-I) Stage Ist Ans. (b) : let us the numbers be x and y respectively. Given, x + y = 27—(i) $x^2 - y^2 = 243$ $(x-y) (x+y) = 243$ _(ii) Putting value of $(x + y)$ from eq ⁿ (i) in eq (ii), $(x-y) \times 27 = 243$ $(x-y) = \frac{243}{27} = 9$ So, difference between the numbers = $x-y = 9$ 151. What is the sum of the squares of the numbers from 1 to 12? (a) 655 (b) 660 (c) 650 (d) 665 RRB NTPC 04.02.2021 (Shift-II) Stage Ist Ans. (c) : $1^2 + 2^2 + 3^2 + \dots + 12^2$ From, Sum of the square of the first n natural numbers	be planted. (a) 15 (b) 18 (c) 17 (d) 19 RRB NTPC 04.01.2021 (Shift-II) Stage Ist Ans. (d) : (Number of total columns × Number of total rows) 8×3 8×7 8×9 8 (3 + 7 + 9) = Total number of trees Total number of rows = $3 + 7 + 9 = 19$ 155. What is the sum of the cubes of the first four natural numbers? (a) 96 (b) 84 (c) 100 (d) 1000 RRB NTPC 23.07.2021 (Shift-I) Stage Ist Ans. (c) : First four natural numbers- \Rightarrow 1, 2, 3, 4 Cube, (1) ³ = 1 (2) ³ = 8 (3) ³ = 27 (4) ³ = 64 Sum of cubes of the first four natural numbers = 1 + 8 + 27 + 64 = 9 + 27 + 64

Ans. (b) : Let the no. = x156. $\frac{6}{11}$ of the people present in a hall are sitting in According to question, actual answer = 2x $\frac{1}{14}$ of the chairs available, and the rest are and from the question standing. If there are 30 empty chairs, how $\frac{x}{2} = 2$ many people in the hall are standing? (a) 40 (b) 35 x = 4(c) 30 (d) 45 Actual answer = 2xRRB NTPC 23.07.2021 (Shift-I) Stage Ist $= 2 \times 4 = 8$ Ans. (d) : If number of total chair = xIn a reunion of class XII, out of 45 students, 30 160. Then empty chair = $x - \frac{9x}{14} = \frac{5x}{14}$ students participated in the function. If all present in the function shake hands with one Whereas, $\frac{x \times 5}{14} = 30$ other, find the total number of handshakes. (a) 870 (b) 435 (d) 900 x = 84 (Number of total chair) (c) 841 Hence, number of people sitting on the chair. RRB NTPC 12.01.2021 (Shift-I) Stage Ist 84 - 30 = 54Ans. (b): Total number of handshakes If total people are y then, $=\frac{n}{2}(n-1)$ $\frac{y \times 6}{11} = 54$ or y = 99 people $=\frac{30}{2}(30-1)$: Number of standing people $y\left(1-\frac{6}{11}\right) = y \times \frac{5}{11}$ $= 15 \times 29$ = 435Hence, Number of standing people = $\frac{99 \times 5}{11} = 45$ people 161. The difference of two numbers is 5. If their product is 336, find the sum of the numbers. 157. One-fourth of one-eight of a number is 300. (a) 21 (b) 37 (d) 51 (c) 28 What is one fifth of the same number? RRB JE - 26/06/2019 (Shift-I) (a) 1900 (b) 1910 (c) 1920 Ans. (b) Let the numbers be x and y respectively. (d) 1890 RRB NTPC 03.03.2021 (Shift-I) Stage Ist x - y = 5(i) $xy = 336
 (ii)
 (x + y)^2 = (x-y)^2 + 4xy
 From equation (i) and (ii),
 (ii)
 (ii)
 (ii)
 (iii)
 (iiii)
 (iii)
 (iii)
 (iii)
 (iii)
 (iii)
 (iii)$ Ans. (c) : Let the required number = xAccording to the question, $\left(x \times \frac{1}{8}\right) \times \frac{1}{4} = 300$ $\begin{aligned} &(x + y)^2 = (5)^2 + 4 \times 336 \\ &(x + y)^2 = 25 + 1344 \\ &(x + y)^2 = 1369 \end{aligned}$ $x = 300 \times 32 \Longrightarrow x = 9600$ $(x + y) = \sqrt{1369}$ Then, $9600 \times \frac{1}{5} = 1920$ x + y = 37Hence, the required sum of the numbers =37Two-fifth of one-fourth of three-seventh of a 158. 162. If x + y = 11, then $(-1)^{x} + (-1)^{y}$ is equal to number is 15. What is the half of that number? (where x and y are whole numbers). (a) 375 (b) 175 (a) -1(c) 2(b) 1 (c) 300 (d) 170 (d) 0 RRB NTPC 09.02.2021 (Shift-I) Stage Ist RRB JE - 23/05/2019 (Shift-I) **Ans. (b) :** Let the number is x Ans: (d) Given - $(-1)^{x} + (-1)^{y} = ?$ According to the question, $x \times \frac{3}{7} \times \frac{1}{4} \times \frac{2}{5} = 15$ x = 350 Note- When the sum of two whole numbers is an odd number then one will be even and second will be odd. Hence, $(-1)^{\text{even/odd}}$ then, half of that number = $\frac{350}{2}$ $+(-1)^{\text{odd/even}}=0$ 163. From a cloth of 30 m long, 12 pieces each = 175measuring 225 cm are cut and sold. How much Instead of multiplying a number by 2, Rahul 159. is left of the original length? divided it by 2 and got the answer as 2. What (b) 1/9 (a) 1/3should be the actual answer? (c) 1/10 (d) 3/10 RRB JE - 23/05/2019 (Shift-III) (a) 4 (b) 8 (c) 6 Ans : (c) The total length of the cloth = 30 m [1 m = 100 m](d) 2 **RRB NTPC 25.01.2021 (Shift-I) Stage Ist** [cm] = 3000 cm

Tet 11 and a fill a lat that is set 1 - 225 at 2 - 2700 and	(a) 12 (b) 15
Total length of the cloth that is sold $=225 \times 12 = 2700$ cm The length of the remaining cloth $=3000-2700=300$ cm	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	RRB JE - 25/05/2019 (Shift-I)
The remaining part = $\frac{300}{3000} = \frac{1}{10}$	Ans : (a) Let the numbers are x and y,
	According to the question,
164. If 1/7 of a number is subtracted from the number, the result is 30 less than the number.	x + y = 22(i)
Find the number.	and $5x = 6y$ (ii)
(a) 105 (b) 140	$x = \frac{6}{5}y$
(c) 120 (d) 210	6
RRB JE - 24/05/2019 (Shift-III)	Putting the value of x in equation (i) -
Ans : (d) Let the number be x.	$\frac{6}{-y+y-22}$
$x - \frac{x}{2} - x - 30$	$\frac{6}{5}y + y = 22$
$x - \frac{x}{7} = x - 30$	11
7x - x 20	$\frac{11}{5}y = 22$ $y = \frac{22 \times 5}{11} = 10$ y = 10
$\frac{7x-x}{7} = x - 30$	22×5
6x = 7x - 210	$y = \frac{1}{11} = 10$
x = 210	$y = 10^{11}$
165. If the product of two numbers is 24, and their	6 10 12
square's sum is 52, then find their sum.	$\therefore \mathbf{x} = \frac{6}{5} \times 10 = 12$
(a) 5 (b) 10 (d) 20	Hence, the larger number is 12.
(c) 15 (d) 20 RRB RPF Constable -24/01/2019 (Shift-I)	169. If doubling a number and adding 20 to the
Ans :(b) Let the numbers be x and y.	result gives the same answer as multiplying the
According to the question,	number by 8 and subtracting 4 from the
	product, find the number. (a) 3 (b) 4
x. $y = 24$ (1) x ² + y ² = 52(2)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\therefore (\mathbf{x} + \mathbf{y})^2 = \mathbf{x}^2 + \mathbf{y}^2 + 2\mathbf{x}\mathbf{y}$	RRB JE - 25/05/2019 (Shift-II)
$= 52 + 2 \times 24$	Ans : (b) Let the number $be = x$
= 52 + 48 = 100	According to the question,
$x + y = \sqrt{100} = 10$	$2x + 20 = x \times 8 - 4$
166. If 10 is subtracted from the 5 times of a	2x + 20 = 8x - 4
number, then that number will be equal to the	24 = 6x
number found when adding 8 to 4 times of that	x = 4
number, what is that number?	170. The product of two numbers is 9375. The
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	quotient, when the largest number is divided
RRB RPF Constable -25/01/2019 (Shift-III)	by the smallest number is 15. Find the sum of these numbers.
Ans. (b) : Let the number be x.	(a) 400 (b) 380
According to the question,	(c) 425 (d) 395
5x - 10 = 4x + 8	RRB JE - 30/05/2019 (Shift-II)
x = 18	Ans : (a) Let the smaller number be $= x$
Hence, the required number will be 18.	\therefore Larger number = 15x
167. When 8 times of a number is added to 4, the result obtained is the smallest 3-digit number.	According to the question, $x \times 15x = 9375$
What is that number?	$15x^2 = 9375$
(a) 12 (b) 10	$x^2 = 625$
(c) 15 (d) 8	x = 25 first number
RRB RPF Constable -22/01/2019 (Shift-II)	\therefore 15x = 15 × 25 = 375 second number
Ans: (a) Let the number be x,	Hence, the sum of the numbers = $375 + 25 = 400$
\therefore The smallest 3-digit number = 100	171. If 2/3 rd of 1/4 th of a number is 32. Find the
According to the question, 8x + 4 = 100	number. (a) 202 (b) 198
8x + 4 = 100 8x = 96	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
	RRB RPF-SI -13/01/2019 (Shift-III)
$x = \frac{96}{8} = 12$	Ans : (d) Let the number be x,
8 Hence, the required number will be 12	According to question,
Hence, the required number will be 12.	
168. The sum of two numbers is 22. Five times of one number is equal to 6 times the other. Find	$x \times \frac{1}{4} \times \frac{2}{3} = 32$
the larger of the two numbers.	$x = 32 \times 6 = 192$

 172. If the sum of two numbers is 13 and the sum of their squares is 97, what is their product? (a) 72 (b) 36 	175. The sum of two numbers is 9. The sum of their reciprocals is 1/2. One of the number is. (a) 2 (b) 4
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(c) 5 (d) 6
RRB JE - 28/06/2019 (Shift-III)	RRB Group-D – 17/09/2018 (Shift-III)
Ans. (b) Let both the numbers are X and Y.	Ans. (d) : Let the first number be x and the second
Given,	number be y.
$x + y = 13$, and $x^2 + y^2 = 97$, $xy = ?$	According to the question,
: $(x + y)^2 = x^2 + y^2 + 2xy$ (i)	x + y = 9(i)
On putting the values in equation (i),	$\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$ (ii)
$(13)^2 = 97 + 2xy$	
169 = 97 + 2xy 2xy = 169 - 97	From equation (i),
-	
$xy = \frac{72}{2}$	From equation (ii)
2	
xy = 36	$\frac{1}{x} + \frac{1}{y} = \frac{1}{2}$
173. Which of the fraction given below, when added 12	-
to $\frac{13}{5}$, gives 1?	$\frac{x+y}{xy} = \frac{1}{2}$
	-
(a) $-\frac{48}{30}$ (b) $-\frac{7}{5}$	$\frac{9 \times 2}{1} = 1$
30 5	ху
(a) $-\frac{48}{30}$ (b) $-\frac{7}{5}$ (c) $-\frac{28}{10}$ (d) $-\frac{8}{15}$	$2 \times 9 = xy$
	On putting the value of y, 18 = r (0 - r)
RRB Group-D – 19/09/2018 (Shift-II)	$ 18 = x (9 - x) 18 = 9x - x^2 $
Ans. (a) : Let the fraction be x.	$x^{2} - 9x + 18 = 0$
According to the question,	$x^{2} - 9x + 18 = 0$ $x^{2} - 6x - 3x + 18 = 0$
$r + \frac{13}{-1}$	x(x-6) - 3(x-6) = 0
$x + \frac{13}{5} = 1$	(x-3)(x-6) = 0
1 13	(x-3) = 0 or $x = 3$
$x = 1 - \frac{13}{5}$	(x-6) = 0 or x = 6
$x = \frac{-8}{5}$	176. If the sum of two numbers is 26 and their difference is 12. Find the difference of their
$x = \frac{1}{5}$	squares.
	(a) 296 (b) 312
or , $x = \frac{-8 \times 6}{5 \times 6} = \frac{-48}{30}$	(c) 324 (d) 336
174. Shalini, Tanvir and Rashid shared a cake.	RRB NTPC 05.04.2016 Shift : 2
	Alls: (D) Let the humbers be x and y.
Shalini had $\frac{1}{6}$ part of it, Tanvir had $\frac{1}{4}$ part of	x + y = 26 x - y = 12
it and Rashid had the remaining part. What	
was fraction of Rashid's cake?	$= x^2 - y^2$
(a) 5 (b) 3	= (x + y) (x - y)
(a) $\frac{5}{6}$ (b) $\frac{5}{5}$	$= 26 \times 12 = 312$
(1) 13 (1) 7	177. If the product of two numbers is thrice of their
(c) $\frac{13}{15}$ (d) $\frac{7}{12}$	sum, if 1^{st} number is 12 find the 2^{nd} number.
RRB Group-D – 31/10/2018 (Shift-II)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1	(c) 4 (d) 5 RRB NTPC 04.04.2016 Shift : 1
Ans : (d) Shalini's share of the cake $=\frac{1}{6}$ part	Ans : (c) Let the 2^{nd} number be x.
	$x \times 12 = (x + 12) \times 3$
Tanvir's share of the cake $=\frac{1}{4}$ part	12x = 3x + 36
Total share of Shalini and Tanvir's cake	$9_{\rm X} = 36$
	Hence, $x = 4$
$=\frac{1}{6}+\frac{1}{4}=\frac{2+3}{12}=\frac{5}{12}$	178. Two partners M and N buy a car. M pays his
	share of $\frac{3}{7}$ th of the total cost of the car. M pays
Hence, Rashid's share of the cake $=1-\frac{5}{12}=\frac{7}{12}$ part	₹31,540 less as compared to N. What is the cost of the car?

(a) ₹2,32,680 (b) ₹2,03,175	Ans : (b) The smallest 4 digit number = 1000
(c) $\overline{\xi}2,20,780$ (d) $\overline{\xi}1,85,780$	32
RRB ALP & Tec. (31-08-18 Shift-III)	3 1000
Ans : (c) Let the cost of the car is $\overline{\mathbf{x}}$	+3 9
According to the question,	
M's share $=\frac{3x}{7}$	62 100
7	2 124
3x - 21540	-24
N's share $=\frac{3x}{7}+31540$	Hence, the smallest 4 digit perfect square number =
	1000 + 24 = 1024
Then, $\frac{3x}{7} + 31540 + \frac{3x}{7} = x$	6 108
, , ,	183. A number when multiplied by $\frac{6}{5}$ gives $\frac{108}{125}$.
$x = 31540 \times 7$	The number is:
x = ₹2,20,780	
179. If $\frac{2}{3}$ part of a pizza costs ₹ 300, then $\frac{3}{5}$ part of a	(a) $\frac{625}{648}$ (b) $\frac{648}{625}$ (c) $\frac{18}{25}$ (d) $\frac{25}{18}$
0 5	18 25
pizza will cost:	(c) $\frac{18}{25}$ (d) $\frac{25}{18}$
(a) $\overline{\xi}180$ (b) $\overline{\xi}250$ (c) $\overline{\xi}250$ (d) $\overline{\xi}270$	20 10
(c) $\overline{\xi}225$ (d) $\overline{\xi}270$	RRB NTPC 15.03.2021 (Shift-II) Stage I
RRB ALP & Tec. (30-08-18 Shift-I)	Ans. (c) : Let the number = x
Ans : (d) The cost of 2/3 part of the pizza = ₹300 300×3	As per question
Then, the cost of 1 share of the pizza = $\frac{300 \times 3}{2} = ₹450$	$x \times \frac{6}{5} = \frac{108}{125}$ or $x = \frac{108 \times 5}{6 \times 125}$
2	5 125 6×125
The cost of $3/5^{\text{th}}$ share of the pizza = $450 \times \frac{3}{5}$	18
5	\Rightarrow $x = \frac{18}{25}$
= 90×3 =₹270	
180. When 472 pieces of plywood, each 0.23 cm	184. Four fifths of a number is 12 more than three fourths of the number. Find the number
thick, are placed on top of each other, what would be the beight of the niller in metro?	fourths of the number. Find the number. (a) 120 (b) 160
would be the height of the pillar in metre?(a) 10.856(b) 1.0856	$\begin{array}{c} (a) 120 \\ (b) 100 \\ (c) 200 \\ (d) 240 \end{array}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	RRB NTPC 30.12.2020 (Shift-II) Stage Ist
RRB ALP & Tec. (29-08-18 Shift-III)	Ans. (d) : Let the number = x
Ans : (b) The required height of the pillar,	According to the question,
$=\frac{0.23\times472}{100}$ = 1.0856 metre	$\frac{4}{5}x - \frac{3}{4}x = 12$
2	-
181. 15 small rods, each of length $23\frac{2}{7}$ m are joined	$\frac{16x - 15x}{20} = 12$
to make a big rod. What is the length of the big	
rod?	x = 240
	Hence the number is 240.
(a) $349\frac{3}{7}$ m (b) $349\frac{1}{7}$ m	195 If $\frac{1}{2}$ of a number multiplied by $\frac{2}{2}$ of the same
2 5	185. If $\frac{1}{5}$ of a number multiplied by $\frac{2}{3}$ of the same
(c) $349\frac{2}{7}$ m (d) $349\frac{5}{7}$ m	number gives 480, then the number is?
RRB ALP & Tec. (21-08-18 Shift-I)	(a) 60 (b) 70
	(c) 80 (d) 100
Ans : (c) The length of each rod $= 23\frac{2}{7} = \frac{163}{7}$ m	RRB NTPC 10.01.2021 (Shift-II) Stage Ist
	Ans. (a): Let, number $= x$
In this way, the length of big rod $=15 \times \frac{163}{7}$	According to the question-
	$\mathbf{x} \times \frac{1}{5} \times \mathbf{x} \times \frac{2}{3} = 480$
$=\frac{2445}{7}=349\frac{2}{7}$ m	
, , ,	$\frac{2x^2}{15} = 480$
182. Find the smallest four digit number which is a	15
perfect square. (b) 1024	$x^2 = 240 \times 15$
(a) 1000 (b) 1024 (c) 1081 (d) 1064	$x^2 = 3600$
(c) 1081 (d) 1064 RRB NTPC 04.04.2016 Shift : 1	$\mathbf{x} = 60$
KKD 1VIEU 04.04.2010 SAILE 1	

186. One-fourth of a number is equal to three-Ans. (c) : Let the digits of number are x, y and z eighth of another number. If 30 is added to the respectively. first number, then it becomes six times that of Given, x + y + z = 18 ____ (i) the second number. The first number is: And, y = x + z(b) 20 (a) 12 On putting the value of y in equation (i), (c) 10 (d) 15 x + x + z + z = 18RRB NTPC 13.01.2021 (Shift-II) Stage Ist 2x + 2z = 18Ans. (c) : Let the first number is x and the second x + z = 9 ____(ii) number is v then. According to the question, According to the question, 100x + 10y + z + 297 = 100z + 10y + x $\frac{x}{4} = \frac{3}{8}y$ 99x + 297 = 99zx + 3 = z (iii) On putting the value of z in equation (ii), $x = \frac{3}{2}y$... (i) x + x + 3 = 92x = 6x + 30 = 6y... (ii) And x = 3Substituting the value of x from equation (i) in equation On putting the value of x in equation (ii), (ii)x + z = 93 + z = 9 $\frac{3}{2}y + 30 = 6y$ z = 6 From equation (i), $\frac{3}{2}y - 6y = -30$ $\mathbf{y} = \mathbf{x} + \mathbf{z}$ v = 3+6 $\frac{-9y}{2} = -30$ v = 9Hence, the number will be 396. 189. If a positive number is subtracted from its $y = \frac{20}{3}$ square, we get 812. Find the number. (a) 25 (b) 23 From equation (i)-(c) 27 (d) 29 $x = \frac{3}{2} \times \frac{20}{3}$ RRB NTPC 01.02.2021 (Shift-I) Stage Ist Ans. (d) : Let the number = xand square of number $= x^2$ 187. Calculate the positive number which when According to the question, added by 15 is equal to 100 times the reciprocal $x^2 - x = 812$ of the number. (a) 10 (b) 20 $x^{2} - x - 812 = 0$ (d) 15 (c) 5 $x^{2} - 29x + 28x - 812 = 0$ RRB NTPC 15.02.2021 (Shift-II) Stage Ist x(x-29)+28(x-29)=0Ans. (c) : Let the positive number is x According to the question, (x-29)(x+28) = 0 $x + 15 = \frac{1}{x} \times 100$ x - 29 = 0x = 29 $x^{2} + 15x = 100$ 190. The sum of 4 consecutive odd numbers is 160. $x^{2} + 15x - 100 = 0$ Find the smallest number. (a) 27 (b) 37 $x^2 + 20x - 5x - 100 = 0$ (c) 35 (d) 25 x(x+20)-5(x+20)=0RRB NTPC 01.02.2021 (Shift-I) Stage Ist (x+20)(x-5)=0Ans. (b) : Let the 4 consecutive odd numbers is x, x + 2, x + 4, x + 6x = 5 According to the question, Hence the number is 5. (x) + (x + 2) + (x + 4) + (x + 6) = 160A number consists of 3 digits whose sum is 18 and 188. 4x + 12 = 160the middle digit is equal to the sum of other two. 4x = 148 $x = \frac{148}{2}$ If the number increased by 297 when its digits are reversed, then what is the number? 4 (a) 585 (b) 495 x = 37(c) 396 (d) 486 **RRB NTPC 01.02.2021 (Shift-I) Stage Ist** Hence, the smallest number (x) = 37

191. There are two numbers with the difference of $x \times \frac{30}{100} = 50 - 38 = 12$ 14 between them and the difference of their squares is 56. What are those numbers? $x \times 30 = 100 \times 12$ (a) 9, -5(b) 2, 16 $x = \frac{1200}{30} = 40$ (c) 3, 17 (d) 23, -9 RRB NTPC 22.02.2021 (Shift-I) Stage Ist Hence, number (x) = 40Ans. (a) : Let the two numbers be x and y respectively. According to the question, 195. The sum of two numbers is 20 and the x - y = 14(i) difference of their squares is 80. Select both the And $x^2 - y^2 = 56$ (ii) numbers from the given alternatives. (x + y)(x - y) = 56(From, $x^2 - y^2 = (x + y) (x - y)$ (a) 15, 5 (b) 13, 7 From equation (i) (c) 11, 9 (d) 12, 8 x + y = 4(iii) RRB NTPC 15.02.2021 (Shift-I) Stage Ist From equation (i) and equation (iii), Ans. (d) : Let the numbers are x and y According to the question, x = 9, y = -5x + y = 20 $x^2 - y^2 = 80$... (i) 192. The sum of half, one-third and one-fifth of a number exceeds the number by 12. What is the (x - y)(x + y) = 80number? From equation (i), (a) 144 (b) 360 x - y = 4... (ii) (c) 444 (d) 122 From equation (i) and (ii), RRB NTPC 10.02.2021 (Shift-II) Stage Ist x = 12, y = 8**Ans. (b) :** Let the number = x196. When 40 is subtracted from a number, it According to the question, reduces to its 60%. What is the number? $x\left(\frac{1}{2}+\frac{1}{3}+\frac{1}{5}\right)-x=12$ (a) 130 (b) 160 (c) 200 (d) 100 RRB NTPC 09.02.2021 (Shift-I) Stage Ist $\frac{31x}{30} - x = 12$ **Ans. (d) :** Let the number is x According to the question, $\frac{x}{30} = 12$ $x - 40 = x \times \frac{60}{100}$ x = 360 $x - \frac{60x}{100} = 40$ 193. A number when reduced by $22\frac{1}{2}\%$ becomes $\frac{40x}{100} = 40$ 217, find the number. (a) 315 (b) 212 x = 100(c) 280 (d) 420 197. The 5th part of a number when divided by 3 RRB NTPC 29.12.2020 (Shift-II) Stage Ist yields three times half of tenth part of half of Ans. (c) : Let the number is x 80. What is the number? According to the question, (b) 90 (a) 60 $x\left(100\% - 22\frac{1}{2}\%\right) = 217$ (c) 45 (d) 44 RRB NTPC 20.01.2021 (Shift-I) Stage Ist **Ans. (b) :** Let the number is x $\mathbf{x} \times 77\frac{1}{2}\% = 217$ According to the question, $\frac{\mathbf{x} \times \frac{1}{5}}{3} = \left[\frac{80 \times \frac{1}{2} \times \frac{1}{10}}{2} \right] \times 3$ $x = \frac{217 \times 100 \times 2}{155}$ x = 280 194. When 38 is added to 30% of a number. The $\frac{x}{15} = 40 \times \frac{1}{10} \times \frac{1}{2} \times 3$ result is 50. What is the number? (a) 20 (b) 80 (c) 60 (d) 40 x = 90 RRB NTPC 23.02.2021 (Shift-I) Stage Ist 198. If three-fourth of a number is 50 more than its Ans. (d) : Let the number = xone-third, then find the number. According to the question, (a) 140 (b) 130 $x \times \frac{30}{100} + 38 = 50$ (c) 120 (d) 100 RRB NTPC 16.01.2021 (Shift-I) Stage Ist

Ans. (c) : Let the number is x	(y-2) (y+4) = 0 y = 2
According to the question,	$v = \overline{2}^{\gamma}$
	5
$3_{\rm w} = \frac{1}{\rm w} + 50$	On putting the value of y in equation (i)-
$\frac{3}{4}\mathbf{x} = \frac{1}{3}\mathbf{x} + 50$	$\mathbf{x} \times 2 = 8$
4 5	$\mathbf{x} = 4$
$\frac{3}{4}x - \frac{1}{3}x = 50$	Hence required number = $10y + x = 10 \times 2 + 4 = 24$
$\frac{-x}{4} = \frac{-x}{3} = 30$	
	202. The sum of the digits of a two digit number is
9x - 4x - 50	10. When the digits are interchanged is
$\frac{9x-4x}{12} = 50$	reduced the number to 36. Find the changed
5x = 600	number.
x = 120	(a) 82 (b) 73
199. The sum of three consecutive odd numbers is	(c) 37 (d) 28
	RRB RPF Constable -17/01/2019 (Shift-III)
more than first number of it by 20. Find the	Ans : (c) Let the number = $10 \text{ x} + \text{y}$
largest number among them.	
(a) 13 (b) 9	According to the question,
(c) 11 (d) 7	x + y = 10(i)
	The number obtained by interchanging digits = $(10y + x)$
RRB JE - 28/06/2019 (Shift-III)	According to the question
Ans. (c) Let the three consecutive odd numbers are x, x	
+2, x +4.	(10 x+y) - (10 y + x) = 36
	\Rightarrow 9x - 9y = 36
According to the question,	x - y = 4(ii)
x + x + 2 + x + 4 = x + 20	By adding equation (i) and (ii),
3x + 6 = x + 20	
2x = 14	2x = 14
$\begin{array}{c} 2x - 14 \\ x = 7 \end{array}$	$\mathbf{x} = 7$
	And $y = 3$
Hence, the required number = $x + 4 = 7 + 4 = 11$	Hence, the changed number $(10y + x) = 10 \times 3 + 7 = 37$
200. Three times the first of three consecutive odd	
	203. The sum of a two digit number and the number
integers is 3 more than two times the third.	made by interchanging its digits is 132. If the
Find the third integer.	difference of the digits is 4, find the number.
(a) 15 (b) 13	(a) 37 (b) 84
(c) 11 (d) 9	
RRB JE - 26/06/2019 (Shift-III)	(c) 73 (d) 62
	RRB RPF-SI -16/01/2019 (Shift-III)
Ans : (a) Let three consecutive odd integers = x , $x+2$,	
Ans : (a) Let three consecutive odd integers = x , $x+2$, $x+4$	Ans : (b) Let the tens digit of the number is x and the
x+4	Ans : (b) Let the tens digit of the number is x and the unit digit is y.
x+4 According to the question,	Ans : (b) Let the tens digit of the number is x and the
x+4 According to the question, 3x = 2(x + 4) + 3	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question,
x+4 According to the question, 3x = 2(x + 4) + 3	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i)
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i)
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$
 x+4 According to the question, 3x = 2(x + 4) +3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. 	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii)
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii),
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 x + y = 12
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I)	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 <u>RRB JE - 27/06/2019 (Shift-I)</u> Ans : (d) Let the unit digit = x.	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = $10y + x$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = $10y + x$ Given, $xy = 8$ (i)	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question,	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digits$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digits$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digitsare interchanged is 18 more than the original$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digitsare interchanged is 18 more than the originalnumber. What is the original number?$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digitsare interchanged is 18 more than the originalnumber. What is the original number?(a) 39 (b) 48$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, $y = 4Hence, the required number = 10x + y = 10 \times 8 + 4 = 84204. The sum of the digits of a two digit number is12. The new number formed when the digitsare interchanged is 18 more than the originalnumber. What is the original number?$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III)
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - $26/11/2018$ (Shift-III) Ans : (d) Let the tens digit of the number is x and the
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = $x + 4 = 11 + 4 = 15$ 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x . tens digit = y The number = $10y + x$ Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ $\therefore \frac{8}{y} - y = 2$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y.
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ $\therefore \frac{8}{y} - y = 2$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y. Given, $x + y = 12$ (i)
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ ∴ $\frac{8}{y} - y = 2$ $8 - y^2 = 2y$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y.
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ ∴ $\frac{8}{y} - y = 2$ $8 - y^2 = 2y$ $y_1^2 + 2y - 8 = 0$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y. Given, $x + y = 12$ (i) Hence, the two digit number = $10x + y$
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ ∴ $\frac{8}{y} - y = 2$ $8 - y^2 = 2y$ $y^2 + 2y - 8 = 0$ $y^2 + 4y - 2y - 8 = 0$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y. Given, $x + y = 12$ (i) Hence, the two digit number = $10x + y$ The number obtained by interchanging the place of the
x+4 According to the question, 3x = 2(x + 4) + 3 3x = 2x + 8 + 3 x = 11 Hence, the third integer = x + 4 = 11 + 4 = 15 201. On adding 18 to a two digit number, the digits of the number are interchanged. The product of the digits is '8'. Find the number. (a) 42 (b) 18 (c) 32 (d) 24 RRB JE - 27/06/2019 (Shift-I) Ans : (d) Let the unit digit = x. tens digit = y The number = 10y + x Given, $xy = 8$ (i) According to the question, 10y + x + 18 = 10x + y 9x - 9y = 18 x - y = 2 On putting the value of $x = \frac{8}{y}$ ∴ $\frac{8}{y} - y = 2$ $8 - y^2 = 2y$ $y_1^2 + 2y - 8 = 0$	Ans : (b) Let the tens digit of the number is x and the unit digit is y. So, the number = $10x + y$ According to the question, x - y = 4(i) And, $10x + y + 10y + x = 132$ 11x + 11y = 132 x + y = 12(ii) From equation (i) and (ii), x - y = 4 $\frac{x + y = 12}{2x} = 16$ x = 8, y = 4 Hence, the required number = $10x + y = 10 \times 8 + 4 = 84$ 204. The sum of the digits of a two digit number is 12. The new number formed when the digits are interchanged is 18 more than the original number. What is the original number? (a) 39 (b) 48 (c) 75 (d) 57 RRB Group-D - 26/11/2018 (Shift-III) Ans : (d) Let the tens digit of the number is x and the unit digit is y. Given, $x + y = 12$ (i) Hence, the two digit number = $10x + y$

According to the question, Putting the value of a in equation (i), 8 + b = 1110 v + x = 10x + v + 18b = 39v - 9x = 18Hence, the required number = $10 \times 8 + 3 = 83$ 9x - 9y = -18207. The difference between a number of two digits x - y = -2.....(ii) and the new number formed when the digits By adding equation (i) and (ii), are interchanged is 45. Find the difference x + y = 12between the two digits. (a) 4 x - y = -2(b) 5 (d) 7 (c) 6 2x = 10**RRB NTPC 05.04.2016 Shift : 2** x = 5Ans : (b) Let the tens digit be x. y = 7And the unit digit be v. The number = 10x + yHence, the required number = $10x+y = 10 \times 5+7 = 57$ According to the question, The sum of the digits of a two digit number is 205. (10x + y) - (10y + x) = 459. Also nine times of this number is twice the 9x - 9y = 45number obtained by reversing the order of the Hence, the required difference will be x - y = 5digits. Find the number. 208. The sum of the digits of a two digit number is (a) 19 (b) 18 11. If the digits are interchanged, the number (c) 28 (d) 30 decreases to 63. Find the number. RRB Group-D - 05/11/2018 (Shift-III) (a) 83 (b) 92 **Ans. (b)**: Let the tens digit is x and the unit digit is y. (c) 29 (d) 38 **RRB NTPC 04.04.2016 Shift : 3** The number = 10x + y• According to the first condition, Ans : (b) Let the tens digit be x and the unit digit be y x + y = 9(i) of the number. According to the second condition, The number = 10x + y.... $(10x + y) \times 9 = (10y + x) \times 2$ According to the question-90x + 9y = 20y + 2xx + y = 11..... (i) 88x = 11yy = 8xAnd 10y + x = 10x + y - 63Putting the value of y in equation (i), 9x - 9y = 63x + 8x = 9x - y = 7..... (ii) $\mathbf{x} = \mathbf{1}$ By adding equation (i) and (ii) Putting the value of x in equation (i), $2x = 18 \implies x = 9, y = 2$ 1 + y = 9Hence, the number = $10x + y = 10 \times 9 + 2 = 92$ $y = \tilde{8}$ Hence, the number = 10x + yThe sum of the digits of a two digit number is 209. $= 10 \times 1 + 8 = 18$ 9. When 27 is added to the number, the place of The sum of the digits of a two digit number is the digits are interchanged. Find the number. 206. (b) 36 (d) 27 11. The new number formed when the digits (a) 45 interchanged is 45 less than the original (c) 18 **RRB NTPC 03.04.2016 Shift : 1** number. Find the original number. (a) 92 Ans : (b) Let the unit digit be x in the two digit number. (b) 56 Then, (c) 65 (d) 83 According to the question, **RRB Group-D – 15/10/2018 (Shift-III)** The tens digit = 9 - x And the number = 10(9 - x) + xAns. (d) : Let the tens digit of the number is a and the 10(9-x) + x + 27 = 10x + 9 - xunit digit is b. 90 - 10x + x + 27 = 9x + 9 \Rightarrow So, the number = 10a + b \Rightarrow 90 + 27 - 9 = 18xAccording to the question, 18x = 108 \Rightarrow $a + b = 11 \dots(i)$ x = 610b + a = 10 a + b - 45Then, the number =10(9-x) + x9a - 9b = 45=10(9-6) + 6 = 36 $a - b = 5 \dots$ (ii) The sum of the digits of a two digit number is 210. On adding equation (i) and (ii), 13. If those digits are interchanged, the number gets decreased by 27. Find the changed a + b = 11number. a - b = 5(a) 85 (b) 76 2a = 16(c) 67 (d) 58 RRB NTPC 02.04.2016 Shift : 1 a = 8

Ans: (d) Let the tens digit is x, 9x - 9y = -18The unit digit = 13 - xx - y = -2 -----(ii) \therefore The number = $10 \times x + (13 - x)$ By adding equation (i) and (ii) -According to the question, $2x = 8 \implies x = 4$, y = 6 $10 \times (13 - x) + x = 10 \times x + (13 - x) - 27$ Hence, The required number $= 10 \times 4 + 6 = 46$ 130 - 10x + x = 10x + 13 - x - 27The sum of a two digit number and the number 214. 18 x = 144formed by interchanging its digits, is 99. Find $\mathbf{x} = \mathbf{8}$ the number if the difference of the digits is 3. \therefore The changed number, (a) 27 (b) 63 $= 10 \times (13 - x) + x$ (c) 45 (d) 54 $= 10 \times (13 - 8) + 8$ RRB NTPC 10.04.2016 Shift : 3 $= 10 \times 5 + 8 = 58$ Ans: (b) Let the unit digit be y and the tens digit be x. 211. The sum of a two digit number is 9. The \therefore The number = 10x + ynumber is reduces from 45, when the digits are According to the question, interchanged, find the changed number. (10x + y) + (10y + x) = 99(a) 45 (b) 72 (d) 27 (c) 63 11x + 11y = 99**RRB NTPC 02.04.2016 Shift : 2** x + y = 9(i) x - y = 3(ii) **Ans : (d)** Let the tens digit be = xBy adding equation (i) and (ii), And the unit digit be = y 2x = 12Number = 10 x + yx = 6Given, x + y = 9(1) From equation (i), y = 3According to the question, \therefore The required number = $10x+y = 10 \times 6+3 = 60+3=63$ (10 x + y) - (10 y + x) = 459x - 9y = 45215. The sum of the digits of a two digit number is x - y = 5 (2) 5. When the digits are reversed the number decreases by 9. Find the changed number. Equation (1) + (2)(a) 32 (b) 23 $2x = 14 \implies x = 7$ (d) 14 (c) 41 From, equation (1), RRB NTPC 28.04.2016 Shift : 3 y = 9 - 7 = 2Ans : (b) Let the tens digit of the number be x and the Hence, The required number = $10y+x = 10 \times 2+7 = 27$ unit digit be y. 212. The sum of digits of a two-digit number is 10. \therefore the number = 10x + y When the digits are reversed, the number According to first condition, decreases by 54. Find the new number. x + y = 5(i) (a) 73 (b) 28 The obtained number after reversing the digits = 10y+x(c) 82 (d) 37 According to the question, RRB NTPC 02.04.2016 Shift : 3 (10x+y) - (10y+x) = 9Ans : (b) Let the tens digit of the number is x and the \Rightarrow 9x - 9y = 9 unit digit is y. $\Rightarrow x - y = 1$(ii) \therefore The number = 10x + yBy adding equation (i) and (ii), According to the question, 2x = 6x + y = 10 -----(i) x = 3And 10x + y = 10y + x + 54From equation (ii) \Rightarrow 9x - 9y = 54 \Rightarrow x - y = 6 - - - - (ii) 3 - y = 1v = 3 - 1 = 2By adding equation (i) and (ii), Hence, the changed number = 10y + x $2x = 16 \implies x = 8, y = 2$ $= 10 \times 2 + 3 = 23$ Hence, the new number $= 10y + x = 10 \times 2 + 8 = 28$ **Type - 5** The sum of digits of a two-digit number is 10. 213. When the digits are interchanged, the number increases by 18. Find the number. 216. 0.23 is (a) 46 (b) 64 (a) An irrational number (c) 19 (d) 28 (b) A rational number **RRB NTPC 29.03.2016 Shift : 1** (c) A prime number Ans : (a) Let the tens digit of the number is x and the (d) A composite number unit digit is y. RRB NTPC 20.01.2021 (Shift-I) Stage Ist The number = 10x + y*.*.. Ans. (b) : Let us assume According to the question $y = 0.\overline{23}....(i)$ x + y = 10 -----(i) Multiplying by 100 in equation (i)-And 10x + y = 10y + x - 18

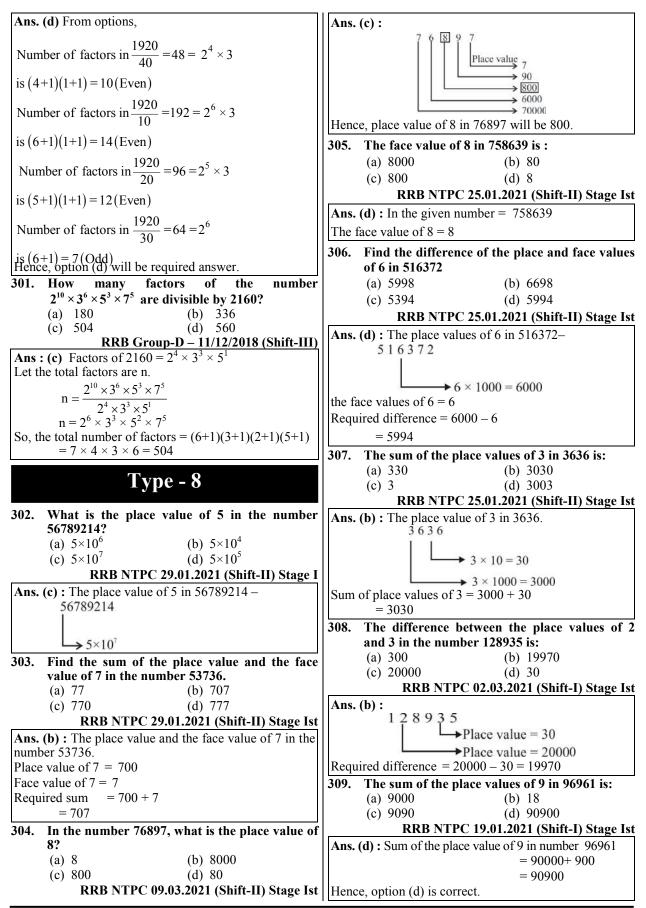
100 y = 23
$$\overline{23}$$
 (ii)
Subtracting eqf (i) from eqf (ii)
99y = 23
(Rational number ())Ans. (d):
 $=\frac{1}{4}+\frac{1}{2}-\frac{1+2}{4}=\frac{3}{2}=-\frac{3}{8}$
Therefore, rational number (i) Whole number
(c) Irational number (i) Muble number
(c) Irational number (i) Rational number
(c) Fartional number (i) Rational number
($(\sqrt{3}+\sqrt{11})^2=14+12\sqrt{33} \times \sqrt{11}$
($(\sqrt{3}+\sqrt{11})^2=14+2\sqrt{33} \times \sqrt{11}$
($(\sqrt{3}+\sqrt{11})^2=14+2\sqrt{33} \times \sqrt{11}$
($(\sqrt{3}+\sqrt{11})^2=14+2\sqrt{33} \times \sqrt{11}$
($(\sqrt{3}+\sqrt{11})^2=14+2\sqrt{33}$
Therefore ($\sqrt{3}+\sqrt{11}$) is an irrational number
(i) Bequal to 4
(c) A rational number
(c) A rational number
(d) An irrational number)Rue NTPC 23.01.2021 (Shift-I) Stage Ist
Rue NTPC 23.01.2021 (Shift-I) Stage Ist
($\sqrt{3}\sqrt{5}+\sqrt{5}$, (e).**Ans.** (d) : From above question,
 $\sqrt{2}\times\sqrt{3} > \sqrt{5}$, ($\sqrt{5}$, ($\sqrt{5}$, (e).(a) A rational number (b) A natural number.
(c) A rational number (c) (1) frational number (b) A natural number.
(c) A rational number (c) (1) frational number
(c) Composite number, (b) Irrational number
(c) Composite number.
(c) Composite number (c) (c) rational number.
(c) $\frac{3}{5}$, (d) $\frac{3}{8}$
(d) $\frac{1}{2}$, (d) $\frac{2}{3}$, (d) $\frac{23}{3}$
(e) $\frac{23}{5}$, (d) $\frac{23}{99}$
(c) $\frac{23}{2}$, (d) $\frac{23}{99}$
(c) $\frac{23}{99}$, (e) $\frac{23}{99}$
(c) $\frac{23}{99}$, (b) $\frac{23}{99}$, (c) $\frac{23}{99}$, (d) $\frac{23}{99}$
(c) $\frac{23}{99}$, (e) $\frac{23}{99}$
(c) $\frac{23}{99}$, (d) $\frac{23}{99}$
(c) $\frac{23}{99}$, (d) $\frac{23}{99}$
(c) $\frac{23}{99}$, (d) $\frac{23}{99}$
(c) $\frac{23}{99}$, (e)

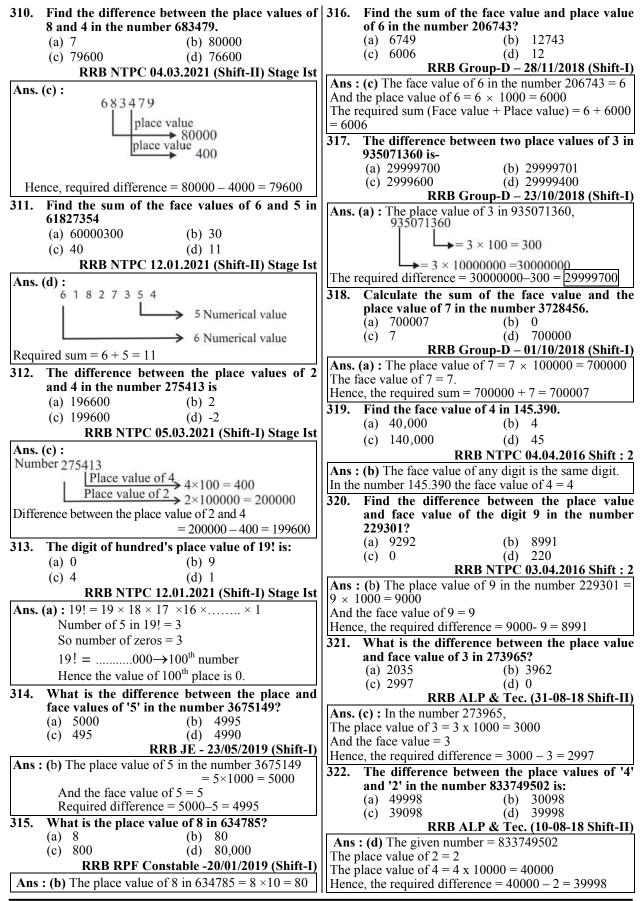
226. Which of the following is a rational number **Ans : (c)** Let x = 0.125between $\sqrt{5}$ and $\sqrt{7}$? x = 0.125125(i) 1000x = 125.125125 (ii) (a) $4\frac{1}{5}$ (b) $1\frac{1}{5}$ From equation (ii)- equation (i) – 999x = (125.125125....) - (0.125125...)(c) $2\frac{2}{5}$ (d) $3\frac{1}{5}$ 999x = 125.0RRB NTPC 20.01.2021 (Shift-I) Stage Ist $x = \frac{125}{999}$ **Ans.** (c) : $\sqrt{5} = 2.23$ and $\sqrt{7} = 2.64$ From the given options, 231. Find the value of the denominator of $\frac{1}{(5+\sqrt{3})}$ (a) $4\frac{1}{5} = \frac{21}{5} = 4.2$ (b) $1\frac{1}{5} = \frac{6}{5} = 1.2$ in rational number. (c) $2\frac{2}{5} = \frac{12}{5} = 2.4$ (d) $3\frac{1}{5} = \frac{16}{5} = 3.2$ (a) $\frac{(5-\sqrt{3})}{22}$ (b) $5+\frac{\sqrt{3}}{22}$ Hence $2\frac{2}{5}$, is a rational number between $\sqrt{5}$ and $\sqrt{7}$. (d) $\frac{\left(5-\sqrt{3}\right)}{}$ (c) $5 - \frac{\sqrt{3}}{20}$ 227. Which of the following is not a rational number $\sqrt{3^2 + 4^2}$, $\sqrt{12.96}$, $\sqrt{125}$ and $\sqrt{900}$ **RRB Group-D – 29/10/2018 (Shift-III)** Ans : (a) (b) $\sqrt{900}$ (a) $\sqrt{12.96}$ According to the question-(c) $\sqrt{125}$ (d) $\sqrt{3^2 + 4^2}$ $\frac{1}{(5+\sqrt{3})} = \frac{(5-\sqrt{3})}{(5+\sqrt{3})(5-\sqrt{3})}$ RRB NTPC 05.01.2021 (Shift-I) Stage Ist Ans. (c) : $\sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \rightarrow \text{Rational}$ number $=\frac{(5-\sqrt{3})}{(5)^2-(\sqrt{3})^2}$ $\sqrt{12.96} = \sqrt{1296 \times 10^{-2}} = \frac{36}{10} = \frac{18}{5} \rightarrow \text{Rational number}$ $\sqrt{125} = \sqrt{5 \times 5 \times 5} = 5\sqrt{5} \rightarrow$ Irrational Number $\sqrt{900} = \sqrt{30 \times 30} = 30 \rightarrow \text{Rational Number}$ $=\frac{\left(5-\sqrt{3}\right)}{25-3} \qquad =\frac{\left(5-\sqrt{3}\right)}{22}$ Hence, $\sqrt{125}$ is not a rational number. 228. Which of the following is not a rational 232. Which of the following square roots is number? irrational? (a) $\sqrt[3]{1728}$ (b) π (a) 21025 (b) 18025 (c) 2.487627287 (d) 8.36712846781 RRB RPF-SI -05/01/2019 (Shift-I) (c) 13225 (d) 15625 Ans : (b) Irrational numbers is a real number which RRB Paramedical Exam - 21/07/2018 (Shift-I) cannot be expressed as p/q. (where p and q are integers **Ans. (b) :** $\sqrt{21025} = \sqrt{5 \times 5 \times 29 \times 29}$ and q is not 0). It means, irrational number cannot be expressed as = 145 (Rational number) fractions. for example $\sqrt{2}$ and π are irrational number. $\sqrt{18025} = \sqrt{5 \times 5 \times 7 \times 103}$ 229. Which of the following is not an irrational? = 135.257 (Irrational number) (a) $\sqrt{5428}$ (b) $\sqrt{6084}$ $\sqrt{13225} = \sqrt{5 \times 5 \times 23 \times 23}$ (d) $\sqrt{7652}$ (c) π $= 5 \times 23 = 115$ (Rational number) RRB RPF Constable -18/01/2019 (Shift-III) $\sqrt{15625} = \sqrt{5 \times 5 \times 5 \times 5 \times 5}$ Ans. (b) : The real numbers which cannot be expressed as p/q, where p and q are integers and q is not 0, are $= 5 \times 5 \times 5 = 125$ (Rational number) called irrational numbers. These numbers are Hence, it is clear that the square root of 18025 is represented by Q^{C} or Q^{I} . irrational number. For example- $\sqrt{2}$, $1 + \sqrt{3}$, π 233. Find the rational value of the denominator of $\sqrt{6084} = \sqrt{78 \times 78} = 78$ (Rational number) $1/(2+\sqrt{3})$. 230. Denote $\overline{0.125}$ as a rational number. (b) $2 - \sqrt{3}$ (a) $2 + \sqrt{3}$ (a) 119/993 (b) 113/990 (d) $4 + \sqrt{3}$ (d) 100/999 (c) 125/999 (c) 1 RRB JE - 25/05/2019 (Shift-I) RRB Group-D - 22/10/2018 (Shift-III)

Ans : (b) Rationalizing the denominator of $\frac{1}{2+\sqrt{3}}$, $\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$, $\frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2}$, $\frac{2-\sqrt{3}}{4-3} = 2-\sqrt{3}$ 234. Find the rational value of the denominator of $\frac{1}{1}$, $\frac{1}{(5+2\sqrt{3})}$, $\frac{2}{4-3} = 2-\sqrt{3}$, $\frac{2-\sqrt{3}}{4-3} = 2-\sqrt{3}$ 235. Find the rational value of the denominator of $\frac{1}{1}$, $\frac{1}{(5+2\sqrt{3})}$, $\frac{3}{(6-2\sqrt{3})}$, $\frac{5-2\sqrt{3}}{13}$, $\frac{3}{13}$, $\frac{1}{(5+2\sqrt{3})}$, $\frac{5-2\sqrt{3}}{13}$, $\frac{3}{13}$, $\frac{1}{(5+2\sqrt{3})}$, $\frac{5-2\sqrt{3}}{13}$, $\frac{3}{(6-2\sqrt{3})}$, $\frac{1}{(6+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{-(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{1}{(6+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{-(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{1}{(6+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{-(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{1}{(a+b)(a+b) = a^2+b^2}$, 235. From the given options, find the rational number: $\frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{-(5-2\sqrt{3})}{(5-2\sqrt{3})}$, $\frac{1}{(a+b)(a+b) = a^2+b^2}$, 235. From the given options, find the rational numbers, $\frac{1}{2} \times \sqrt{2}$, $\frac{2}{2} = \sqrt{2}$, $\frac{1}{2} (1rational numbers, \frac{1}{2}, \frac{1}{2} \times \sqrt{2}, \frac{1}{2} (1rational numbers, \frac{1}{2} \times \sqrt{2}, \frac{1}{2} \times \sqrt{2}, \frac{1}{2} \times \sqrt{2}, \frac{1}{2} \times \sqrt{2}, \frac{1}{2} \times \sqrt{2} \times \sqrt{2}, \frac{1}{2} \times \sqrt{2} \times \sqrt{2} = \sqrt{2}, \frac{1}{2} \times \sqrt{2} \times \sqrt{2} = \sqrt{2}, \frac{1}{2} \times \sqrt{2} \times \sqrt{2} = \sqrt{2} = \sqrt{2}, \frac{1}{2} \times \sqrt{2} = \sqrt{2} = \sqrt{2} (1rational), \frac{1}{2} \times \sqrt{2} = \sqrt{2} = \sqrt{2} (1rational number), \frac{1}{\sqrt{64}} = (64)^{\frac{1}{2}} = (2)^{\frac{1}{2}} = 2 \times \sqrt{2} + (1rational number), \frac{1}{\sqrt{64}} = (64)^{\frac{1}{2}} = 2 \times \sqrt{2} = (1rational number), \frac{1}{\sqrt{64}} = (64)^{\frac{1}{2}} = (2)^{\frac{1}{2}} = 2 \times \sqrt{2} = (2 \times 2 \times 2 - 2 \times 2 = 4 (Rational number), \frac{1}{\sqrt{64}} = (2)^{\frac{1}{2}} = 2 \times 2 \times \sqrt{4} = (1rational number), \frac{1}{\sqrt{64}} = (\sqrt{16} \times \sqrt{4} = 2 \times \sqrt{4} = (1rational number), \frac{1}{\sqrt{64}} = (\sqrt{16} \times \sqrt{4} = 2 \times \sqrt{4} = (1rational number), \frac{1}{\sqrt{64}} = (\sqrt{16} \times \sqrt{4} = 2 \times \sqrt{4} = (1rational number), \frac{1}{\sqrt{64}} = (\sqrt{16} \times \sqrt{4} = 2 \times \sqrt{4} = (1rational number), \frac{1}{\sqrt{64}} = (\sqrt{16} \times \sqrt{4} = 2 \times \sqrt{4} = (1rational number$	Ans \cdot (b) Rationalizing the denominator of $\frac{1}{2}$	237. Among the following which is a rational number?
$\frac{1}{2 + \sqrt{5}} \frac{\sqrt{2} - \sqrt{3}}{2 - (\sqrt{3})^2}$ $\frac{2 - \sqrt{3}}{2^2 - (\sqrt{3})^2}$ $\frac{2 - \sqrt{3}}{4 - 3} = 2 - \sqrt{3}$ 234. Find the rational value of the denominator of 1 ($5 + 2\sqrt{3}$) ($\frac{1}{(5 + 2\sqrt{3})}$ 234. Find the rational value of the denominator of $\frac{1}{(5 + 2\sqrt{3})}$ ($\frac{5 - 2\sqrt{3}}{12}$ ($\frac{5 - 2\sqrt{3}}{13}$ ($\frac{5 - 2\sqrt{3}}{(5 - 2\sqrt{3})}$ ($\frac{6 - 2\sqrt{3}}{(2 - 2\sqrt{3})^2}$ ($\frac{1 + 2\sqrt{3}}{(6 - 2\sqrt{3})^2}$ ($1 +$	$\frac{1}{2} + \sqrt{3}$	
$ \begin{array}{c} 2-\sqrt{3} \\ 2^2-(\sqrt{3})^2 \\ \frac{2^2-(\sqrt{3})^2}{4-3} = 2-\sqrt{3} \\ \hline \\ 234. Find the rational value of the denominator of 1 \\ \frac{1}{(5+2\sqrt{3})} \\ (a) \frac{(5-2\sqrt{3})}{12} \\ (b) \frac{(5-2\sqrt{3})}{13} \\ (c) 5-\frac{2\sqrt{3}}{13} \\ (d) 5+\frac{2\sqrt{3}}{13} \\ (d) 5+\frac{2\sqrt{3}}{13} \\ (e) 5-\frac{2\sqrt{3}}{13} \\ (e) 5-\frac{2\sqrt{3}}{13} \\ (f+2\sqrt{3})^2 \\ (f+2$	$\frac{1}{\sqrt{2}} \times \frac{2-\sqrt{3}}{\sqrt{2}}$	
$ \begin{array}{l} = \frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2} \\ = \frac{2-\sqrt{3}}{2^2-(\sqrt{3})^2} \\ = \frac{2-\sqrt{3}}{4-3} = 2-\sqrt{3} \\ \hline \\ $	21 15 2 15	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	$=\frac{2-\sqrt{3}}{2}$	
234. Find the rational value of the denominator of $\frac{1}{(5+2\sqrt{3})}$ (a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{13}$ (c) $5-\frac{2\sqrt{3}}{12}$ (d) $5+\frac{2\sqrt{3}}{13}$ (e) $5-\frac{2\sqrt{3}}{13}$ (f) $5+\frac{2\sqrt{3}}{13}$ (g) $5-\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5-\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{(5-2\sqrt{3})}$ (g) $\frac{1}{(5+2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}}$	$2^2 - (\sqrt{3})^2$	$\sqrt[3]{8} = 2$ is rational number
234. Find the rational value of the denominator of $\frac{1}{(5+2\sqrt{3})}$ (a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{13}$ (c) $5-\frac{2\sqrt{3}}{12}$ (d) $5+\frac{2\sqrt{3}}{13}$ (e) $5-\frac{2\sqrt{3}}{13}$ (f) $5+\frac{2\sqrt{3}}{13}$ (g) $5-\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{13}$ (g) $5-\frac{2\sqrt{3}}{13}$ (g) $5+\frac{2\sqrt{3}}{(5-2\sqrt{3})}$ (g) $\frac{1}{(5+2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(5-2\sqrt{3})^{2}}{(5-2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(5)^{2}-(2\sqrt{3})^{2}}$ (g) $\frac{(6-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}$ (g) $\frac{(7-2\sqrt{3})^{2}}{(1-2\sqrt{3})^{2}}}$	$=\frac{2-\sqrt{3}}{4-2}=2-\sqrt{3}$	
$\frac{1}{(5+2\sqrt{3})}$ (a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{13}$ (c) $5-\frac{2\sqrt{3}}{13}$ (d) $5+\frac{2\sqrt{3}}{13}$ Ans : (d) Formalizing the denominator of the given fraction, $=\frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$ (a) $(5+2\sqrt{3})^{2}$ (a+b)(a-b) = a ² -b ²] $=\frac{(5-2\sqrt{3})}{(5)^{2}-(2\sqrt{3})^{2}}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(5)^{2}-(2\sqrt{3})^{2}}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(5)^{2}-(2\sqrt{3})^{2}}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(5)^{2}-(2\sqrt{3})^{2}}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(25-2\sqrt{3})}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(25-2\sqrt{3})}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(25-2\sqrt{3})^{2}}$ [(a+b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-b)(a-	1 5	(a) $\sqrt{64}$ (b) $\sqrt[3]{64}$ (c) $\sqrt[3]{8}$ (d) $\sqrt{8}$
(a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{13}$ (c) $5-\frac{2\sqrt{3}}{13}$ (d) $5+\frac{2\sqrt{3}}{13}$ (d) $5+\frac{2\sqrt{3}}{13}$ (e) $5+\frac{2\sqrt{3}}{13}$ (e) RRB Group-D-25/10/2018 (Shift-II) Ans : (b) Rationalizing the denominator of the given fraction, $=\frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$ [(a+b)(a-b) = a ² -b ²] $=\frac{(5-2\sqrt{3})}{(5)^2-(2\sqrt{3})^2}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(5)^2-(2\sqrt{3})^2}$ [(a+b)(a-b) = a ² -b ²] $=\frac{5-2\sqrt{3}}{(1000000}$ (b) $\sqrt{1000000}$ (b) $\sqrt{10000000}$ (c) $\sqrt{1000000}$ (b) $\sqrt{10000000}$ (c) 10000000	1	
$\frac{1}{\sqrt{8}} = 2 (Rational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{3} (d) 5 + \frac{2\sqrt{3}}{13}$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} (Irrational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} \sqrt{8} (Irrational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} \sqrt{8} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{2}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{2}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{4}} (Irrational number)$ $\frac{1}{\sqrt{6}} = (Irrational number)$ $\frac{1}{\sqrt{6}} = (Irrational number)$ $\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}} (Irrational number)$ $\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}} $		Ans : (d) $\sqrt{64} = 8$ (Rational number)
$\frac{1}{\sqrt{8}} = 2 (Rational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{3} (d) 5 + \frac{2\sqrt{3}}{13}$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} (Irrational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} \sqrt{8} (Irrational number)$ $\frac{1}{\sqrt{8}} = 2 \sqrt{2} \sqrt{8} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{2}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{2}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{2} \sqrt{3}} (Irrational number)$ $\frac{1}{\sqrt{8}} = \frac{1}{\sqrt{4}} (Irrational number)$ $\frac{1}{\sqrt{6}} = (Irrational number)$ $\frac{1}{\sqrt{6}} = (Irrational number)$ $\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}} (Irrational number)$ $\frac{1}{\sqrt{6}} = \frac{1}{\sqrt{6}} $	(a) $\frac{(5-2\sqrt{3})}{12}$ (b) $\frac{(5-2\sqrt{3})}{12}$	$\sqrt[3]{64} = 4$ (Rational number)
RB Group-D - 25/10/2018 (Shift-II) Ans : (b) Rationalizing the denominator of the given fraction, $= \frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$ $= \frac{(5-2\sqrt{3})}{(5)^2 - (2\sqrt{3})^2} \qquad [(a+b)(a-b) = a^2-b^2]$ $= \frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13}$ 235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RB NTPC 19.01.2017 Shift : 3 Ans : (d) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ RB MTPC 19.01.2017 Shift : 2 Ans : (d) From options, id $64 = (64)^{\frac{1}{2}} = (4^2)^{\frac{1}{2}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2, 2)^{\frac{1}{2}} = 2$ (Rational number) $\sqrt{64} = (64)^{$	12 13	$\sqrt[3]{8} = 2$ (Rational number)
Ans : (b) Rationalizing the denominator of the given fraction, $= \frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5)^2-(2\sqrt{3})^2} \qquad [(a+b)(a-b) = a^2-b^2] = \frac{5-2\sqrt{3}}{(5)^2-(2\sqrt{3})^2} \qquad [(a+b)(a-b) = a^2-b^2] = \frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13} = \frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13} = \frac{21}{40} = \frac{5-2\sqrt{3}}{13} = \frac{21}{40} = \frac{1}{40} =$	(c) $5 - \frac{2\sqrt{5}}{13}$ (d) $5 + \frac{2\sqrt{5}}{13}$	
fraction, $= \frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$ $= \frac{(5-2\sqrt{3})}{(5)^2-(2\sqrt{3})^2}$ $= \frac{(5-2\sqrt{3})}{(5)^2-(2\sqrt{3})^2}$ $= \frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13}$ 235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 3 Ans: (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5< 0.525 < 0.6$ XBB NTPC 19.01.2017 Shift : 2 Ans: (d) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5< 0.525 < 0.6$ XBB ALP & Tec. (30-08-18 Shift-I) Ans: (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^{\frac{1}{3}})^{\frac{1}{2}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2^{\frac{1}{3}})^{\frac{1}{6}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2^{\frac{1}{3}})^{\frac{1}{6}} = 2$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{6}} = (2^{\frac{6}{3}})^{\frac{1}{6}} = 2$ (Rational number) $\sqrt{64} = (4\sqrt{6})^{\frac{1}{6}} = 2$ (Ra		
$ = \frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})} $ $ = \frac{(5-2\sqrt{3})}{(5)^2 - (2\sqrt{3})^2} \qquad [(a+b)(a-b) = a^2-b^2] $ $ = \frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13} $ $ = \frac{5-2\sqrt{3}}{13} = \frac{5-2\sqrt{3}}{13} $ $ = \frac{5-2\sqrt{3}}{12} = \frac{5-2\sqrt{3}}{12} = \frac{5-2\sqrt{3}}{14} $ $ = \frac{5-2\sqrt{3}}{12} = \frac{5-2\sqrt{3}}{14} $ $ = \frac{21}{40} $ $ = \frac{5-2\sqrt{3}}{14} $ $ = \frac{21}{40} $ $ = 0.525 $ $ = \frac{5-2\sqrt{3}}{14} $ $ = 5-$		
$ \begin{array}{l} -\frac{-(5+2\sqrt{3})}{(5+2\sqrt{3})^{2}} & [(a+b)(a-b) = a^{2}-b^{2}] \\ =\frac{(5-2\sqrt{3})}{(5)^{2}-(2\sqrt{3})^{2}} & [(a+b)(a-b) = a^{2}-b^{2}] \\ =\frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13} \\ \end{array} \\ \begin{array}{l} \hline \\ \textbf{235. From the given options, find the rational number between the range 2/4 and 0.6. \\ (a) \frac{11}{25} & (b) \frac{21}{40} \\ (c) \frac{3}{4} & (d) \frac{11}{4} \\ \hline \\ \textbf{RB NTPC 19.01.2017 Shift : 2} \\ \hline \\ \textbf{Ans : (b) From option (b)} \\ \hline \\ \textbf{The rational number between } \frac{2}{4} = 0.5 \text{ and } 0.6 \\ \hline \\ \frac{21}{40} = 0.525 \\ \hline \\ \textbf{Hence, } 0.5 < 0.525 < 0.6 \\ \hline \\ \textbf{236. Which of the following numbers is irrational? \\ (a) \sqrt{164} & (d) \sqrt{164} \\ (c) \sqrt[3]{64} & (d) \sqrt[3]{64} \\ (c) \sqrt[3]{64} & (d) \sqrt[3]{64} \\ \hline \\ \textbf{RB ALP \& Tec. (30-08-18 Shift-1) \\ \sqrt{64} = (64)^{\frac{1}{3}} = (4^{3})^{\frac{1}{3}} = 4 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (8^{2})^{\frac{1}{2}} = 8 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Rational number) \\ \sqrt{64} = (64)^{\frac{1}{6}} = (2^{6})^{\frac{1}{6}} = 2 (Ration$		-
$\frac{(c) \ Whole \ (d) \ Real}{RB \ NTPC \ 19.01.2017 \ Shift : 3}$ $= \frac{(c) - 2\sqrt{3}}{(c)^2 - (2\sqrt{3})^2} \qquad [(a+b)(a-b) = a^2-b^2]$ $= \frac{5 - 2\sqrt{3}}{25 - 12} = \frac{5 - 2\sqrt{3}}{13}$ 235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 (a) $\sqrt{1000000}$ (b) $\sqrt{1000000}$ (c) $\frac{3}{4}$ (c) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $\frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[3]{64}$ (c) $\sqrt[3]{64}$ (d) $\sqrt[3]{64}$ (d) $\sqrt[3]{64}$ (e) $\sqrt{64}$ (d) $\sqrt[3]{64}$ RRB ALP & Tec. (30-08-18 Shift-1) $\sqrt{64} = (64)^{\frac{1}{2}} = (4^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (4^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2^2)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (4^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (4^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (2^2)^{\frac{1}{6}} = 2 (Rational number)$ $\sqrt[3]{64} = (2^2)^{\frac{1}{6}} = 2 (Rationa$	$=\frac{1}{(5+2\sqrt{3})} \times \frac{(5-2\sqrt{3})}{(5-2\sqrt{3})}$	(a) Integers (b) Imaginary
$\frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13}$ 235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RBB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $\frac{21}{40} = 0.525$ Hence, $0.5<0.525<0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt{1000000} = (10^{3})^{\frac{1}{5}} = 100$ (Rational) (b) $\sqrt[3]{1000000} = (10^{3})^{\frac{1}{5}} = 100$ (Rational) (c) $\sqrt[4]{1000000} = (10^{6})^{\frac{1}{5}} = 10$ (Rational) (d) $\sqrt[4]{1000000} = 10\sqrt{100}$ (Irrational) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^{3})^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^{2})^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[4]{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2$ (Rat		
$\frac{5-2\sqrt{3}}{25-12} = \frac{5-2\sqrt{3}}{13}$ 235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RBB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $\frac{21}{40} = 0.525$ Hence, $0.5<0.525<0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt{1000000} = (10^{3})^{\frac{1}{5}} = 100$ (Rational) (b) $\sqrt[3]{1000000} = (10^{3})^{\frac{1}{5}} = 100$ (Rational) (c) $\sqrt[4]{1000000} = (10^{6})^{\frac{1}{5}} = 10$ (Rational) (d) $\sqrt[4]{1000000} = 10\sqrt{100}$ (Irrational) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^{3})^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^{2})^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[4]{64} = (64)^{\frac{1}{2}} = (2^{6})^{\frac{1}{6}} = 2$ (Rat	$= \frac{(3^{2} - 2\sqrt{3})^{2}}{(5)^{2} - (2\sqrt{3})^{2}} \qquad [(a+b)(a-b) = a^{2} - b^{2}]$	Ans : (d) All irrational numbers are real numbers.
235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[3]{64}$ (d) $\frac{4}{\sqrt{64}}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac$		
235. From the given options, find the rational number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[3]{64}$ (d) $\frac{4}{\sqrt{64}}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac$	$=\frac{3-2\sqrt{3}}{25-12}=\frac{3-2\sqrt{3}}{13}$	
number between the range 2/4 and 0.6. (a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $=\frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[3]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^$	20 12 10	
(a) $\frac{11}{25}$ (b) $\frac{21}{40}$ (c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RBB NTPC 19.01.2017 Shift : 2 Ans : (d) From options- (a) $\sqrt{100 \times 100} = 10 \times 10 \times 10 = 1000$ (Rational) (b) $\sqrt[3]{1000000} = (100^3)^{\frac{1}{3}} = 100$ (Rational) (c) $\sqrt[3]{1000000} = (100^3)^{\frac{1}{3}} = 100$ (Rational) (d) $\sqrt[4]{1000000} = (100^3)^{\frac{1}{3}} = 100$ (Rational) (e) $\sqrt[3]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (f) $\sqrt[3]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[3]{1000000} = 10\sqrt[3]{100}$ (Irrational) 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (b) $\sqrt{64}$ (c) $\sqrt{16}$ (d) $\sqrt[4]{10}$ RBB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (2^2)^{\frac{1}{2}} = 2^{\frac{1}{2}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (64)^{\frac{1}{2}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (2^2)^{\frac{1}{2}} = 3 (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[3]{64} = (2^6)^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2^{\frac{1}{6}} = 2^{\frac{1}{6}$		
(c) $\frac{3}{4}$ (d) $\frac{11}{4}$ RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $=\frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number	(a) $\frac{11}{25}$ (b) $\frac{21}{40}$	
RRB NTPC 19.01.2017 Shift : 2 Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, 0.5< 0.525< 0.6 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Ra		
Ans : (b) From option (b) The rational number between $\frac{2}{4} = 0.5$ and 0.6 $=\frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (d) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (d) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (e) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (f) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (g) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational number) (h) $\sqrt[4]{1000000} = (10^6)^{\frac{1}{6}} = 10$ (Rational num		
The rational number between $\frac{2}{4} = 0.5$ and 0.6 $= \frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[4]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[4]{64} = \sqrt[4]{64} = 2 \sqrt[4]{64}$ (Instituction of the following is an irrational number) $\sqrt[4]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[4]{64} = \sqrt[4]{64} = 2 \sqrt[4]{64}$ (Instituction of the expression of the ex		(b) $\sqrt[3]{1000000} = (100^3)^{\frac{1}{3}} = 100$ (Rational)
$\frac{4}{4}$ $= \frac{21}{40} = 0.525$ Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) (a) $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6} = 2$ (Rational		
241. Which of the following is an irrational Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ (d) $\sqrt[4]{64}$ (e) $\sqrt[5]{64}$ (d) $\sqrt[4]{64}$ (f) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) 6	4	(d) $\sqrt[4]{1000000} = 10\sqrt[4]{100}$ (Irrational)
Hence, $0.5 < 0.525 < 0.6$ 236. Which of the following numbers is irrational? (a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (6^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{$		241. Which of the following is an irrational
(a) $\sqrt[3]{64}$ (b) $\sqrt{64}$ (c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (6^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (6^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Ration		number?
(c) $\sqrt[6]{64}$ (d) $\sqrt[4]{64}$ RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (6^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2$		
RRB ALP & Tec. (30-08-18 Shift-I) Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (4^3)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} =$		KKB Group-D – 22/09/2018 (Shift-III) Ans. (a) : Irrational number – The number which
Ans : (d) From options, $\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number) $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (4^3)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number) $\sqrt[6]{64} = (2^6)$		
$\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt{64} = (2^6)^{\frac{1}{6} = 2 \text{ (Rational number)}$ $\sqrt{64} = (2^6)$	Ans : (d) From options,	From options-
$\sqrt{64} = (64)^{\frac{1}{2}} = (8^2)^{\frac{1}{2}} = 8 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = (2^$	$\sqrt[3]{64} = (64)^{\frac{1}{3}} = (4^3)^{\frac{1}{3}} = 4$ (Rational number)	
$\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ $\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2 \text{ (Rational number)}$ Note- π is an irrational number while 22/7 is a rational		(b) $\sqrt[3]{8} = \sqrt[3]{2 \times 2 \times 2} = 2$ (Rational number)
$\sqrt{61-(61)} = 2$ (rational number) $\sqrt{64} = \sqrt{16} = \sqrt{44}$ (rational number) Note- π is an irrational number while 22/7 is a rational		$ (c)\sqrt{16} = \sqrt{2} \times 2 \times 2 \times 2 = 2 \times 2 = 4 $ (Rational number)
4/(A + 4/1) = 4/A + 2 = 4/A + (1 = 1 = 1 = 1 = 1 = 1)	$\sqrt[6]{64} = (64)^{\frac{1}{6}} = (2^6)^{\frac{1}{6}} = 2$ (Rational number)	
	$\sqrt[4]{64} = \sqrt[4]{16} \times \sqrt[4]{4} = 2 \times \sqrt[4]{4} = (\text{Irrational number})$	

Number System

242. Which of the following is a rational number? (a) $\sqrt[3]{2} - 2$ (b) $\sqrt[3]{8} - 2$ (c) $\sqrt[3]{2} - 4$ (c) $\sqrt[3]{2} - 1$	247. Whose square root from the following numbers will be rational? (a) 46232 (b) 46233
(c) $\sqrt[3]{4} + 4$ (d) $\sqrt[3]{12} + 1$	(c) 14448 (d) 34225
RRB Group-D – 25/09/2018 (Shift-I) Ans : (b)	RRB Group-D – 06/12/2018 (Shift-II)
Rational number – Such numbers which can be	Ans. (d) : From options–
expressed as p/q ; $(q \neq 0)$, are called rational numbers.	$(a)46232 = \sqrt{46232} = 215.016$
Example:- $\sqrt[3]{8}$, $\sqrt{4}$ etc;	(b) $46233 = \sqrt{46233} = 215.0186$
Irrational number - Such numbers which cannot be	$(c)14448 = \sqrt{14448} = 120.199$
expressed as p/q. Example:- $\pi, \sqrt[3]{2}, \sqrt{2}$ etc;	
From options,	(d) $34225 = \sqrt{34225} = 185$ Hence, The square root of 34225 is 185, which is a
$\sqrt[3]{8} - 2 = 0$ is a rational number while others $\sqrt[3]{2} - 2$,	rational number.
$\sqrt[3]{4} + 4$ and $\sqrt[3]{12+1}$ are irrational numbers.	248. Whose square root from the following numbers
243. Which of the following is an irrational	is irrational?
number? (a) $\sqrt[4]{1024}$ (b) $\sqrt[10]{1024}$	(a) 5184 (b) 4465 (c) 3025 (d) 8836
(a) $\sqrt[4]{1024}$ (b) $\sqrt[10]{1024}$ (c) $\sqrt{1024}$ (d) $\sqrt[5]{1024}$	RRB Group-D – 05/12/2018 (Shift-II)
$\frac{(c)}{RRB} Group-D - \frac{27}{09}/2018 (Shift-I)}$	Ans. (b) From options,
Ans. (a) From options,	(a) $\sqrt{5184} = 72$
(a) $\sqrt[4]{1024} = 4\sqrt[4]{4}$ (Irrational number)	(b) $\sqrt{4465} = \sqrt{5 \times 19 \times 47}$ (Irrational)
(b) $\sqrt[10]{1024} = 2$ (Rational number)	(c) $\sqrt{3025} = 55$
(c) $\sqrt{1024} = 32$ (Rational number)	(d) $\sqrt{8836} = 94$
(d) $\sqrt[5]{1024} = 4$ (Rational number)	Hence, the square root of 4465 is irrational.
244. Which of the following is not a rational	249. Whose square root from the following numbers is rational?
number?	(a) 336 (b) 344
(a) $\sqrt[3]{32}$ (b) $\sqrt[3]{64}$	(c) 320 (d) 324
(c) $\sqrt[4]{32}$ (d) $\sqrt[3]{27}$	RRB Group-D – 04/12/2018 (Shift-III)
RRB Group-D – 28/09/2018 (Shift-I) Ans : (c) From options,	Ans. (d) From option (d), $\sqrt{324} = \sqrt{18 \times 18} = 18$
$\sqrt[5]{32} = 2$ (Rational)	Hence, the square root of 324 will be 18, which is a
$\sqrt[3]{64} = 4$ (Rational)	rational number.
$\sqrt[3]{27} = 3$ (Rational)	250. Whose square root from the following numbers
$\sqrt[4]{32} = 2\sqrt[4]{2}$ (Irrational)	will be irrational? (a) 6441 (b) 9604
245. Which from the following is a rational	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
number?	RRB Group-D – 03/12/2018 (Shift-II)
(a) $\sqrt[5]{1551}$ (b) $\sqrt[3]{1331}$	Ans : (a) From options,
(c) $\sqrt{1221}$ (d) $\sqrt[4]{1441}$	$\sqrt{6441} = 80.25$ is irrational
RRB Group-D – 11/10/2018 (Shift-III)	$\sqrt{9604} = \sqrt{98 \times 98} = 98$
Ans: (b) A rational number can be written as p/q ; $(q \neq 0)$.	$\sqrt{7921} = \sqrt{89 \times 89} = 89$
Hence, From option (b) $\sqrt[3]{1331} = \sqrt[3]{11 \times 11 \times 11} = 11$ Therefore, 11/1 is a rational number.	$\sqrt{5776} = \sqrt{76 \times 76} = 76$
246. Whose square root from the following numbers	Hence, the square root of 6441 will be irrational. 251. Whose square root from the following numbers
is a rational number?	is a rational number?
(a) 576 (b) 512 (c) 480 (d) 544	(a) 144 (b) 136
RRB Group-D – 07/12/2018 (Shift-III)	(c) 128 (d) 120 RRB Group-D – 01/12/2018 (Shift-II)
Ans: (a) From the options,	Ans : (a) From options–
(a) $\sqrt{576} = 24$	$\sqrt{144} = 12$
(b) $\sqrt{512} = 16\sqrt{2}$	$\sqrt{136} = 2\sqrt{34}$
(c) $\sqrt{480} = 4\sqrt{30}$	$\sqrt{128} = 8\sqrt{2}$
(d) $\sqrt{544} = 4\sqrt{34}$	$\sqrt{120} = 2\sqrt{30}$
Hence, square root of 576 is 24, which is a rational	Hence, the square root of 144 is 12, that is a rational
number.	number.


252 Express $\frac{1}{2}$ as a rational number	Ans : (a) Let the positive integer is x.
252. Express $\frac{1}{(2+\sqrt{3})}$ as a rational number.	According to the question-
	$5x = 2x^2 - 32x^2 - 5x - 3 = 0$
$(u) \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$2x^2 - 6x + x - 3 = 0$
(a) $5-2\sqrt{3}/12$ (b) $(2-\sqrt{3})/1$ (c) $(5-2\sqrt{3})/13$ (d) $5+2\sqrt{3}/13$	2x (x-3) + 1 (x-3) = 0
	(x-3)(2x+1) = 0x-3 = 0
Ans. (b) :	x - 3 - 0 2x + 1 = 0
1	$x = 3$ or $x = -\frac{1}{2}$ (Invalid)
On rationalizing the given expression $\frac{1}{(2+\sqrt{3})}$,	257. Which of these square numbers cannot be
	expressed as the sum of two prime numbers? (a) 81 (b) 49
$1 \times (2 - \sqrt{3})$	(a) 81 (b) 49 (c) 121 (d) 144
$=\frac{1 \times (2 - \sqrt{3})}{(2 + \sqrt{3})(2 - \sqrt{3})}$	RRB JE - 30/05/2019 (Shift-II)
	Ans : (c)
$=\frac{(2-\sqrt{3})}{(4-3)}=\frac{(2-\sqrt{3})}{1}$	$81 \rightarrow 2 + 79$ (both of which are prime number)
$=\frac{1}{(4-3)}=\frac{1}{1}$	$49 \rightarrow 2 + 47$ (both of which are prime number) $144 \rightarrow 3 + 141$ (both of which are prime number)
	$121 \rightarrow 2 + 119$ (but 119 is not prime number)
Type - 6	Hence, option (c) cannot be expressed as the sum of two
	prime numbers.
253. Find the least number which when added to	258. Three times the square of a number subtracting by 4 times the number is equal to
1780 makes the sum a perfect square.	50 more than the number. Find the number.
(a) 46 (b) 49	(a) 5 (b) 4
(c) 69 (d) 72 $77/05/2010$ (c) $37/05/2010$ (c) $37/05/2$	(c) 6 (d) 10 DDD IE $28/05/2010$ (ch:ff II)
RRB JE - 27/05/2019 (Shift-II) Ans : (c) On adding 69 to the number 1780 it will be	RRB JE - $28/05/2019$ (Shift-II) Ans : (a) Let the number be = x
1849, which is a perfect square number.	According to the question,
Thus-	$3x^2 - x \times 4 = x + 50$
1780 + 69 = 1849	$3x^2 - 4x - x - 50 = 0$
$1849 = 43 \times 43$ $(42)^2 = 1840$	$3x^{2} - 5x - 50 = 0$ $3x^{2} - 15x + 10x - 50 = 0$
$(43)^2 = 1849$ 254. Find the smallest integer whose cube is equal to	3x (x-5) + 10 (x-5) = 0
itself.	(x-5)(3x+10) = 0
(a) -1 (b) 2	$\begin{array}{l} x - 5 = 0 \\ x = 5 \end{array}$
(c) 1 (d) 0 $\frac{1}{2}$	259. Which of the following is not a perfect square?
RRB JE - $22/05/2019$ (Shift-I)	(a) 2025 (b) 16641
Ans : (a) -1 and 1 are such integers whose cube is equal to itself.	(c) 1250 (d) 9801 DDB DDE Constable 20/01/2010 (Shift D)
Hence, the smallest integer = -1	RRB RPF Constable -20/01/2019 (Shift-I) Ans : (c) From options-
$\because (-1)^3 = -1$	$1250 = (35.36)^2$ is not a perfect square
255. If the cube of a number is subtracted from $(152)^2$ d	$2025 = (45)^2$
(153) ² the result gives 1457. Find the number. (a) 18 (b) 16	$16641 = (129)^2$ 9801 = (99) ²
(a) 10 (b) 10 (c) 28 (d) 24	Hence 1250 is not a perfect square, while others are
RRB JE - 24/05/2019 (Shift-I)	perfect squares.
Ans : (c) Let the number be x.	260. Which of these numbers is not a sum of two
According to the question,	squares? (a) 41 (b) 13
$(153)^2 - x^3 = 1457$ $x^3 = (153)^2 - 1457$	(a) +1 (b) +13 (c) +23 (d) -37
$x^{3} = (153) - 1457$ $x^{3} = 23409 - 1457$	RRB JE - 26/06/2019 (Shift-I)
$x^3 = 21952$	Ans: (c) From options- (a) $41 = 5^2 + 4^2$ (b) $12 = 2^2 + 2^2$
$\therefore x = \sqrt[3]{21952} = \sqrt[3]{28 \times 28 \times 28} = 28$	(a) $41 = 5^2 + 4^2$ (b) $13 = 2^2 + 3^2$ (c) 23 (d) $37 = 6^2 + 1^2$
256. Five times of a positive integer is 3 less than	Hence the number 23 is not the sum of two squares.
twice of its square. Find the integer.	261. Which of these is a perfect square?
(a) 3 (b) 8 (d) 5	(a) 9801 (b) 9887
(c) 2 (d) 5 RRB RPF Constable -19/01/2019 (Shift-I)	(c) 9013 (d) 9016 DDP IF $01/06/2010$ (Sbift III)
	RRB JE - 01/06/2019 (Shift-III)


	A (b) . Compare and
Ans. (a) From option (a), 99	Ans. (b) : Square root of 4042,
	63
9 9 8 01 9 81	6 4042
$\frac{9}{189}$ 17 01	+6 36
9 17 01	
	123 442
	<u>369</u>
Hence, 9801 is a perfect square of 99.	73
262. If the last digit of the square of a number is 1.	Square of $64 = 64 \times 64 = 4096$
Find the last digit of its cube. (a) $Order 0$ (b) 1 or 0	Hence, the required number = $4096-4042 = 54$
 (a) Only 9 (b) 1 or 9 (c) Any odd number (d) Only 1 	By adding 54, the number 4042 will become a perfect
RRB JE - 27/06/2019 (Shift-I)	square.
Ans : (b) Let the number be 9. The last digit of whose	266. Divide the number 137592 by the smallest
square is 1. Which is as follows-	number that leaves no remainder and quotient
$9^2 = 81$	is a perfect cube. Find the cube root of the
Last digit of 729 which is cube of $9 = 9$	quotient.
Let the number be 11. The last digit of whose square is 1.	(a) 8 (b) 2 (c) 4 (d) 6
Which is as follows-	RRB Group-D – 05/12/2018 (Shift-II)
$11^2 = 121$	Ans. (d) $137592 = 2 \times 2 \times 2 \times 3 \times 3 \times 7 \times 7 \times 13$
The last digit of the cube of 11-	Hence, it is clear that, dividing 137592 by $7 \times 7 \times 13 =$ 637 will leave no remainder And quotient 216 will be a
$11^3 = 1331$	perfect cube.
Hence the last digit = 1	$216 = 2 \times 2 \times 2 \times 3 \times 3 \times 3$
Hence the number will be 1 or 9.	Hence, the required cube root = $2 \times 3 = 6$
263. The sum and the difference of two numbers are	267. A positive number exceed its square root by 30.
25 and 3 respectively. Find the difference of	Find the number. (a) 16 (b) 36
their squares.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
(a) 165 (b) 75	RRB NTPC 02.04.2016 Shift : 3
(c) 154 (d) 140	Ans : (b) Let the number be x, then-
RRB JE - 27/06/2019 (Shift-III)	$\mathbf{x} = \sqrt{\mathbf{x}} + 30$
Ans : (b) Let the two numbers are x and y	$x - 30 = \sqrt{x}$
According to the question	On squaring in both side-
x + y = 25(i)	$\left(\mathbf{x} - 30\right)^2 = \left(\sqrt{\mathbf{x}}\right)^2$
x-y=3(ii) $x^2-y^2 = (x+y)(x-y) = 25 \times 3 = 75$	
$x - y - (x + y)(x-y) - 25 \times 5 - 75$ Hence, the difference of their squares = 75	$x^{2} + 900 - 60x = x$
· •	$x^{2} - 60x - x + 900 = 0$ $x^{2} - 61x + 900 = 0$
264. How many perfect squares are there between 100 and 200?	$x^{2} - 36x - 25x + 900 = 0$
(a) 7 (b) 4	
(a) 7 (b) 4 (c) 6 (d) 5	x(x-36) - 25(x-36) = 0
RRB JE - 27/06/2019 (Shift-III)	(x-36)(x-25) = 0
Ans : (b) Perfect square numbers greater than 100 or	x - 36 = 0 or $x - 25 = 0$
nearest to $100 = 121 = (11)^2$	x = 36 or $x = 25$
Perfect square numbers smaller than 200 or nearest to	25 is not more than its square root, which does not
$200 = 196 = (14)^2$	follow the condition. Hence, the required number will be $x = 36$.
The numbers from $(11)^2$ to $(14)^2$ are = 121, 144, 169,	268. What smallest number should be added to the
196	sum of squares of 15 and 14, so that the
Therefore, there will be 4 such perfect square numbers	resulting number is a perfect square?
between 100 and 200.	(a) 17 (b) 20 (c) 11 (d) 9
265. Find the least number that should be added to	RRB NTPC 29.03.2016 Shift : 1
4042 to make it a perfect square.	Ans : (b) $15^2 + 14^2 = 225 + 196 = 421$
(a) 41 (b) 54	Let the number to added be x,
(c) 64 (d) 58	$421 + x = 441$ $\Rightarrow x = 441 - 421 = 20$
	$\Rightarrow x = 441 - 421 = 20$

269. Calculate the sum of squares of numbers from	Ans (b) $\cdot 9^{6} \times 12^{4} \times 7^{7}$
1 to 9.	$= 3^{12} \times 3^4 \times 2^8 \times 7^7$
(a) 284 (b) 285	$= 3^{16} \times 3^{5} \times 2^{8} \times 7^{7}$ = $3^{16} \times 2^{8} \times 7^{7}$
(c) 385 (d) 380	
RRB NTPC 27.04.2016 Shift : 1	Sum of prime factors
Ans : (b) The sum of squares of first n numbers	= 3+2+7 = 12
n(n+1)(2n+1)	275. For any natural number n, $6^n - 5^n$ always ends
$=\frac{n(n+1)(2n+1)}{\epsilon}$	with ;
8	(a) 7 (b) 1
\therefore The sum of squares from 1 to 9 will be-	(c) 5 (d) 3
$-9(9+1)(18+1) - 9 \times 10 \times 19 - 285$	RRB NTPC 28.12.2020 (Shift-II) Stage Ist
$=\frac{9(9+1)(18+1)}{6}=\frac{9\times10\times19}{6}=285$	Ans. (b) : The unit value of $6^n - 5^n$ for any natural
270. Calculate the sum of squares of number from 1	number 'n' will always be 1 because 6 can be any
to 10.	natural number in the power that units number in the
(a) 384 (b) 285	power of 5 has its unit digit as 5.
(c) 385 (d) 380	276. What is the total number of odd and even
RRB NTPC 30.04.2016 Shift : 2	divisors of 120, respectively?
Ans : (c) The sum of squares of first n numbers	(a) 12,4 (b) 16,0
n(n+1)(2n+1)	(c) 4,12 (d) 8,8
$=\frac{n(n+1)(2n+1)}{6}$	RRB NTPC 01.02.2021 (Shift-II) Stage I
The sum of squares of the numbers from 1 to 10 will	Ans. (c) : Divisors of 120–
be-	1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 20, 24
	30, 40, 60, 120
$=\frac{10(10+1)(20+1)}{6} = \frac{10\times11\times21}{6} = 385$	Number of even divisors – 12,
	Number of odd divisors – 4
271. Find the least number which should be added	277. If the sum of five consecutive multiples of 2 is
to 7864, to make it a perfect square.	660, then find the largest number.
(a) 61 (b) 57 (c) 71 (d) 70	(a) 162 (b) 130
(c) 71 (d) 79 RRB Group-D – 11/12/2018 (Shift-III)	(c) 125 (d) 136
Ans : (b) Adding 57 to 7864, gives 7921 which is a	RRB NTPC 15.02.2021 (Shift-II) Stage Ist
perfect square of 89.	Ans. (d) : Let five consecutive multiple of 2 –
Hence, it is clear that adding 57 to 7864 will make the	2x, 2x+2, 2x+4, 2x+6, 2x+8
number a perfect square.	According to the question, 2x + 2x + 2 + 2x + 4 + 2x + 6 + 2x + 8 = 660
272. The number 4050 becomes a perfect square	$\begin{array}{c} 2x + 2x + 2 + 2x + 4 + 2x + 6 + 2x + 8 = 000 \\ 10x + 20 = 660 \end{array}$
when multiplying by a positive integer. Find	10x = 640
the square root of the number.	$\overline{\mathbf{x} = 64}$
(a) 95 (b) 80	
(c) 90 (d) 85	Hence, largest number = $2x + 8 = 2 \times 64 + 8$ =128+8
<u>RRB Group-D – 01/10/2018 (Shift-III)</u>	
Ans : (c) :: $4050 = 2 \times \overline{3 \times 3} \times \overline{3 \times 3} \times \overline{5 \times 5}$	=136
Hence, number 4050 becomes a perfect square when	278. How many factors of $2^7 \times 3^4 \times 5^3 \times 7$ are even ?
multiplied by $2 = 4050 \times 2 = 8100$	(a) 40 (b) 280
The required square root of the number 8100	(c) 320 (d) 84
$= 2 \times 3 \times 3 \times 5 = 90$	RRB NTPC 31.01.2021 (Shift-I) Stage Ist
273. Which of the following numbers is a perfect	RRB NTPC 14.03.2021 (Shift-I) Stage Ist Ans. (b) : $2^7 \times 3^4 \times 5^3 \times 7$ Number of factors.
square?	= (7+1)(4+1)(3+1)(1+1)
(a) 0.09 (b) 8.1	$ = 8 \times 5 \times 4 \times 2 $
(c) 0.025 (d) All	= 320
RRB NTPC 29.03.2016 Shift : 2	\therefore Number of even factors = 320 - total no. of odd
Ans : (a) $0.09 = (0.3)^2$	factors.
Hence, only 0.09 is a perfect square number.	$= 320 - \{(4+1)(3+1)(1+1)\}$
	$= 320 - \{5 \times 4 \times 2\}$
$T_{VDQ} = 7$	= 320 - 40
Type - 7	
274 Find the man of miner for the color of 4	279. Find the digit in the unit's place of 124^{n} +
274. Find the sum of prime factors of $9^6 \times 12^4 \times 7^7$	$124^{(n+1)}$, where n is any whole number.
(a) 13 (b) 12 (d) 11	(a) 4 (b) 8 (d) 0
(c) 14 (d) 11 $DDD C = D 2^{(100/2022)} (SLift HD)$	(c) 2 (d) 0 DDD NTDC 17 02 2021 (Shift II) Store Let
RRB Group-D 26/08/2022 (Shift-III)	RRB NTPC 17.02.2021 (Shift-II) Stage Ist
Number System	

Ans. (d) : $124^{n} + 124^{(n+1)}$	285. Unit digit of (1373) ³⁶ – (1442) ²⁰ is -
On putting $n = 1$	(a) 2 (b) 4
$= 124 + (124)^2$	(c) 5 (d) 3
For unit digit $4 + 6 = 10$	RRB ALP CBT-2 Physics & Maths 22-01-2019 (Shift-I)
Hence, It is clear that the digit come in the unit place will be '0'.	Ans. (c) : $(1373)^{36} - (1442)^{20}$
280. What is the unit digit in the following product?	$=(3)^{36}-(2)^{20}$
91×92×93××99	$= (3)^{9\times4} - (2)^{5\times4}$
(a) 2 (b) 1 (c) 4 (d) 0 RRB NTPC 09.02.2021 (Shift-II) Stage Ist	
Ans. (d) : $:: 91 \times 92 \times 93 \times 94 \times 95 \times 96 \times 97 \times 98 \times 99$	= (3) - (2)
It is clear that multiplying by taking unit digits of all the	= 81-16
numbers will give '0' i.e. where 2×5 comes then its unit digit is always zero.	= 65 = 5
281. Find the number of factors of 4200.	286. How many of the factors of 256 are perfect
(a) 48 (b) 56 (c) 64 (d) 46	squares?
RRB NTPC 26.07.2021 (Shift-II) Stage Ist	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Ans. (a): $4200 = 2 \times 2 \times 2 \times 5 \times 5 \times 3 \times 7$ = $2^3 \times 5^2 \times 3^1 \times 7^1$	RRB ALP & Tec. (20-08-18 Shift-II)
The number of factors = $(3+1) \times (2+1) \times (1+1) \times (1+1)$	Ans : (a) Perfect square factors of $256 = 1, 4, 16, 64, 256$
$=4\times3\times2\times2$	Hence, the required number of perfect square factors = 5
= 48	287. Which of these numbers has the highest
282. How many factors does the number 12288 have?	number of divisors?
(a) 24 (b) 26	(a) 156 (b) 240 (c) 172 (d) 200
(c) 28 (d) 22	RRR JE - 23/05/2019 (Shift-I)
RRB NTPC 23.07.2021 (Shift-I) Stage Ist	Ans : (b) From options-
Ans. (b) : $12288 = 2 \times 2$	$156 = 2^{2} \times 3^{1} \times 13^{1} = (2+1)(1+1)(1+1) = 12$ (divisor)
A = A + A + A + A + A + A + A + A + A +	$240 = 2^4 \times 3^1 \times 5^1 = (4+1)(1+1)(1+1) = 20$ (divisor)
$= 13 \times 2$	$172 = 2^2 \times 43^1 = (2+1)(1+1) = 6$ (divisor)
= 26	$200 = 2^3 \times 5^2 = (3+1)(2+1) = 12$ (divisor) Hence, It is clear that the number of the divisors of 240
283. If a positive number N, when divided by 5	is highest
leaves a remainder 3, then the unit's place digit of N is?	288. Find the unit digit in given factor of $(3451)^{51} \times$
(a) 0 or 5 (b) 0 or 2	$(531)^{43}$.
(c) 3 or 8 (d) 1 or 5	(a) 6 (b) 4
RRB NTPC 25.01.2021 (Shift-I) Stage Ist	(c) 1 (d) 9 RRB RPF-SI -11/01/2019 (Shift-I)
Ans. (c) : Required positive number	Ans : (c) The given expression is $(3451)^{51} \times (531)^{43}$
= 5K+3 (:: K = 0,1,2)	According to the question it is clear that the unit digit of
$= 5 \times 0 + 3 = 3$ (On putting K = 0) = 5 \times 1 + 2 = 8 (On putting K = 1)	3451 and 531 is 1, so the unit digit of their product will
$= 5 \times 1 + 3 = 8 \text{ (On putting K = 1)}$	also be 1.
Hence, unit digit of N = 3 or 8 284. The unit digit in $4 \times 38 \times 764 \times 1256$ is :	289. How many multiples of $2^8 \times 3^2 \times 5^3 \times 7^5$ are even numbers?
(a) 6 (b) 8	(a) 288 (b) 168
(a) = (b) = (c)	(c) 576 (d) 464
RRB NTPC 28.12.2020 (Shift-I) Stage Ist	RRB Group-D – 06/12/2018 (Shift-II)
Ans. (b) :	Ans. (c) : The number of factors of $2^8 \times 3^2 \times 5^3 \times 7^5 =$
$4 \times 38 \times 764 \times 1256$	(8+1)(2+1)(3+1)(5+1) = 648 \therefore The number of even factors (multiples) = 648 – The
$\downarrow \downarrow \downarrow \downarrow \downarrow$	number of total odd factors
$4 \times 8 \times 4 \times 6$	$= 648 - \{(2+1)(3+1)(5+1)\}$
= 32 × 24	$= 648 - \{3 \times 4 \times 6\} \\= 648 - 72 = 576$
$\downarrow \downarrow \downarrow$	290. How many factors of 729 are perfect squares?
$=$ 2 \times 4	(a) 5 (b) 4
Hence unit digit = 8	(c) 3 (d) 2
	RRB Group-D – 01/10/2018 (Shift-I)

Ans. (c) : The factors of 729,	295. Calculate the total prime factors in the product
3 729	of $\{(8)^{10} \times (9)^7 \times 7^8\}$
3 243	(a) 45 (b) 54
3 81	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3 27	RRB NTPC 18.04.2016 Shift : 2
$\overline{3 \ 9}$	Ans : (c) $(8)^{10} \times (9)^7 \times 7^8$
$\frac{3}{3} \frac{3}{3}$	
	$= ((2)^{3})^{10} \times ((3)^{2})^{7} \times (7)^{8}$
	$=2^{30} \times 3^{14} \times 7^{8}$
Perfect squares $= \overline{3 \times 3 \times 3 \times 3 \times 3 \times 3}$	Hence, the total prime factors = $30+14+8 = 52$
Hence, total 3 factors of 729 (9,9,9) are perfect squares.	296. Calculate the total prime factors in the product
291. How many multiples of $2^9 \times 3^5 \times 5^4 \times 7^6$ are odd	of $\{(16)^7 \times (27)^6 \times 5^9\}$
numbers?	(a) 28 (b) 43
(a) 288 (b) 144 (c) 210 (d) 140	(c) 55 (d) 56
(c) 210 (d) 140 RRB Group-D – 06/12/2018 (Shift-III)	RRB NTPC 16.04.2016 Shift : 2
Ans. (c) : The required odd multiple number	Ans : (c) Total prime factors $\{(16)^7 \times (27)^6 \times 5^9\}$
$= (5+1) \times (4+1) \times (6+1)$	$=(2^4)^7 \times (3^3)^6 \times 5^9$
$= 6 \times 5 \times 7 = 210$	
292. Find the last digit of 213 ⁶ ?	$=2^{28} \times 3^{18} \times 5^9$
(a) 6 (b) 3	= 28 + 18 + 9 = 55
(c) 7 (d) 9	297. Find the unit digit in the product of $(4211)^{102} \times (261)^{52}$
RRB Group-D – 05/12/2018 (Shift-II)	$(361)^{52}$ (a) 3 (b) 1
Ans. (d) The unit digit of 213^6	(a) = 5 (b) = 1 (c) = 4 (d) = 7
$213^6 = (213^4 \times 213^2)$	RRB NTPC 16.04.2016 Shift : 3
$1 \times 9 = 9$	Ans: (b)
293. The smallest natural number, by which 216	The required unit digit in $(4211)^{102} \times (361)^{52}$
should be multiplied, so that the number of	$\Rightarrow (1)^{102} \times (1)^{52} = 1 \times 1 = 1$
factors of the product is odd?	298. Find the unit digit in the following
(a) 4 (b) 6	
	$(1234)^{102} + (1234)^{103}$ (b) 4
(c) 12 (d) 8	(a) 2 (b) 4
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I)	(a) 2 (b) 4 (c) 0 (d) 1
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b)	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is:	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even)	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is:	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 24 = 30
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523 ¹⁶³² × 2224 ¹⁶³² ×	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0.
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²]	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares?
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0.
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²]	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²] $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5.
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²]	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²] $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or natural number, when divides 1920 so that the
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²] $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in 216 × 6 = 2 ⁴ × 3 ⁴ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²] $\Rightarrow (3)^4 × (4)^4 × (5)^4$ $81 \times 256 \times 625$ $1 \times 6 \times 5$	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or natural number, when divides 1920 so that the number of factors of quotient is odd?
(c) 12 (d) 8 RRB Group-D – 11/12/2018 (Shift-I) Ans. (b) The number of multiples of $(216 = 2^3 \times 3^3)$ is: $= (3+1) (3+1) = 4 \times 4 = 16$ (even) The smallest natural number, by which 216 should be multiplied, so that the number of factors of the product is odd = 6 \therefore Required number of multiples in $216 \times 6 = 2^4 \times 3^4$ = (4+1) (4+1) = 25 294. What is the unit digit of [4523¹⁶³² × 2224¹⁶³² × 3225¹⁶³²] (a) 1 (b) 0 (c) 4 (d) 5 RRB NTPC 18.01.2017 Shift : 3 Ans : (b) [(4523) ¹⁶³² × (2224) ¹⁶³² × (3225) ¹⁶³²] $\Rightarrow (3)^4 \times (4)^4 \times (5)^4$ $81 \times 256 \times 625$	(a) 2 (b) 4 (c) 0 (d) 1 RRB NTPC 28.04.2016 Shift : 2 Ans : (c) Given expression: $(1234)^{102} + (1234)^{103}$ The unit digit, $= (4)^{102} + (4)^{103}$ $= (4^2)^{51} + (4^2)^{51} \times 4^1$ $= (16)^{51} + (16)^{51} \times 4^1$ $= 6 + 6 \times 4$ = 6 + 2 4 = 30 Hence, the unit digit will be 0. 299. How many factors of 512 are perfect squares? (a) 6 (b) 4 (c) 3 (d) 5 RRB Group-D - 28/09/2018 (Shift-I) Ans : (d) The factors of 512 = 1, 2, 4, 8, 16, 32, 64, 128, 256, 512 In which = 1, 4, 16, 64, 256 are perfect squares So, the total number of perfect squares factors is 5. 300. Which is the smallest positive integer or natural number, when divides 1920 so that the number of factors of quotient is odd? (a) 40 (b) 10

Number System

Type - 9	4x + 4y = 168
	$2x \pm 4y = 138$
323. By how much is $\frac{1}{4}$ th of 432 smaller than $\frac{3}{4}$ th of	
6 4	
216?	$\frac{ \mathbf{x} = 15}{ \mathbf{x} }$
(a) -90 (b) 72 (c) 162	Hence, the number of chickens = $x = 15$
(c) 90 (d) 162 RRB NTPC 15.03.2021 (Shift-II) Stage Ist	327. Two bus tickets from city P to Q and three tickets from city P to R cost ₹99, but three
Ans. (c) : According to the question-	tickets from city P to Q and two tickets from
	city P to R cost ₹91. What are the respective
$\frac{1}{6}$ part of $432 = 432 \times \frac{1}{6} = 72$	fares from city P to Q and from city P to R.
	(a) ₹23, ₹15 (b) ₹51, ₹32 (c) ₹15, ₹22 (d) ₹22, ₹51
and $\frac{3}{4}$ part of 216 = $216 \times \frac{3}{4} = 162$	(c) ₹15, ₹23 (d) ₹32, ₹51 RRB NTPC 31.01.2021 (Shift-I) Stage Ist
	Ans. (c) : Let the fares from city P to $Q = \overline{\mathbf{x}}$
Required difference = $162 - 72$ = 90	and the fares from city P to $R = \overline{\xi}y$
,,,	According to the question,
324. Terry consumes 1700 mL of milk every day. How many litres of milk will she consume in 5	2x + 3y = 99 (i)
weeks?	3x + 2y = 91(ii)
(a) 59 L (b) 60 L	On multiplying by 3 in equation (i) and 2 in equation
(c) $58.5 L$ (d) $59.5 L$	(ii) $6x + 9y = 297$ (iii)
RRB NTPC 09.02.2021 (Shift-II) Stage I	6x + 4y = 182(iv)
Ans. (d): \therefore Torrest concurrence in 1 day = 1700 mJ	From equation (iii) & (iv) we have –
\therefore Terry consumes in 1 day = 1700 mL	5y = 115
:. In 5 weeks = 35 days = $\frac{1700 \times 35}{1000}$	y =₹23
	On putting the value of y in equation (i),
$=\frac{59500}{1000}$ L	$2x + 3 \times 23 = 99$
	2x + 69 = 99
= 59.5L	2x = 99 - 69
325. Mohan earns ₹60 on first day and spends ₹50 on the second day. He again earns ₹60 on the	$x = \frac{30}{2}$
third day and spends ₹50 on the fourth day and	2
so on. On which day will he have ₹200 with him	x =₹15
before spending?	Hence the fares from city P to Q and the fares from city
(a) $10^{th^{4}}$ (b) 14^{th} (c) 28^{th} (d) 29^{th}	P to R are ₹15, ₹23 respectively.
RRB NTPC 24.07.2021 (Shift-II) Stage Ist	328. There are 40 persons in a palace. If every
Ans. (d) : Mohan earns on the first day = $₹60$	person shakes hands with every other person, what will be the total number of handshakes?
and spends on the second day = ₹50	(a) 750 (b) 780
Thus, in 2 days Mohan saves = ₹10 Hence, Mohan saves in 28 days= ₹140	(c) 800 (d) 790
Mohan will earn on 29^{th} day = ₹60	RRB NTPC 21.01.2021 (Shift-I) Stage Ist
So, On the 29^{th} day Mohan has = $140 + 60$	Ans. (b) : Total number of handshakes $=\frac{n(n-1)}{2}$
=₹200	Δ
326. In a farmer's house, there are chickens and goats. The total number of their heads is 42 and	$\frac{40(40-1)}{2}$
the total number of their legs is 138. Find the	$=$ $\frac{2}{100000000000000000000000000000000000$
number of chickens.	$=\frac{40 \times 39}{2}$
(a) 15 (b) 18 (c) 22	$= 20 \times \frac{2}{39}$
(c) 20 (d) 22 RRB NTPC 01.02.2021 (Shift-I) Stage Ist	$= \frac{20 \times 39}{780}$
Ans. (a) : Let the number of chickens $= x$	329. In a group of 35 persons, 20 are young and 18
Number of goats = y	are girls. How many young girls are there in
According to the question,	the group ?
x + y = 42 (i)	(a) 1 (b) 3 (d) 2
2x + 4y = 138 (ii) On solving the equation (i) × 4 and (ii)	(c) 18 (d) 2 RRB NTPC 17.01.2021 (Shift-II) Stage Ist

Ans. (b) : According to the question, Girls $15 (3) 17$ Young	334. If the first number and the second number is 25% and 50% more than the third number respectively, find the ratio between the first and second number.
Number of young girls in the group = $(20+18) - 35$ = $38 - 35 = 3$	(a) 5:6 (b) 2:1 (c) 6:5 (d) 1:2 RRB JE - 27/05/2019 (Shift-I)
 330. X, Y and Z together earn ₹ 2,400/- in 15 days, X and Y together earn ₹ 1,840/- in 16 days. Y and Z together earn ₹ 1,530/- in 18 days. What is the daily earning (in ₹) of Y? (a) ₹50 (b) ₹40 (c) ₹60 (d) ₹30 RRB NTPC 05.03.2021 (Shift-I) Stage Ist 	Ans : (a) Let the third number be 100. Then according to the question the first number = 125 And the second number = 150 Hence, required ratio = First number : Second number = 125 : 150 $= 5 \cdot 6$
Ans. (b) :	1 1 1 1
Amount earned by X, Y and Z in 1 day $=\frac{2400}{15}=160$ Amount earned by X, Y and Z in 1 day $=\frac{1840}{16}=115$	335. Solve: $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$ (a) 2 (b) 1/50 (c) 3 (d) 1/22 DDD H= 22/05/2010 (Shift D)
Amount earned by Y and Z in 1 day $=\frac{1530}{18}=85$	RRB JE - 23/05/2019 (Shift-I) Ans : (a) $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} + \dots$
Daily earning of $Y =$ (Daily earning of X and Y together) + (Daily earning of Y and Z together) – (Daily earning by X, Y and Z together) = $115 + 85 - 160$	This is a geometrical progression- $a = 1, r = \frac{1}{2}$ Let the sum be S.
$= 40$ 331. The remainder in the expression $27\frac{3}{4}$ is: (a) 6 (b) 4	$S = \frac{a}{1-r}, \qquad S_{\infty} = \frac{1}{1-\frac{1}{2}}$ $S_{\infty} = \frac{1}{1} = 2 \qquad \boxed{S_{\infty} = 2}$
(c) 3 (d) 8 RRB NTPC 15.02.2021 (Shift-I) Stage Ist	$S_{\infty} = \frac{1}{\frac{1}{2}} = 2 \qquad \qquad S_{\infty} = 2$
Ans. (c) : In the given expression Dividend = quotient \times divisor + remainder = 27 \times 4 +3 \therefore Remainder = 3	 336. In a school picnic group, 2/9th part were adults and the number of children was more than adults by 95. How many children were present
332. A maximum of how many pieces of exact 17 cmlength can be cut from a 960 cm long rod?(a) 60(b) 58	there? (a) 95 (b) 133 (c) 190 (d) 103 RRB JE - 27/06/2019 (Shift-I)
(c) 54 (d) 56 RRB NTPC 08.02.2021 (Shift-I) Stage Ist	Ans : (b) Let the total number of people in the group =
Ans. (d) : According to question Number of pieces $=\frac{960}{17}=56+\frac{8}{17}$	The number of adults = $x \times \frac{2}{9} = \frac{2x}{9}$
Hence, number of pieces of exact 17 cm length will be 56.	The number of children = $x - \frac{2x}{9} = \frac{9x - 2x}{9} = \frac{7x}{9}$
333. If 3/11 < x/3 < 7/11, which of the following can be value of 'x'?	$\frac{7x}{9} - \frac{2x}{9} = 95$ $\frac{7x - 2x}{9} = 95$
Ans : (b) From options, When X = 0.5 then $0.272 < 0.166 < 0.636$ (False) When X = 1 then $0.272 < 0.333 < 0.636$ (True) When X = 2 then $0.272 < 0.666 < 0.636$ (False) When X = 3 then $0.272 < 1 < 0.636$ (False) Hence, It is clear that the value of x will be 1.	$\frac{5x}{9} = 95$ x = 171 Hence, the number of children = $\frac{7x}{9} = \frac{7}{9} \times 171 = 133$

337. Find the value of 52- 8-20 =	$\left(\begin{array}{c} 1 \\ 1 \\ 2 \\ 3 \\ 1 \\ 8 \end{array}\right)$
(a) 45 (b) 40	Ans. (c) $\left(\frac{3}{10} + \frac{8}{15}\right)$
(c) 65 (d) 64	9+16 25 5
RRB RPF Constable -18/01/2019 (Shift-I)	$=\frac{9+16}{30}=\frac{25}{30}=\frac{5}{6}$
Ans : (b) The given value = $52 - 8 - 20 $	
= 52 - -12	$\frac{5}{6}$ is directly proportional to $\frac{1}{5} = \frac{6}{5}$
-A = A (The value of Mod is always +ve.)	
Hence, the required value $= 52 - 12 = 40$	342. Subtract 64.37 out of 1000.03 and add the
338. If one dozen of apples weigh 1.8 kg, then find	resultant obtained from it to the sum of 3.4 and
the number of apples of three boxes whose total	7.56. What will be its value? (a) 948.62 (b) 944.62
weight is 23.25 kg. (b) 155	(c) 945.62 (d) 946.62
(a) 280 (b) 155 (c) 465 (d) 215	RRB Group-D – 08/10/2018 (Shift-III)
RRB RPF-SI -13/01/2019 (Shift-I)	Ans : (d) According to the question,
Ans : (b) Total weight = 23.25 kg	1000.03 - 64.37 = 935.66
	And
One apples's weight $=\frac{1.8}{12}$ kg	935.66 + (3.4 + 7.56) = 935.66 + 10.96 = 946.62
The required number of apples,	343. Seema got ₹ 50 from her father and purchased
$= \frac{\text{Total weight}}{1 \text{ apple's weight}} = \frac{23.25 \times 12}{1.8} = 155$	toffee for ₹ 15. Her mother gave her ₹ 30 but
1 apple's weight 1.8	her brother took ₹ 42 from her. How much money did she have left?
Number of apples in the box $= 155$	(a) ₹ 23 (b) ₹ 24
339. Pick out the set that forms the factors of 36.	(c) ₹20 (d) ₹25
(a) $(2, 3, 4, 6, 9)$ (b) $(2, 3, 4, 6)$ (c) $(2, 2, 4, 6, 9, 12, 18)$ (d) $(2, 2, 4, 6, 9, 12)$	RRB Group-D – 23/09/2018 (Shift-II)
(c) (2, 3, 4, 6, 9, 12, 18) (d) (2, 3, 4, 6, 9, 12) RRB JE - 27/05/2019 (Shift-III)	Ans : (a) Total sum of money that Seema have left = 50-15+30-42 = 80-57 = ₹ 23
Ans : (c) All the factors of $36 = 1, 2, 3, 4, 6, 9, 12, 18, 36$	344. ₹ 150 of Amit's Pocket money was spent on a
Hence, the required set that is formed by the factors of	pair of shoes and ₹ 75 on a watch. The total
36 will be = $(2, 3, 4, 6, 9, 12, 18)$	amount spent was three-fourth of his total
340. The square of a number is 3 more than twice	pocket money. What was the amount received
the number. What is the possible number.	by Amit as pocket money? (a) ₹ 300 (b) ₹ 400
(a) 1 or 3 (b) 1 or -3	(c) ₹ 375 (d) ₹ 250
(c) -1 or -3 (d) -1 or 3	RRB ALP CBT-2 Electrician 22-01-2019 (Shift-I)
RRB Group-D – 15/10/2018 (Shift-I)	Ans. (a) :Amount spent on shoes = ₹ 150
Ans : (d) Let the number be x	Amount spent on watch = ₹ 75
According to the question, $x^2 = 2x + 3$	Let Amit's pocket money $=$ \mathbf{E} x According to the question,
$x^2 - 2x - 3 = 0$	
$x^2 - 3x + x - 3 = 0$	$\frac{3x}{4} = 150 + 75$
x(x-3) + 1(x-3) = 0	$3x = 4 \times 225$
(x-3)(x+1) = 0	900
x - 3 = 0	$\mathbf{x} = \frac{900}{3}$
x = 3 $x + 1 = 0$	x =₹ 300
x = -1	So, Amit got the amount for pocket money =₹ 300
Hence, the possible number is -1 or 3.	345. Geeta weighs 11.235 kg. Her sister weighs 1.4
$241 \left(\begin{array}{c}3 \\ \end{array}\right) 12 (1 12 12 12 12 12 12$	times her weight. Find the total weight of both.
341. $\left(\frac{3}{10} + \frac{8}{15}\right)$ is directly proportional to-	(a) 15.729 kg (b) 25.964 kg (c) 26.964 kg (d) 28.964 kg
	RRB NTPC 29.03.2016 Shift : 1
(a) $\frac{11}{10}$ (b) $\frac{11}{15}$	Ans : (c) Geeta's weight $= 11.235$ kg
6 3	\therefore The weight of Geeta's sister
(c) $\frac{6}{5}$ (d) $\frac{5}{15}$	$= 11.235 \times 1.4 = 15.729$ kg The total weight of both of them
RRB Group-D – 02/11/2018 (Shift-I)	
· · · · · · · · · · · · · · · · · · ·	