

RRB

General Science

Chapterwise Solved Papers

Computer Based Test

CHIEF EDITOR A.K. Mahajan

COMPLIED BY

YCT Exam Expert Group

COMPUTER GRAPHICS BY Balkrishna Tripathi & Vinay Sahu

EDITORIAL OFFICE 12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com / www.yctfastbook.com

© All rights reserved with Publisher

PUBLISHER DECLARATION

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by R.A. Security Printers In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed.
In the event of any dispute, the judicial area will be Prayagraj.

CONTENT

Section-1 : Physics

hysics	
Unit/ Measurement/Measuring Instrument	11
• Unit	11
• Measurement	
Measuring Instrument	
Physical Quantities	
Mechanics	
• Work	
• Power	
• Energy	
• Mass	
Newton's Law of Motion	
• Force	
Linear Momentum	
Principle of Conservation of Momentum	
Distance and Displacement	61
Speed/Velocity	61
Projectile Motion	
Acceleration	
Equation of Linear Motion	
• Friction	
Simple Harmonic Motion/ Rotational Motion	
Gravitation	
Newton's Law of Gravitation	72
Gravity and Motion under Gravity	77
Satellite Motion /Escape Velocity	
Properties of Matter	
• Elasticity	
Surface Tension/Capillarity	
Flow of Liquids	
Buoyancy and Archimedes Principle	

	• Pressure	91
	• Density	
	• Kinetic Theory	
	Heat	94
	Temperature & Measurement of Temperature	94
	Thermal Conduction	96
	• Thermal Expansion	
	Convection	97
	Conductor/Non-conductor/Insulator	
	Kirchhoff's Law/Stefan's Law/Newton's Law of Cooling	
	Phase Transition and Latent Heat	
	Relative Humidity/Vaporization	
	• Thermodynamics	
	Wave	
	Sound	
	Nature of Sound Waves	
	Frequency Range of Sound Waves	
	• Speed of Sound	
	Characteristics of Sound	
	• Echo	
	• Sonar/Radar	
	Light	
	• Nature of Light	
	• Scattering of Light	
	Reflection of Light	
	• Rules of Reflection	
	Reflection from Plane Mirror	
	Reflection from Spherical Mirror	
	Magnification	
	Refraction of Light	147
	• Total Internal Reflection of Light	
	• Lens (Convex/Concave)	
	• Human Eye	
	Optical Instruments	
	• Dispersion of Light/Rainbow	
۰	Electricity	
	Electric Charge	
	Coulomb's Law	
	Electric Circuit	

Electric Current	177
Electrical Conductivity/ Ohm's Law	
Resistance	
Electric Power/Energy	
Electrical Instruments	
• Transformer	
Electric Bulb	221
Electric Cell	
Magnetism	
Electronics	238
Modern Physics	240
Nuclear Physics	
Invention	
Miscellaneous	249

Section-2 : Chemistry

Chemistry	
Chemistry : An Introduction	
• Matters	
Classification of Matters	
Physical and Chemical Changes	
• Law of Conservation of Mass	
• Law of Constant Proportions	
Dalton's Atomic Theory	
Molecule/Atomic Weight	
Mole Concept/Avogadro Number	
Berzelius Hypothesis	
Metals, Non-metals & Metalloids	
• Important methods of Separation of Mixtur	re
• Change in State of Matter	
• Solution	
• Allotropy	
• Amu Unit	
Atomic Structure	
• Atom and their Fundamental Components.	
Atomic Models	
Quantum Numbers	
Electronic Configuration	
• Heisenberg's Uncertainty Principle	

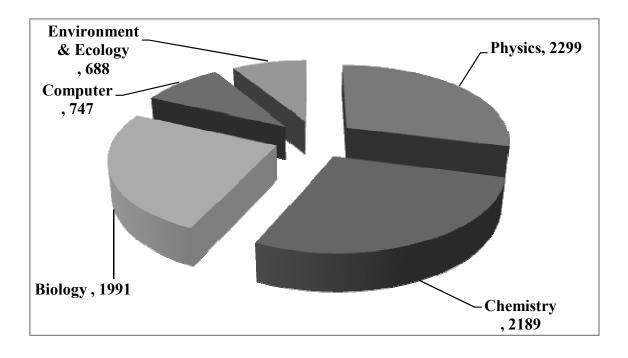
Atomic Nucleus	
Atomic Number and Mass Number	
• Isotopes	
• Isobars	
• Isoelectronics	
Gaseous Law	
Radioactivity and Nuclear Energy	
Valency/Chemical Bonding	
Oxidation and Reduction	
Electrolysis & Electro Chemical Series	
Acid, Base and Salt	
• Acid	
• Base	
• Salt	
• pH Value	
Acid-Base Indicator	
Amphoteric Oxide	
Periodic Classification of Elements	
Newland's Law of Octaves	
Dobereiner's Law of Triads	
Mendeleev's Periodic Table	
Moseley's Modern Periodic Table	
Periodic Properties of Elements	
Non-metals & Non-metallic Compounds and their Applications	
• Hydrogen	
• Oxygen	
• Nitrogen	
Phosphorous	
• Halogen	
• Inert Gases	
Sulphur	
Carbon	
Metals/ Metallic Compounds and their Applications	
• Sodium	
Calcium	
Aluminium	
Silver	
Gold	
Potassium	

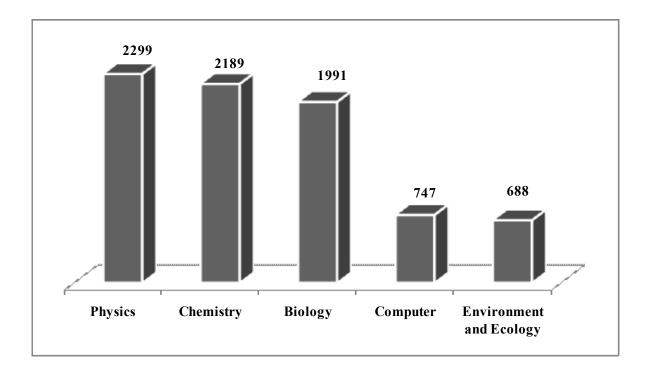
	• Iron	
	Magnesium	
	• Lead	
	Mercury	
	Copper/ Zinc/Tin	
	Other Metals	
	Fuel	404
	Alloy	
	Ores and Metallurgy	
	Polymers	
٦	Soap/ Detergents	
	Glass	
	Explosive Material	
	Organic Chemistry	
	Nomenclature of Organic Compounds	
	Hydrocarbons	
	Alcohol	
	Carbonic Acid	
	• Formaldehyde/Esters	
	Other Organic Compounds	
	Chemical Reactions	
۰	Miscellaneous	
	Section-3 : Biology	
Bio	ology	
	Major Branches of Biology	
	Cell (Theories/Structures/Functions)	
	Animal Cell	
	Plant Cell	
	Tissues	
	Animal Tissues	
	Plant Tissues	
	Bio Molecule (Lipids/ Proteins / Nucleic Acids)	496

Platyhelminthes	
Aschelminthes	
Annelida	
Arthropoda	
Mollusca	
• Echinodermata	
Chordata	
• Amphibia	
• Reptiles	
• Aves	
Mammalia	
Pisces	
Human Body	
Digestive System	
Blood Circulatory System	
Respiratory System	
• Excretory System	
Nervous System	
Skeleton System	
Endocrine System	
Reproductive System	
Proteins, Vitamins and Minerals	
Human Disease, Symptoms and Treatment	
Plant Kingdom	
Bacteria	
• Fungi	
• Algae	
Bryophyta	
• Pteridophyta	
• Gymnosperm	
Angiosperm	
Plant Morphology	
• Root	
• Stem	
• Leaf	
• Flower	
• Fruit	

Plant Physiology			
	• Transpiration		
	Photosynthesis		
	Respiration		
	Transport in Plants		
	Plant Hormones		
	Plant Movements		
	Reproduction in Plants		
	Economical Importance of Animals and Plants		
	Genetic Engineering and Biotechnology		
	Miscellaneous		

Section-4 : Computer


■ C	omputer	
٥	Computer : Introduction	
	Development of Computer	
	Input/Output Devices	
	Memory	
	Design Tools and Programming Languages	
٥	Data Representation and Numerical System	
	Numerical System	
	Boolean Algebra	
	Logical Gate	
	Software	
	Data Transmission	
	Internet	
	M.S. Office	711
	M.S. Windows	
	Abbreviation	
	Miscellaneous	


Section-5 : Environment And Ecology

Environment and Ecology	
Environment and Ecosystem	
Biodiversity	
Environmental Conservation : Global Efforts	
National Parks and Wildlife Sanctuaries	
Pollution	
Ozone Layer	
Green House Effect/Climate Change	
Wildlife Conservation and Management	
Natural Energy	
Miscellaneous	
	Environment and Ecosystem Biodiversity Environmental Conservation : Global Efforts National Parks and Wildlife Sanctuaries Pollution Ozone Layer Green House Effect/Climate Change Wildlife Conservation and Management Natural Energy

Analysis Chart of Question Papers of Various Previous Exams of RRB				
S.N.	Exam	Exam year	Total Question Papers	General Science
1.	RRB NTPC-2019 Stage-II	2022	15	20×15= 300
2.	RRC Group-D 2019	2022	99	25×99= 2475
3.	RRB NTPC-2019 Stage-I	2020-2021	133	30×133= 3990
4.	RRB JE-2018 Stage-II	2019	9	15×9 = 135
5.	RPF Constable 2018	2019	17	$30 \times 17 = 510$
6.	RPF SI 2018	2019	23	30×23 = 690
7.	RRB JE-2018 Stage-I	2019	38	$15 \times 38 = 570$
8.	RRB ALP/Tech2018 Stage-II	2019	18	10×18 = 180
9.	RRB ALP/Tech2018 Stage-I	2018	30	$10 \times 30 = 300$
10.	RRB Group D 2018	2018	135	$20 \times 135 = 2700$
11.	RRB NTPC-2015 Stage-II	2017	9	$15 \times 9 = 135$
12.	RRB NTPC-2015 Stage-I	2016	63	$30 \times 63 = 1890$
13.	RRB JE 2015	2015	26	$15 \times 26 = 390$
14.	RRB JE 2014	2014	10	$15 \times 10 = 150$
	Total		625	14415
Note – In this book, out of total 625 papers of JE, ALP, NTPC, RPF Constable, RPF SI, Group D and Paramedical exams conducted by RRB, out of total 14415 questions asked from General Mathematics. Same behavior have been removed and chapterwise compilation of questions of different types has been presented. In this book, every effort has been made by the Examination Special Committee to accommodate maximum variety of questions, so that the examinees can be made aware of the variety of questions asked by RRB.				

<u>Trend Analysis of Previous Year RRB JE, ALP, NTPC &</u> <u>Group-D Papers Through Pie Chart and Bar Graph</u>

PHYSICS

	6. The S.I. unit of resist	ivity is:	
1 Unit/Massuramont/Massuring	(a) ohm/m	(b) ohm	
1. Unit/Measurement/Measuring	(c) mho	(d) ohm m	
Instrument		oup-D 25-08-2022 (Shift-II)	
	Ans. (d) : The S.I. unit o		
	Electrical resistivity is that		
(i) Unit	measures how strongly it res		
	7. Newton is the unit to		
1. The commercial unit of electrical energy is	(a) Power	(b) Force	
(a) Watt (b) Calorie	(c) Pressure	(d) Resistance	
(c) Kilowatt hour (d) Joule		.02.2021 (Shift-II) Stage Ist	
RRB Group-D– 30/09/2022 (Shift-I)	r	.02.2021 (Sint-II) Stage Ist	
Ans.(c) : The commercial unit of electrical energy is	Ans : (b) :		
kilowatt hour.	Quantity	SI - Unit	
One kilowatt hour	Power	Watt	
$= 1000 \text{W} \times 1 \text{ hour}$	Force	Newton	
$= 1000 \times 3600$	Pressure	Pascal	
$= 3.6 \times 10^{6}$ Joule	Resistance	Ohm	
2. The S.I. unit of resistance is equivalent to:		and wave frequency was	
(a) joule/coulomb (b) volt/ampere	named in honour of		
(c) ampere/volt (d) coulomb/joule	(a) Werner Karl Heis		
RRB Group-D 25-08-2022 (Shift-III)	(b) Heinrich Rudolf H		
Ans. (b) : According to ohms law	(c) Albert Einstein		
V = IR	(d) J C Maxwell		
R = V/I	RRB NTPC 19	.01.2021 (Shift-II) Stage Ist	
SI unit of resistance = volt/ampere.	Ans : (b) The term 'Hertz'	was proposed in the early	
3. The physical quantity having a unit of	1920s by German scientists	to honour the 19th century	
volt/ampere is	German physicist Heinrich	Hertz. Hertz is a part of	
(a) work (b) Current International System of Units or SI System w		nits or SI System which is	
(c) charge (d) resistance	based on the Metric System.		
RRB Group-D 28-09-2022 (Shift-III)	9. The work done by a	force acting on an object is	
Ans. (d) : The physical quantity having a unit of		of force multiplied by the	
volt/ampere is resistance.		the direction of the force.	
Whereas,	Which of the following is NOT a unit of work?		
• Work = force x displacement	(a) Kgm/sec^2 (b) $\text{Kgm}^2/\text{sec}^2$		
Voltage (V)	(c) Newton meter (d) Joule PPP NTPC 13 03 2021 (Shift I) Stage Let		
• Current =	RRB NTPC 13.03.2021 (Shift-I) Stage Ist		
Resistance (R)	Ans : (a) Work can be defin		
• Charge (Q) = $\frac{\text{Current}}{\text{minimized}}$	on an object is equal to the magnitude of the force multiplied by the distance travelled by the object the		
Time	object in the direction of for	travelled by the object the	
4. The unit of resistance is			
(a) Ampere (b) Coulomb	\Rightarrow W =	FScost	
(c) Ohm (d) Volt	The SI unit of work is Newto		
RRB Group-D 29-09-2022 (Shift-III)	or Kg-m ² /sec ² and its CGS u	nit is Erg. Newton (Kg-	
Ans. (c) : Resistance is a measure of the opposition to	m/sec^2) is the unit of Force.		
current flow in an electrical circuit.	10. The unit of Force is:	2	
The unit of resistance is ohm.	(a) gms_{-2}^{-1}	(b) Kgms ^{-2}	
5. The S.I. unit of induced potential difference is:	(c) gms^{-2}	(d) $Kgms^{-1}$	
(a) mV (b) A		3.03.2021 (Shift-I) Stage Ist	
(c) V (d) mA	Ans : (b) The SI unit of Fo		
RRB Group-D 22-08-2022 (Shift-III)	of force is expressed by the	vector product of mass (m)	
Ans. (c) : Induced emf is potential difference only	and acceleration (a).		
hence its unit is volt only.	\Rightarrow F = ma		

11. Which of the following is not a unit of temperature?	(a) Time (b) Intensity of light
(a) Fahrenheit (b) Pascal	(c) Mass (d) Distance
(c) Celsius (d) Kelvin	RRB NTPC 01.02.2021 (Shift-I) Stage Ist
RRB Group-D 31-10-2018 (Shift-II)	Ans : (d) A light year is a measurement of distance. A light year is the distance that a beam of light travels in a
Ans : (b) Fahrenheit, Celsius and Kelvin are the units	single Earth year or 6 trillion miles. One light year is
of temperature. Pascal is a unit of pressure.	equal to 9.461×10^{12} kilometres.
12. The SI unit of electrical resistivity is (a) Ohm-meter (b) Ohm	Another units of distance are:
(d) Coulomb (d) Ampere	1 Parsec = 3.26 light year
RRB Group-D 04-12-2018 (Shift-III)	1 Astronomical Unit = 1.496×10^{11} m.
RRB Group-D 23-10-2018 (Shift-I)	18. Light-year is the unit of –
Ans : (a) The electrical resistivity of a substance	(a) Time (b) Distance (c) Speed of light (d) Intensity of light
indicates its ability to resist the flow of electric current	RRB JE (14-12-2014, Green Paper)
by the substance. Low resistivity of materials allow	Ans : (b) See the explanation of above question.
electric charge to flow smoothly. Its SI unit is Ohm	19. What is the SI unit of power of a lens called?
$\frac{\text{meter }(\Omega \text{m})}{12}$	(a) Hypermetropic (b) Dioptre
13. The commercial unit of electric energy is	(c) Myopic (d) Presbyopic
(a) watt (b) kW (c) kilowatt-hour (d) joule	RRB NTPC 13.01.2021 (Shift-II) Stage Ist
RRB Group-D 20-09-2018 (Shift-II)	Ans : (b) Power of lens - The inverse of the focal
Ans : (c) The commercial unit of electric energy is the	length of the lens is called the power of lens. If the focal
kilowatt hour. A 1 kilowatt hour or a unit is the amount	length of a lens is 'f' in meter, then its power 'P' = $\frac{1}{f}$ in
of electrical energy that will be spent in an hour in a	1
circuit by an instrument of 1000 watt of power.	diopters. Its SI unit is diopter which is represent by D.
$1 \text{ kWh} = 3.6 \times 10^6 \text{ joule} = 1 \text{ unit}$	• Myopia (Near sightedness) \rightarrow A person suffering from this disease can see the near object, but is
14. The amount of radiation being emitted by a	unable to see the distant object. A concave lens is
radioactive material is measured using the	used to correct myopia.
conventional unit ——.	• Hypermetropia (Far sightedness) \rightarrow A person
(a) Watt (b) Pascal	suffering from this disease can see distant objects
(c) Ampere (d) Curie RRB NTPC 29.01.2021 (Shift-II) Stage Ist	clearly but near objects are not clearly visible. A
	convex lens is used to correct hypermetropia.
Ans : (d) The amount of radiation being emitted by a radioactive material is measured in Curie. It is the	• Presbyopia \rightarrow Due to old age, the coordination ability of the eye decrease or ends, due to which a
traditional unit of radioactivity and shows the activity of	person is neither able to see distant objects nor near
1g of pure radium and is equal to 3.7×10^{10}	objects. This defect can be corrected by using bi-
disintegration/second.	focal lens.
Becquerel is also the SI unit of radioactivity and is	20. The SI unit of 'Magnetic Flux' is:
defined as the amount of a radioactive substance	(a) Farad (b) Henry
showing one disintegration/second.	(c) Pascal (d) Weber
15. What is measured in 'joules'?	RRB NTPC 03.03.2021 (Shift-II) Stage Ist
(a) Energy (b) Velocity	RRB NTPC 07.04.2021 (Shift-II) Stage Ist
(c) Force (d) Power	Ans : (d) The measurement of the total magnetic field
RRB NTPC 28.01.2021 (Shift-I) Stage Ist	which passes through a given area is known as
Ans: (a)	magnetic flux. It is useful in describing the effects of the magnetic force acting on something occupying a
Physical Quantity SI Unit	given area. The SI unit of magnetic flux is Weber and
Energy and Work Joule	is represented by wb.
Velocity m/s. Force Newton	21. Which of the following quantities has the SI
Power Watt	unit as Candela?
Pressure Pascal	(a) Impulse (b) Velocity
Wavelength Angstrom	(c) Force (d) Luminous intensity
	RRB JE CBT-II 29–08–2019 (evening)
16. Henry per meter is the unit of(a) Watt per steradian	Ans : (d) The Candela (cd) is the SI unit of luminous
(b) Electronegativity	intensity, which is a measure of power emitted from a
(c) Magnetic permeability	light source.
(d) electrical conductivity	22. The rate of doing work is called power. The
ALP Stage -II 23.01.2019 (shift - II)	unit of power is
Ans : (c) "Henry per Metre" is the SI unit of magnetic	(a) Ampere (b) Volt
permeability.	(c) Kelvin (d) Watt PPP NTPC 11 02 2021 (Shift I) Stage Ist
Permanenty.	RRB NTPC 11.02.2021 (Shift-I) Stage Ist

Ans: (d) In physics, power is the rate of doing work. It	Ans : (b) Momentum (P) = mass (m) \times velocity (v)
is the amount of energy consumed per unit of time. The	= kg × m/s
unit of power is the joule per second (J/s), known as the	
Watt (in honor of James Watt, the eighteenth century	Unit of momentum (P) = kgms ^{-1}
developer of the steam engine). (1 HP = 746 watt).	Dimensional formula of momentum = MLT^{-1}
	30. Unit of power in industry is –
23. Unit of power is known as –	
(a) Watt (b) Joule	
(c) Newton (d) Pascal	(c) Joule (d) Horsepower
RRB JE (24-05-2019, Shift -I)	RRB ALP & Tec.(13-08-2018, Shift-III)
RRB Group-D, 01-10-2018 (Shift –II)	Ans : (d) The industrial unit of power is Horsepower.
RRB Group-D, 22-10-2018 (Shift -I)	1 Horsepower (HP) = 746 watt
RRB ALP & Tec.(21-08-2018, Shift-I)	31. S.I. unit of electric charge is –
Ans : (a) See the explanation of above question.	(a) Volt (b) Coulomb
24. Which of the following units is used to measure	(c) Kelvin (d) kg
the intensity of sound?	RRB Group-D, 26-11-2018 (Shift –III)
(a) Pascal (b) Curie	RRB Group-D, 04-10-2018 (Shift –II)
(c) Decibel (d) Joule	RRB ALP & Tec.(31-08-2018, Shift-III)
RRB NTPC 25.01.2021 (Shift-I) Stage Ist	RRB ALP & Tec.(10-08-2018, Shift-III)
Ans : (c) The decibel is the unit used to measure the	RRB NTPC Stage-I st ,28-03-2016, Shift -II
intensity of sound. It is also widely used in electronics,	Ans : (b) The S.I. unit of electric charge is coulomb
aignals and communication	and is represented by the symbol 'C'.
signals and communication.	
25. Unit used for measuring the sound is –	A coulomb is defined as the amount of charge that
(a) Decibel (b) Hertz	passes through an electrical conductor carrying one
(c) Ohm (d) Volt	ampere of current in one second.
RRB NTPC Stage-I st , 22-04-2016, Shift -II	Electric charge = Electric Current × Time
RRB NTPC Stage-1 st , 18-04-2016, Shift -II	$E \Rightarrow Q = I.t$
Ans : (a) See the explanation of above question.	$= 1 I \times 1 t$
26. Which of the following units is used for	= One Coulomb (c)
measuring the amount of a substance?	32. S.I. unit of resistance is –
(a) Lux (b) Mole	(a) Coulomb (b) Ohm
(c) Tesla (d) Joule	(c) Joule (d) Newton
RRB NTPC 28.12.2020 (Shift-I) Stage Ist	
Ans : (b) The mole is used for measuring the amount of	RRB Group-D, 31-10-2018 (Shift –II)
Ans : (b) The mole is used for measuring the amount of	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance.	RRB Group-D, 31-10-2018 (Shift –II)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I st ,26-04-2016, Shift -III
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I st ,26-04-2016, Shift -III RRB NTPC 21.01.2021 (Shift-II) Stage Ist
Ans: (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density.	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I st ,26-04-2016, Shift -III RRB NTPC 21.01.2021 (Shift-II) Stage Ist Ans : (b) The SI unit of electrical resistance is ohm
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-Ist, 26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an object
Ans: (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy.	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-Ist, 26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current
Ans: (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-Ist, 26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an object
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances?	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.
 Ans: (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022 × 10²³ molecule of the substance. Tesla → SI unit of Magnetic flux density. Joule → SI unit of Work and Energy. Lux → SI unit of Illumination. 27. What is the SI Unit of amount of substances? (a) Radian (b) Mole 	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(b) Mole (c) Jule	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.Resistance (R) = $\frac{V}{I}$ ohm.
 Ans: (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022 × 10²³ molecule of the substance. Tesla → SI unit of Magnetic flux density. Joule → SI unit of Work and Energy. Lux → SI unit of Illumination. 27. What is the SI Unit of amount of substances? (a) Radian (b) Mole 	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift-IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity?
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(b) Mole (c) Jule(c) Jule(d) Kelvin RPF Constable 05.02.2019	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist,26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule(a) Radian (b) Mole (c) See the explanation of above question.	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift-IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity?
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule(b) Mole (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is -	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(b) Mole (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28.S.I. unit of weight is - (a) Kilogram(b) Newton	RRB Group-D, 31-10-2018 (Shift –II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(b) Mole (c) Jule(c) Jule(d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram(d) Dyne	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(a) Radian (c) JuleMas: (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram(b) Newton (c) Gram(c) Gram(d) Dyne RRB JE (24-05-2019, Shift-I)	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity?(a) Resistance(b) Charge(c) Voltage(d) CurrentRRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is –
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (c) Jule(b) Mole (c) Jule(c) Jule(d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram(d) Dyne	RRB Group-D, 31-10-2018 (Shift –II)RRB ALP & Tec.(09-08-2018, Shift-I)RRB NTPC Stage-I st ,26-04-2016, Shift -IIIRRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm(Ω). Its denoted by 'R'. The resistance (R) of an objectis defined as the ratio of voltage (V) across to current(I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity?(a) Resistance(b) Charge(c) Voltage(d) CurrentRRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is –
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II)	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm ² (b) N
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-II)	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift -III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm ² (b) N (c) N/m ² (b) N (c) N/m ²
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance.Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-Ist, 26-04-2016, Shift -III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I st ,26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m ² or Pa(Pascal). It is
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dyne is a derived unit of force specified	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm2 (b) N (c) N/m2 (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m2 or Pa(Pascal). It is represented by (σ)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dyne is a derived unit of force specified in the centimeter-gram-second (CGS) system	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm2 (b) N (c) N/m2 (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m2 or Pa(Pascal). It is represented by (σ)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-II) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-III)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dyne is a derived unit of force specified in the centimeter-gram-second (CGS) system of units.	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm2 (b) N (c) N/m2 (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m2 or Pa(Pascal). It is represented by (σ)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dyne is a derived unit of force specified in the centimeter-gram-second (CGS) system	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m ² or Pa(Pascal). It is represented by (σ)IPa = $\frac{1N}{m^2}$
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-III)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dvne is a derived unit of force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is -	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m ² or Pa(Pascal). It is represented by (σ)IPa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is –
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) Rub I to force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is - (a) kgms ² (b) kgms ⁻¹	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm² (b) N (c) N/m² (c) SI unit of stress is N/m² or Pa(Pascal). It is represented by (σ)Ans : (c) SI unit of stress is N/m² or Pa(Pascal). It is represented by (σ)1Pa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is - (a) Ampere (b) Coulomb
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) Rub I to force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is - (a) kgms ² (b) kgms ⁻¹	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m ² or Pa(Pascal). It is represented by (σ)IPa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is –
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II) Rub I to force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is - (a) kgms ² (b) kgms ⁻¹ (c) kgms (d) kgms ⁻²	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it. Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) CurrentRRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm² (b) N (c) N/m² (c) SI unit of stress is N/m² or Pa(Pascal). It is represented by (σ)IPa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is - (a) Ampere (b) Coulomb (c) Joule(b) Coulomb (c) Joule
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019 Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-II) RRB Group-D, 03-10-2018 (Shift -II) RRB ALP & Tec.(17-08-2018, Shift-III) Newton. Since weight is the force on an object due to gravity. The dvne is a derived unit of force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is - (a) kgms ² (b) kgms ⁻¹ (c) kgms (d) kgms ⁻² RRB ALP & Tec.(14-08-2018, Shift-II) RRB ALP & Tec.(14-08-2018, Shift-II)	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*, 26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is - (a) kg/cm² (b) N (c) N/m² (c) SI unit of stress is N/m² or Pa(Pascal). It is represented by (σ)Ans : (c) SI unit of stress is N/m² or Pa(Pascal). It is represented by (σ)1Pa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is - (a) Ampere (b) Coulomb (c) Joule(c) Joule(d) Watt RRB Group-D, 04-12-2018 (Shift -II)
Ans : (b) The mole is used for measuring the amount of a substance. It is the SI unit of amount of substance. One mole contains 6.022×10^{23} molecule of the substance. Tesla \rightarrow SI unit of Magnetic flux density. Joule \rightarrow SI unit of Work and Energy. Lux \rightarrow SI unit of Illumination.27. What is the SI Unit of amount of substances? (a) Radian (b) Mole (c) Jule (d) Kelvin RPF Constable 05.02.2019Ans : (b) See the explanation of above question.28. S.I. unit of weight is - (a) Kilogram (b) Newton (c) Gram (d) Dyne RRB JE (24-05-2019, Shift-I) RRB Group-D, 03-10-2018 (Shift-II) RRB ALP & Tec.(17-08-2018, Shift-II)Ans : (b) The SI unit of measurement of weight is Newton. Since weight is the force on an object due to gravity. The dvne is a derived unit of force specified in the centimeter-gram-second (CGS) system of units. Dimensional formula of the weight is MLT^{-2} 29. Unit of momentum is - (a) kgms ² (b) kgms ⁻¹ (c) kgms (d) kgms ⁻²	RRB Group-D, 31-10-2018 (Shift -II) RRB ALP & Tec.(09-08-2018, Shift-I) RRB NTPC Stage-I*t,26-04-2016, Shift-III RRB NTPC 21.01.2021 (Shift-II) Stage IstAns : (b) The SI unit of electrical resistance is ohm (Ω). Its denoted by 'R'. The resistance (R) of an object is defined as the ratio of voltage (V) across to current (I) through it.Resistance (R) = $\frac{V}{I}$ ohm.33. Ohm is unit of which physical quantity? (a) Resistance (b) Charge (c) Voltage (d) Current RRB JE (28-06-2019, Shift -IV)Ans : (a) See the explanation of above question.34. S.I. unit of stress is – (a) kg/cm ² (b) N (c) N/m ² (d) Watt RRB SSE (21-12-2014, Set-8, Green Paper)Ans : (c) SI unit of stress is N/m ² or Pa(Pascal). It is represented by (σ)IPa = $\frac{1N}{m^2}$ 35. S.I. unit of electric current is – (a) Ampere (b) Coulomb (c) Joule (d) WattRRB Group-D, 04-12-2018 (Shift -II) RRB Group-D, 24-10-2018 (Shift -II) RRB Group-D, 24-10-2018 (Shift -II)

	(z) D is the second secon
Ans : (a) The SI unit of electric current is ampere,	(a) Pedometer (b) Parsec
which is the flow of electric charge across a wire at	(c) Light year (d) Length of Hubble
the rate of one coulomb per second. Ampere is	RRB NTPC Stage-1 st , 04-04-2016, Shift -II
represented by symbol 'A'. Electric current is	Ans : (c) A light year is a unit of length used to
measured by using a device called an ammeter.	express astronomical distances. Its equivalent to about
Electrical charge $(Q) = I.t$	9.4607×10^{12} km.
$I = \frac{Q}{2}$ amp.	42. S.I. unit of pressure is –
I = - anp.	(a) Newton/cm ² (b) Newton-m ²
36. Match the following –	(c) Newton/m ² (d) Newton-cm ²
	RRB Group-D , 04-10-2018 (Shift –I)
(1) Magnetic flux density - (a) Tesla	RRB Group-D, 01-10-2018 (Shift –III)
(2) Self inductance - (b) Weber	$\frac{111}{1000} = \frac{111}{1000} = \frac{1111}{1000} =$
(3) Magnetic flux - (c) Henry	RRB Group-D, 25-09-2018 (Shift –II)
Match –	RRB Group-D, 25-09-2018 (Shift –III)
(a) 1-b, 2-c, 3-a (b) 1-c, 2-a, 3-b	RRB NTPC Stage-I st , 09-04-2016, (Shift -II)
(a) $1 - 0, 2 - 0, 3 - c$ (b) $1 - 0, 2 - 0, 3 - c$ (c) $1 - a, 2 - b, 3 - c$ (d) $1 - a, 2 - c, 3 - b$	RRB JE , 25-05-2014, (Shift -III)
$\begin{array}{c} (c) & 1^{-a}, 2^{-b}, 5^{-c} \\ \end{array} \begin{array}{c} (d) & 1^{-a}, 2^{-c}, 5^{-b} \\ \end{array} \\ \begin{array}{c} \text{DDD SSE} (21, 12, 2014, 5 + 6, 6) \\ \text{Chaose Dense} \end{array}$	Ans : (c) The unit of pressure in the SI system is the
RRB SSE (21-12-2014, Set-8, Green Paper	Pascal (Pa), defined as a force of one Newton per
Ans : (d) SI unit of magnetic flux density (b) is Tesla	
(T).	square meter. Hence one pascal is equal to the one
CGS unit of magnetic flux density (b) is Gauss (G).	newton per square metre.
SI unit of self inductance is Henry (H).	$(1 \text{ Pa} = 1 \text{N/m}^2) \text{ or } (1 \text{Pa} = 1 \text{N.m}^{-2})$
SI unit of magnetic flux is weber (Wh) magnetic flux	The conversion between atm, Pa and torr is follows.
S.I unit of magnetic flux is weber (Wb), magnetic flux	1 atm = 101325 Pa = 760 Torr.
is commonly denoted by (ϕ_s) . The CGS unit is	1 atm = 1.01325 Bar
Maxwell.	
37. Which unit is equal to unit of energy –	43. What is the SI unit of pressure?
(a) Power (b) Density	(a) Pascal (b) Radian
(c) Work (d) Force	(c) Ampere (d) Steradian
	RRB NTPC 15.03.2021 (Shift-II) Stage Ist
RRB ALP & Tec.(21-08-2018, Shift-II)	
Ans : (c) The SI unit of energy and work is same i.e.	Ans : (a) See the explanation of above question.
Joule (J), named after English physicist James	44. Nm^{-2} is S.I. unit of –
Prescott Joule (1818 - 1889). Joule discovered the	(a) Force (b) Repulsion
relationship between heat and mechanical work,	(c) Momentum (d) Pressure
which led to the development of the laws of	
thermodynamics.	RRB Group-D, 05-11-2018 (Shift –I)
	Ans : (d) See the explanation of above question.
38. Which of the following has no unit –	45. The unit of approximate distance from the
(a) Density (b) Relative density	earth to the sun is –
(c) Displacement (d) Pressure	(a) Light year (b) Astronomical Unit
RRB ALP & Tec.(29-08-2018, Shift-I)	(c) Kelvin (d) Joule
RRB Group-D, 03-12-2018 (Shift –III)	RRB NTPC Stage-I st , 16-04-2016, Shift -I
Ans : (b) Relative density of a substance is defined as	
the ratio of density of the substance to the density of	Ans : (b) The unit of approximate distance from the
water at 4°c.	earth to the sun is Astronomical unit (symbol : au or
water at 4 c.	AU).
Thus, Relative Density= $\frac{\text{Density of the substance}}{\text{Density of water}}$	\Rightarrow 1AU =1.5 ×10 ¹¹ m
Density of water	46. S.I. unit of force is -
5	(a) Kelvin (b) Newton
It has no unit.	
39. Ampere second is the unit of –	(c) Pascal (d) Volt
(a) Charge (b) Power	RRB NTPC Stage-1 st , 16-04-2016, Shift -II
(c) Voltage (d) Energy	Ans : (b) The SI unit of force is Newton or kg m/s^2 .
(c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper)	Ans : (b) The SI unit of force is Newton or kg m/s ² . 1 Newton = 10^5 dyne
(c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge.	Ans : (b) The SI unit of force is Newton or kg m/s^2 . 1 Newton = 10^5 dvne Force is product of mass and acceleration
(c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t)	Ans: (b) The SI unit of force is Newton or kg m/s ² . 1 Newton = 10^5 dvne Force is product of mass and acceleration \therefore Force = mass × acceleration
(c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge.	 Ans: (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force?
(c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t)	Ans : (b) The SI unit of force is Newton or kg m/s².1 Newton = 10^5 dyneForce is product of mass and acceleration \therefore Force = mass × acceleration47. What is the SI unit of force?(a) Newton(b) Dyne
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) Gallon is generally used for – (a) For velocity 	Ans : (b) The SI unit of force is Newton or kg m/s².1 Newton = 10^5 dyneForce is product of mass and acceleration \therefore Force = mass × acceleration47. What is the SI unit of force?(a) Newton(b) Dyne(c) Pascal(d) Kip
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container 	Ans : (b) The SI unit of force is Newton or kg m/s².1 Newton = 10^5 dyneForce is product of mass and acceleration \therefore Force = mass × acceleration47. What is the SI unit of force?(a) Newton(b) Dyne(c) Pascal(d) Kip
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume 	Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these 	Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist Ans : (a) See the explanation of above question.
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II 	 Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip <u>RRB NTPC 30.12.2020 (Shift-II) Stage Ist</u> Ans : (a) See the explanation of above question. 48. Which of the following is not correctly
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II Ans : (c) The gallon is a unit of measurement of 	 Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip <u>RRB NTPC 30.12.2020 (Shift-II) Stage Ist</u> Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched-
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans : (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II 	Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched- (a) Frequency - Hertz
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II Ans: (c) The gallon is a unit of measurement of volume. Gallon is represented by symbol (gal). 	 Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip <u>RRB NTPC 30.12.2020 (Shift-II) Stage Ist</u> Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched-
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II Ans: (c) The gallon is a unit of measurement of volume. Gallon is represented by symbol (gal). One gallon is equal to 3.7854 liters and 1 Imperial 	Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched- (a) Frequency - Hertz
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II Ans: (c) The gallon is a unit of measurement of volume. Gallon is represented by symbol (gal). One gallon is equal to 3.7854 liters and 1 Imperial gallon is equal to 4.54609 liters. 	Ans : (b) The SI unit of force is Newton or kg m/s². 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched- (a) Frequency - Hertz (b) Magnetic flux - Tesla (c) Pressure - Pascal
 (c) Voltage (d) Energy RRB JE (14-12-2014, Red Paper) Ans: (a) Ampere second is the unit of charge. Electric Charge (Q) = Ampere (I) × Second (t) 40. Gallon is generally used for – (a) For velocity (b) For a container (c) For measuring the volume (d) None of these RRB NTPC Stage-Ist, 31-03-2016, Shift -II Ans: (c) The gallon is a unit of measurement of volume. Gallon is represented by symbol (gal). One gallon is equal to 3.7854 liters and 1 Imperial 	Ans : (b) The SI unit of force is Newton or kg m/s ² . 1 Newton = 10 ⁵ dyne Force is product of mass and acceleration ∴ Force = mass × acceleration 47. What is the SI unit of force? (a) Newton (b) Dyne (c) Pascal (d) Kip RRB NTPC 30.12.2020 (Shift-II) Stage Ist Ans : (a) See the explanation of above question. 48. Which of the following is not correctly matched- (a) Frequency - Hertz (b) Magnetic flux - Tesla

Ans : (b)	54. Which of the following two physical quantities
Physical Quantities Unit	have the same unit?
Frequency - Hertz	(a) Pressure and Force
Pressure - Pascal	(b) Force and Dyne
Electric Conductance - Siemens or $ohm^{-1}(\Omega^{-1})$	(c) Force and Speed
Magnetic flux - Weber	(d) Force and Weight
Note : SI unit of Magnetic Flux Density (b) is Tesla (T).	RRB Group-D, 09-10-2018 (Shift-II)
49. S.I. unit of displacement is –	Ans : (d) See the explanation of above question.
(a) Meter (b) Kilometer	55. Newton is S.I. unit of ?
(c) Centimeter (d) Meter per second	(a) Weight and Velocity
RRB Group-D, 02-11-2018 (Shift –II)	(b) Weight and Force
Ans : (a) The shortest distance between the starting	(c) Weight and Mass
and ending point is referred as displacement.	(d) Weight and Acceleration
Displacement always takes place in a straight line between the initial and ending or final position of the	RRB Group-D, 01-10-2018 (Shift –I)
between the initial and ending of inial position of the body.	Ans : (b) See the explanation of above question.
Displacement is a vector quantity. 'Meter ' is the SI	56. Which of the following pairs does not have the
unit of displacement and in CGS system, unit of	same S.I. units?
displacement is centimeter.	(a) Speed and Velocity
50. The S.I. unit of 'g' is same as –	(b) Work and Energy
(a) Pressure (b) Momentum	(c) Force and Pressure
(c) Velocity (d) Acceleration	(d) Displacement and distance
RRB Group-D, 13-12-2018 (Shift –II)	RRB Group-D, 01-10-2018 (Shift –III)
Ans : (d) The S.I. unit of gravitational acceleration	RRB Group-D, 05-10-2018 (Shift –II)
'g' is same as the S.I. unit of linear acceleration,	Ans : (c) The Newton is the SI unit of force defined as
The SI unit of acceleration is meter per second	the force is the external factor that produces an
square (m s ^{-2}).	acceleration of one meter per second square in an
Dimensional formula of acceleration is (LT^{-2}) .	object of one kilogram.
CGS unit of acceleration = cm/s^2 .	$F = mass \times acceleration$
51. Which of the following has same unit ? (a) Work & Energy (b) Force & Pressure	$F = m \times a$
(a) Work & Energy(b) Force & Pressure(c) Force & Momentum(d) Force & Work	$= 1 \text{ kg} \times 1 \text{ m/s}^2 = 1 \text{ N}$
RRB Group-D, 12-12-2018 (Shift –III)	Whereas the unit of Pressure in the SI system is
RRB Group-D, 03-10-2018 (Shift –II)	the Pascal (Pa), defined as a force of one Newton per
Ans : (a) Work and energy has the same unit. The SI	square meter.
unit of work and energy is the Joule (J), which is	$1 \operatorname{Pascal}(Pa) = 1 \operatorname{N/m^2}$
defined as the work done by a force of	57. In the following which pair has not same unit?
one Newton for the displacement of one meter.	(a) Speed and Velocity
Energy/Workdone (W) = Force (F) \times Displacement (d)	(b) Work and Energy
$W = 1 N \times 1 m$	(c) Distance and Displacement(d) Force and Pressure
W = 1 N-m = 1 Joule	
52. $\text{Nm}^2 \text{kg}^{-2}$ is S.I. unit of –	RRB Group-D, 05-10-2018 (Shift –II)
(a) Pressure (b) Momentum	Ans : (d) See the explanation of above question. 58. The international unit of Speed is-
(b) Momentum(c) Acceleration	58. The international unit of Speed is- (a) m/s (b) km/h
(d) Universal constant of gravitation.	$\begin{array}{ccc} (a) & m/s & (b) & m/m \\ (c) & m/minute & (d) & km/s \\ \end{array}$
RRB Group-D, 01-10-2018 (Shift –I)	RRB Group-D, 01-10-2018 (Shift –III)
Ans : (d) $\text{Nm}^2\text{kg}^{-2}$ is S.I. unit of Universal constant of	Ans : (a) Speed is defined as the distance covered in
Gravitation (G).	
The value of $G = 6.67 \times 10^{-11} \text{Nm}^2 \text{kg}^{-2}$	unit time \Rightarrow Speed= $\frac{\text{Distance}}{}$
53. Weight has equal S.I. unit of-	Time
(a) Impulse (b) Acceleration	Its SI unit is metre/sec.
(c) Force (d) Mass	59. ms ⁻² is S.I. unit of which of the following?
RRB Group-D, 12-11-2018 (Shift –II)	(a) Velocity (b) Speed
RRB Group-D, 07-12-2018 (Shift –III)	(c) Force (d) Acceleration
Ans: (c) The SI unit of measurement of weight is	RRB Group-D, 15-10-2018 (Shift –III)
'Newton'. Since weight is the force on an object due to gravity. The dyne is a derived unit of force specified	RRB Group-D, 24-09-2018 (Shift –I)
in the Centimeter–Gram–Second (CGS) system	RRB Group-D, 11-10-2018 (Shift –II)
of units.	RRB Group-D, 19-09-2018 (Shift –III)
Force or Weight (W) = $m \times g$	Ans: (d) Acceleration is defined as the rate of change
where, $W =$ weight or force	of velocity with respect to time.
m= mass of the object in (kg)	i.e. Acceleration = $\frac{\Delta v}{\Delta t}$
g = acceleration due to gravity in (m/s2).	Δt
Dimensional formula of the weight is [MLT ⁻²]	It is a vector quantity and its SI unit is m/s^2 .

60. Which of the following has S.I. unit Joule / second?	Electric Charge(Q)
(a) Work (b) Force	Electric current (1) = $-\frac{1}{\sqrt{2}}$
(c) Thrust (d) Power	Time(t)
RRB Group-D, 02-11-2018 (Shift –II)	Electric current is measured using a device called
Ans : (d) Power is defined as the rate of work done by a	ammeter.
body.	67. What is the S.I. unit of retardation ?
\Rightarrow Power = $\frac{\text{Work}}{\text{Time}}$	(a) ms^2 (b) ms
\Rightarrow Power = $\frac{1}{\text{Time}}$	(c) ms ⁻¹ (d) ms ⁻² RRB Group-D, 03-10-2018 (Shift –III)
It is a scalar quantity and its SI unit is Joule/sec or	Ans : (d) The SI unit of retardation is m/s ² (meter per
watt (w).	second square). Retardation is nothing but it is a
61. Volt is S.I. unit of?	negative acceleration that acts in the opposite
(a) Resistance (b) Electric charge	direction to that of motion.
(c) Electric current (d) Electric potential	68. 1Pascal=?
RRB Group-D, 05-10-2018(shift -I)	(a) 1Nm^{-2} (b) 100 atmosphere
Ans : (d) The SI unit for voltage is Volt and is	(a) 1 dyne cm^{-2} (b) 100 damosphere
represented by the letter 'V'. Volt is a derived SI unit	RRB Group-D, 11-12-2018 (Shift –II)
of electric potential.	Ans : (a) 1 Pascal = $1 \text{ N/m}^2 = 1 (\text{kg m/sec}^2)/\text{m}^2$.
Voltage $(V) = I \times R$	69. Match the following with the correct response-
where, $V = Voltage in (volt)$	(1) Watt - (a) N-m/sec
I = Current in (ampere)	(2) 1 Kilowatt - (b) $3.6 \times 10^6 J$
$R = Resistance in (ohm \Omega)$	(3) 1 Kilowatt hour - (c) $1000W$
62. What is the unit of electric potential?	(4) 1 Horsepower - (d) 746W
(a) Volt (V) (b) Coulomb (c)	(a) 1-A, 2-C, 3-B, 4-D
(c) Joule (J) (d) Ampere (a)	(b) 1-A, 2-C, 3-D, 4-B
RRB JE CBT-II 31.08.2019 IInd Shift	(c) 1-D, 2-B, 3-C, 4-A
Ans : (a) See the explanation of above question.	(d) 1-A, 2-B, 3-C, 4-D
	RRB ALP & Tec.(31-08-2018, Shift-I)
63. S.I. unit of voltage is –	Ans: (a) Watt - Nm/sec
(a) Coulomb (b) Joule	1kilowatt - 1000W
(c) Volt (d) Watt \mathbf{P} (d) Watt	1 kilowatt hour - $3.6 \times 10^6 \text{J}$
RRB Group-D, 11-12-2018 (Shift –II)	1 Horsepower - 746W
RRB Group-D, 25-10-2018 (Shift –III)	70. What is the S.I. unit of wavelength? (a) Hertz (b) Kilogram
Ans: (c) See the explanation of above question.	(a) Heltz (b) Khögrann (c) Second (d) Meter
64. Which of the following is unit of temperature - (a) Degree (b) Celsius	RRB JE (26-06-2019,Shift-IV)
(a) Degree (b) Celsius (c) Fahrenheit (d) Kelvin	Ans : (d) Wavelength is the distance between two
RRB Group-D, 15-11-2018 (Shift –II)	successive crests or troughs of a wave. It is always
Ans : (d) The SI unit of temperature according to the	measured in the direction of the propagation of wave.
International System of unit is Kelvin, which is	The SI unit of wavelength is meter (m).
represented by the symbol K.	71. Which one of these is a symbol of mole in S.I.
Celsius to Kelvin,	unit ?
$K = {}^{0}C + 273.15$	(a) g (b) mol
65. Ohm-m is unit of?	(c) kg (d) mg
(a) Resistivity (b) Electric current	RRB JE (28-06-2019,Shift-IV)
(c) Charge (d) Resistance	Ans : (b) 'Mol' is the symbol of mole in S.I. unit.
RRB Group-D, 05-10-2018 (shift-II)	One mole is equal to 6.023×10^{23} atom.
Ans : (a) The S.I. unit of electrical resistivity is Ohm-	Number of moles (m) = $\frac{\text{Total mass}}{\frac{1}{1}}$
meter.	Number of moles (m) $-\frac{1}{Molecular mass}$
Resistivity is the resistance offered by an object per	72. What is the unit of electric power expenditure ?
unit length and per unit cross-sectional area at a	(a) kWh (b) Joule
specified temperature.	(c) Watt (d) Volt
The Ohm (symbol : Ω) is the S.I. unit of electrical	RRB JE (02-06-2019,Shift-I)
resistance, named in honor of German physicist Georg	Ans : (a) A unit (as mentioned on the electricity bills)
Simon Ohm.	is represented in kWh or Kilowatt Hour. If you use
66 has S.I. unit ampere?	1000 Watts or 1 Kilowatt of power for 1 hour then
(a) Voltage (b) Electric charge	vou consume 1 unit or 1 Kilowatt-Hour (kWh) of
(c) Electric current (d) Resistance	electricity.
RRB Group-D, 03-10-2018 (Shift –III)	73. What is another name for coulomb / second ?
Ans : (c) The SI unit of electric current is ampere,	(a) Joule (b) Ampere
which is the flow of electric charge across a wire at	(c) Volt (d) Second
the rate of one coulomb per second.	RRB JE (28-05-2019, Shift-III)

	70 33/1 - 4 * - 7.47 11 - 19		
Ans : (b) A coulomb per second is the definition of	79. What is 746 watt called?		
one ampere. Ampere is the SI unit of electric current.	(a) 1 horsepower (b) 1 kW (c) 1 Pascal (d) 1 Joule		
1 Q/s = 1 A.	RRB Group D 05-11-2018(Shift-III)		
Electric Charge(Q)			
Electric Current (I) = $\frac{\text{Electric Charge}(Q)}{\text{Time}(t)}$	Ans: (a) See the explanation of above question.		
	80. 1 Diopter is equal to $-$		
$=\frac{1Q}{1s}=1$ ampere	(a) 1 mm^{-1} (b) 1 m^{-1} (c) 1 dm^{-1} (d) 1 cm^{-1}		
ls	RRB JE (02-06-2019,Shift-III)		
74. Lux is the SI unit of	Ans : (b) • 1 diopter of power of a lens is described		
(a) Intensity of illumination	as the unit of measurement of the optical power of a		
(b) Luminous efficiency	lens which is equal to reciprocal of the focal length		
(c) Luminous flux	(f), measured in meter.		
(d) Luminous intensity	• The SI unit of power of lens is diopter whose focal		
RRB JE (14-12-2019,Green Paper)	length is one meter, which is denoted by the letter 'D'.		
Ans : (a) The SI unit of intensity of illumination			
(illuminance) is lux. An illuminance of 1.0 lux is	1 diopter (d) = $\frac{1}{f(meter)} = \frac{1}{(meter)}$		
produced by 1.0 lumen of light shining in an area of	f (meter) (meter)		
1.0 m^2 .	$= 1 m^{-1}$		
75. What is the S.I. unit of wave speed ?	where, $(f) = focal length$		
(a) Meter (b) Meter/second	81. What does a meter equal ?		
(c) Second (d) Hertz	(a) 10^{-6} micron (b) 10^{6} micron (c) 10^{-3} micron (d) 10^{3} micron		
RRB JE (28-05-2019, Shift-III)	(c) 10^{-3} micron (d) 10^{-3} micron		
Ans : (b) Speed = Wavelength × Wave Frequency	RRB JE (14-12-2019, Yellow Paper)		
$v = \lambda \times n$	Ans : (b)		
In this equation, wavelength is measured	1 micron = 1×10^{-6} meter		
in meters and frequency is measured in hertz (Hz), or	1 meter = 10^6 micron		
number of vibration per second. Therefore, wave	Micrometer is represented by 'µm'		
speed is given in metre per second, which is the SI	82. Sound pollution is measured in-		
unit of wave speed.	(a) Decibel (b) Joule		
	(c) Ampere (d) Ohm		
(ii) Measurement	RRB JE (22-05-2019, Shift-IV)		
(fi) Measurement	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)		
	R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'.		
	R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ?		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83.Loudness of sound is measured in ? (a) Resonance(b)Frequency		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83.Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) Hertz		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in units		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses the		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10¹² 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero for		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10¹² kilometers. 	 R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ? (a) Resonance (b) Frequency (c) Decibel (d) Hertz RRB Group-D, 12-11-2018 (Shift -II) Ans : (c) The loudness of sound is measured in units called decibels (dB). A decibel unit expresses the relative intensity of sounds on a scale from zero for the average least perceptible sound to about 100 dB, 		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10¹² kilometers. 77. 1 atmosphere = ? 	 R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ? (a) Resonance (b) Frequency (c) Decibel (d) Hertz RRB Group-D, 12-11-2018 (Shift -II) Ans : (c) The loudness of sound is measured in units called decibels (dB). A decibel unit expresses the relative intensity of sounds on a scale from zero for the average least perceptible sound to about 100 dB. 		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa	 R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ? (a) Resonance (b) Frequency (c) Decibel (d) Hertz RRB Group-D, 12-11-2018 (Shift -II) Ans : (c) The loudness of sound is measured in units called decibels (dB). A decibel unit expresses the relative intensity of sounds on a scale from zero for the average least perceptible sound to about 100 dB, which is near the level most people find uncomfortably loud. 84. 1 kWh = ? 		
76. A 'light year' is a unit that is use to measure:(a) Time(b) Distance(c) Motion(d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measuredistance. A light-year is the distance that light travels invacuum in one year (365.25 days). The distance thatlight travels in one year is about 9.4607 × 10 ¹² kilometers.77. 1 atmosphere = ?(a) 1.01×10^5 Pa(b) 10.1×10^5 Pa(c) 1.01×10^6 Pa(d) 10.1×10^6 Pa	 R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ? (a) Resonance (b) Frequency (c) Decibel (d) Hertz RRB Group-D, 12-11-2018 (Shift -II) Ans : (c) The loudness of sound is measured in units called decibels (dB). A decibel unit expresses the relative intensity of sounds on a scale from zero for the average least perceptible sound to about 100 dB, which is near the level most people find uncomfortably loud. 84. 1 kWh = ? 		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I)	 R.R.B. JE. Stage - II 30-08-2019 (Shift - III) Ans : (a) Sound pollution is measured in 'Decibel'. 83. Loudness of sound is measured in ? (a) Resonance (b) Frequency (c) Decibel (d) Hertz RRB Group-D, 12-11-2018 (Shift -II) Ans : (c) The loudness of sound is measured in units called decibels (dB). A decibel unit expresses the relative intensity of sounds on a scale from zero for the average least perceptible sound to about 100 dB, which is near the level most people find uncomfortably loud. 84. 1 kWh = ? 		
 76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10⁵Pa (b) 10.1×10⁵Pa (c) 1.01×10⁶Pa (d) 10.1×10⁶Pa RRB Group-D, 28-11-2018 (Shift –I) RRB Group-D, 24-11-2018 (Shift –II) 	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607×10^{12} kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) Ans : (a) 1 Atmosphere = 101325 Pa	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 18-09-2018 (Shift -III)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) RB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325 × 10 ⁵ Pa	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-6J} RRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 18-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa 1 Atmosphere = 1.01325 bar	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018, (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 1.01325 bar = 1 atmosphere = 101.325 kPa	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-6J} RRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 18-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 1.01325 bar = 1 atmosphere = 760 Torr	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018, (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column.	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{6} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)Ans : (c) 1 kWh = 3.6×10^{6} J85.1 kilowatt is equal to?(a) 100 watt(b) 10000watt		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -II) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to -	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)Ans : (c) 1 kWh = 3.6×10^6 J85. 1 kilowatt is equal to?(a) 100 watt(b) 10000watt(c) 10watt(d) 1000watt		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift –I) RRB Group-D, 24-11-2018 (Shift –III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{6} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)Ans : (c) 1 kWh = 3.6×10^{6} J85.1 kilowatt is equal to?(a) 100 watt(b) 10000watt		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift –I) RRB Group-D, 24-11-2018 (Shift –III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt (c) 746 watt (d) 786 watt	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB).A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84.1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5} JRRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB ALP & Tec.(09-08-2018, Shift-I)Ans : (c) 1 kWh = 3.6×10^6 J85.1 kilowatt is equal to?(a) 100 watt(b) 10000watt(c) 10watt(d) 1000watt		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325 × 10 ⁵ Pa \therefore 1 Bar = 1 × 10 ⁵ Pa 1 Atmosphere = 101.325 bar = 1 atmosphere = 760 Torr 1 Atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt (c) 746 watt (d) 786 watt RRB ALP & Tec.(20-08-2018, Shift-II)	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5J} RRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 26-05-2018 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)Ans : (c) 1 kWh = 3.6×10^6 J85. 1 kilowatt is equal to?(a) 100 watt(b) 10000watt(c) 10watt(c) 10000watt <td <="" colspan="2" td=""></td>		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt (c) 746 watt (d) 786 watt (c) 746 watt (d) 786 watt (c) The electrical equivalent of one horsepower	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) $3.6 \times 10^5 J$ (b) 3.6×10^{-6J} (c) $3.6 \times 10^6 J$ (d) 3.6×10^{-5J} RRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 26-05-2019 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)Ans : (d) A kilowatt, is a globally recognized standardfor measuring electricity. One kilowatt is equalto 1,000 watt or 1 KW = 1000 Joule per second.		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607×10^{12} kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa $= 1.01325 \times 10^5$ Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa = 1 atmosphere = 760 Torr 1 Atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt (c) 746 watt (d) 786 watt (c) 746 watt (d) 786 watt (c) The electrical equivalent of one horsepower is 746 watts in the International System of Unit (SI) or	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5J} RRB Group-D, 20-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 27-09-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 26-05-2018 (Shift -II)RRB Group-D, 26-05-2019 (Shift -II)RRB Group-D, 26-05-2019 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)Ans : (d) A kilowatt, is a globally recognized standardfor measuring electricity. One kilowatt is equalto 1,000 watt or 1 KW = 1000 Joule per second.Companies charge an electric bi		
76. A 'light year' is a unit that is use to measure: (a) Time (b) Distance (c) Motion (d) Speed RRB NTPC 14.03.2021 (Shift-II) Stage Ist Ans : (b) Light year is a unit that used to measure distance. A light-year is the distance that light travels in vacuum in one year (365.25 days). The distance that light travels in one year is about 9.4607 × 10 ¹² kilometers. 77. 1 atmosphere = ? (a) 1.01×10^5 Pa (b) 10.1×10^5 Pa (c) 1.01×10^6 Pa (d) 10.1×10^6 Pa RRB Group-D, 28-11-2018 (Shift -I) RRB Group-D, 24-11-2018 (Shift -III) Ans : (a) 1 Atmosphere = 101325 Pa = 1.01325×10^5 Pa \therefore 1 Bar = 1×10^5 Pa 1 Atmosphere = 101.325 kPa 1 atmosphere = 760 Torr 1 Atmosphere = 760 Torr 1 Atmosphere = 760 mm Hg column. 78. 1 horse power is equal to - (a) 764 watt (b) 768 watt (c) 746 watt (d) 786 watt (c) 746 watt (d) 786 watt (c) The electrical equivalent of one horsepower	R.R.B. JE. Stage - II 30-08-2019 (Shift - III)Ans : (a) Sound pollution is measured in 'Decibel'.83. Loudness of sound is measured in ?(a) Resonance(b) Frequency(c) Decibel(d) HertzRRB Group-D, 12-11-2018 (Shift -II)Ans : (c) The loudness of sound is measured in unitscalled decibels (dB). A decibel unit expresses therelative intensity of sounds on a scale from zero forthe average least perceptible sound to about 100 dB,which is near the level most people finduncomfortably loud.84. 1 kWh = ?(a) 3.6×10^{5} J(b) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-6J} (c) 3.6×10^{6} J(d) 3.6×10^{-5J} RRB Group-D, 20-09-2018 (Shift -III)RRB Group-D, 27-09-2018 (Shift -III)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -II)RRB Group-D, 09-08-2018 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)RRB Group-D, 26-05-2019 (Shift -III)Ans : (d) A kilowatt, is a globally recognized standardfor measuring electricity. One kilowatt is equalto 1,000 watt or 1 KW = 1000 Joule per second.		

86. 1 KW=? 95. 1 coulomb/1s = ?(a) 1000Js^{-1} (b) 100Js^{-1} (a) 1 volt (b) 1 ampere (c) 10Js (d) 10000Js⁻¹ (c) 1 ohm (d) 1 watt RRB Group-D, 12-11-2018 (Shift -I) **RRB Group-D**, 12-10-2018 (Shift –III) Ans : (a) See the explanation of above question. Ans: (b) In terms of SI unit, 1 Coulomb is equivalent 87. 5.5 kWh = ?to one Ampere/second. 1 ampere = $\frac{1 \text{ coulomb}}{1 \text{ coulomb}}$ (a) $14.4 \times 10^8 J$ (b) $14.4 \times 10^5 \text{J}$ (c) 14.0×10^{6} J (d) 19.80×10^{6} J 1 sec **RRB** Group-D. 04-12-2018 (Shift –II) 96. 1 Pico meter = ? Ans: (d) We know that. (b) 10^{12} m (a) 10^{-11} m $1 \text{kWh} = 3.6 \times 10^{6} \text{J}$ (c) 10^{-12} m (d) 10^{11} m $5.5 \text{ kWh} = 5.5 \times 3.6 \times 10^6 \text{J} = 19.80 \times 10^6 \text{J}$ RRB Group-D, 20-09-2018 (Shift -III) 5.6 kWh = ? 88. **Ans** : (c) 1 Pico meter = 10^{-12} m (a) $20.16 \times 10^8 \text{J}$ (b) 14.4×10^{6} J 97. 1 Joule = ? (c) 14.4×10^{5} J (d) 19.8×10^{6} J (a) $1N \times 1m$ (b) $1W \times 1h$ RRB Group-D, 22-09-2018 (Shift -II) (c) $1N \times 1cm$ (d) $1Pa \times 1m$ Ans: (a) We know that, RRB Group-D, 15-10-2018 (Shift -II) $1 \text{kWh} = 3.6 \times 10^{6} \text{J}$ Ans: (a) One joule is defined as the amount of energy $5.6 \text{ kWh} = 5.6 \times 3.6 \times 10^6 \text{J} = 20.16 \times 10^6 \text{J}$ exerted, when a force of one Newton is applied over 89. Atomic radius is measured inan object and the displacement of object is one meter. (a) Millimeter (b) Centimeter (1 Joule = $1 \text{ N} \times 1 \text{ m}$). One joule (1 Joule = $1 \text{ watt} \times 1$ (c) Kilogram (d) Nanometer second) is the equivalent to one watt of power **RRB-JE 30.08.2019, Ist Shift** radiated or dissipated for one second. Ans: (d) Atomic Radius is measured in Nanometres 98. The strength of winds is measured with the (10⁻¹⁹m). Atomic Radius is defined as the Shortest help of distance Nucleus to its Outermost Orbit. (a) Tintometer (b) Wind indicator 1 Newton = ? 90. (c) Barometers (d) Beaufort scale (b) $1 \text{ kg} \times 1 \text{ ms}^{-2}$ (a) $1 \text{ kg} \times 1 \text{ ms}^1$ RRB JE CBT-II 28-08-2019 (evening) (c) $1 \text{ kg} \times 1 \text{ ms}^{-1}$ (d) $1 \text{ kg} \times 1 \text{ ms}^2$ Ans : (d) The strength of winds is measured with the RRB Group-D, 10-12-2018 (Shift -III) help of Beaufort scale which starts with Zero (0) and **RRB Group-D**, 22-10-2018 (Shift -II) goes to a force of 12. It was developed by British Ans : (b) A Newton (N) is the international unit of Admiral Sir Francis Beaufort in 1805 to help sailors. force. One Newton is equal to 1 kilogram meter per 00 Korotkoff sounds are observed during second square. measuring the-1m $1 \text{ N} = 1 \text{ kg} \times = 1 \text{ kg} \times 1 \text{ ms}^{-2}$ (a) Electrical insulation <u>sec</u>² (b) Almospheric pressure 4.6 kWh = ?91. (c) Blood pressure (a) $14.0 \times 10^{6} J$ (b) 16.56×10^{6} J (d) Speed of wind flow (c) 14.1×10^{8} J (d) 14.4×10^{5} J R.R.B. JE. Stage - II 01-09-2019 (Shift - III) RRB Group-D, 05-12-2018 (Shift -II) Ans : (c) Korotkoff sounds are usually observed when **Ans** : (b) 4.6kWh = $4.6 \times 3.6 \times 10^{6}$ J = 16.56×10^{6} J one measures blood pressure. 92. 2 kWh = ?100. A particular household has consumed 100 unit (a) $7.2 \times 10^8 \text{J}$ (b) 7.2×10^{6} J of energy during 5 days. How much energy is (c) $7.2 \times 10^5 \text{J}$ (d) $72 \times 10^5 J$ this converted to Joule. **RRB Group-D**, 03-12-2018 (Shift -II) (a) $360 \times 10^8 \text{J}$ (b) 360×10^{-8} J Ans: (b) We know that, (c) 3.6×10^{-8} J (d) $3.6 \times 10^8 J$ $1 \text{kWh} = 3.6 \times 10^{6} \text{J}$ **RRB Group-D**, 03-10-2018 (Shift –III) $2 \text{ kWh} = 2 \times 3.6 \times 10^6 \text{J} = 7.2 \times 10^6 \text{J}$ Ans: (d) 1 unit = 1 kWh93. 4.2 kWh = ? $1 \text{ kWh} = 3.6 \times 10^6 \text{ J}$ (a) $14.4 \times 10^5 \text{J}$ (b) 15.12×10^{6} J Therefore, 100 units = $100 \times 3.6 \times 10^6 = 3.6 \times 10^8 \text{J}$ (c) 14.0×10^{6} J (d) 14.4×10^{6} J RRB Group-D, 05-12-2018 (Shift -I) Ans: (b) We know that, **Measuring Instrument** (iii) $1 \text{kWh} = 3.6 \times 10^6 \text{J}$ $4.2 \text{ kWh} = 4.2 \times 3.6 \times 10^6 \text{J}$ 101. Which instrument aids in the detection of the $= 15.12 \times 10^{6} J$ heartbeat? 94. 1 Nano meter = ? (a) Stethoscope (a) $1/10^{-8}$ m (c) $1/10^{8}$ m (b) $1/10^{-9}$ m (b) Thermometer (d) 1/10⁹m (c) Spirometer RRB Group-D, 16-11-2018 (Shift -I) (d) Sphygmomanometer **Ans : (d)** 1 Nano meter = 1×10^{-9} m = $1/10^{9}$ m RRB Group-D-02/09/2022 (Shift-III)

Ans. (a) : The doctor feels your heartbeats with the help	Ans : (d)
of an instrument called a stethoscope. A doctor uses the	(i) Polygraph:- used as lie detector
stethoscope as a device to amplify the sound of the	apparatus/machine
Heart. It consist of a chest piece that carries a sensitive	(ii) Seismograph – used to measure seismic waves.
diaphragm, two ear pieces and a tube joining the parts.	(iii) Barograph – used to measure change in
102. Name the instrument used by the physicians to	atmospheric pressure.
measure blood pressure.	(iv) Polarimeter – used to measure the angle of
(a) Echocardiogram	rotation caused by passing polarized light.
(b) Sphygmomanometer	107. Which of the following is a lie detector
(c) Stethoscope	machine?
(d) Spirometer	(a) Telescope (b) Photometer
RRB Group-D- 09/09/2022 (Shift-III)	(c) Polygraph (d) Tachometer
Ans.(b) : Sphygmomanometer is used by the physician	RRB NTPC 03.03.2021 (Shift-I) Stage Ist
to measure blood pressure. Stethoscope is used to	Ans : (c) See the explanation of above question.
measure heart rate of human body. Spiro meter is	108. Which instrument is used to show the direction
used to measure air inspired and expired. ECG or	of flow of current in a circuit?
Electrocardiogram is used to measure electrical signal	(a) Galvanometer (b) Ammeter
from the heart.	(c) Rheostat (d) Voltmeter
103. Which of the following does NOT match?	RRB NTPC 19.01.2021 (Shift-I) Stage Ist
(a) Compass – used for navigation and indicates	, , , , , , , , , , , , , , , , , , ,
north-south directions	Ans : (a)
(b) Cyclotron – measures small magnitude	Instruments Uses
Cyclones	◆ Galvanometer to measure small electrical
5	current & direction.
(c) Actinometer – measures the intensity of radiation	
	current value.
(d) Electroscope – detects the presence of electric	• Rheostat to adjust resistance.
charge	• Voltmeter to measure voltage.
RRB NTPC 23.02.2021 (Shift-I) Stage Ist	109. Which of the following devices is used to
Ans: (b) A cyclotron is a type of compact particle	measure relatively high temperature, such as
accelerator which produces radioactive isotopes that can	are encountered in furnaces?
be used for imaging procedure. Rests are correctly	(a) Bolometer (b) Pyrometer
matched.	(c) Ammeter (d) Fluxmeter
104. Which instrument is used to detect the	RRB NTPC 07.01.2021 (Shift-II) Stage Ist
presence of electric charge on an object?	Ans : (b) Pyrometer is an instrument used to measure
(a) Multimeter (b) Electroscope	high temperature, such as are encountered in furnances.
(c) Amperemeter (d) Ohmmeter	When the temperature of an object is very high its
RRB NTPC 19.03.2021 (Shift-I) Stage Ist	temperature cannot be measured with a normal
Ans : (b) The electroscope is an early scientific	thermometer.
instrument used to detect the presence of electric charge	110. Which device is used in submarines to see
on a body. It detects charge by the movement of a test	things above the level of the sea ?
object due to the Coulomb electrostatic force on it. An	(a) Pyrometer (b) Epidiascope (c) Periscope (d) Odometer
electroscope can only give a rough indication of the	(c) Periscope (d) Odometer RRB NTPC 10.04.2016 (SHIFT-III) Stage-I
quantity of charge. An instrument that measures electric	
charge quantitatively is called an electrometer.	Ans : (c) Submarines have a special device called a periscope that allows people inside the submarine to
105. What does a hygrometer measure?	see what's going on above the level of sea. The main
(a) Heat (b) Humidity	
(c) Force (d) Radiation	part of a periscope is a long tube that has a mirror at each end. The mirrors are attached so that they are
	parallel to each other at a 45-degree angle. Arranged
RRB NTPC 27.01.2021 (Shift-II) Stage Ist	in this way, the mirrors bounce reflection of light
Ans : (b) A hygrometer is an instrument used to	between them.
measure the amount of water vapour or humidity in	111. Which instrument is used to measure
atmosphere.	atmospheric pressure?
Measuring Quantity Instruments	(a) Lactometer (b) Barometer
Temperature Thermometer	(c) Thermometer (d) Multimeter
Force Force gauge	RRB NTPC (12.04.2016) SHIFT) Stage- I st
Amount of heat Calorimeter	Ans : (b) Barometer is a device used to measure
106. A lie detector apparatus is also known as a :	atmospheric pressure.
(a) Seismograph (b) Barograph	• A barometer can also be used to measure altitude.
(c) Polarimeter (d) Polygraph	There are two main types of barometers: mercury
	increate two main types of barometers. Increatly
RRB NTPC 01.02.2021 (Shift-II) Stage Ist	

 A lactometer is used to find out the amount of water in the milk. A thermometer is an instrument that measures temperature. Multimeter is a testing tool used to measure two or more electrical values. 112. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (b) Odometer (c) Thermometer (d) Barometer Ans : (d) See the explanation of above question. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool 128. Modemeter is a measuring instrument used for measuring an electromotive force by balancing it 120. Which of the following speed of flow measuring instrument used for measuring instrument used for measuring instrument used for measuring instrument is area meter? (a) Venturimeter (b) See the explanation of above question.
 A thermometer is an instrument that measures temperature. Multimeter is a testing tool used to measure two or more electrical values. 112. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (b) Odometer (c) Thermometer (d) Barometer Ans : (d) See the explanation of above question. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter RRB NTPC 10.04.2016 (SHIFT-I) Stage-Ist Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it (a) Potentiometer is a measuring instrument used for measuring instrument is area meter? (a) Venturimeter (b) Rotameter (b) See the caplanation of above question.
 temperature. Multimeter is a testing tool used to measure two or more electrical values. 112. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (b) Odometer (c) Thermometer (d) Speed Ans : (b) An odometer is an instrument used for measuring the distance travelled by a vehicle. The device may be electronic, mechanical, or a combination of both. It is sometimes called a milometer. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (c) Helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool 121. Which of the following speed of flow measuring instrument used for measuring an electromotive force by balancing it
 Multimeter is a testing tool used to measure two or more electrical values. 112. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (b) Odometer (c) Thermometer (d) See the explanation of above question. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter RRB NTPC 10.04.2016 (SHIFT-I) Stage-Ist Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically –
RRB ALP & TECH (14.08.2018) ShiftI12. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (c) Thermometer (d) Barometer (c) Thermometer (d) Barometer (d) Barometer (d) Barometer (d) Barometer (e) Thermometer (d) Barometer (a) Stroboscope (b) Telescope (c) Helioscope (c) Helioscope (d) Sun meter (c) The helioscope (d) Sun meter (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.RRB NTPC 10.04.2016 (SHIFT-I) Stage-I* (Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.RRB Group -D, 25-10-2018 (Shift-II (d) Speed (c) Smell (d) Speed (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paperRas (b) See the explanation of above question.Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itIII. Which of the following speed of flow measuring instrument used (a) Venturimeter (b) Rotameter
112. Which among the following devices is used to measure the atmospheric pressure? (a) Tetrameter (c) Thermometer (c) ThermometerAns : (b) Odometer (c) ThermometerAns : (b) Odometer (c) ThermometerAns : (c) See the explanation of above question.113. Which device is used to see the Sun? (a) Stroboscope (c) Helioscope (c) Helioscope (c) Helioscope (c) Helioscope is an instrument that is used to see the Sun and Sun's surface area etc.Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.In the difference of the explanation of above question.114. Potentiometer basically - (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paperAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itGreen paper (a) Venturimeter (b) RotameterAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itGreen paper (a) Venturimeter (b) Rotameter
measure the atmospheric pressure?(a) Tetrameter(b) Odometer(c) Thermometer(d) BarometerRRB NTPC 10.01.2021 (Shift-I) Stage IstAns : (d) See the explanation of above question.113. Which device is used to see the Sun?(a) Stroboscope(b) Telescope(c) Helioscope(d) Sun meterRRB NTPC 10.04.2016 (SHIFT-I) Stage-IstAns : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.114. Potentiometer basically -(a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation toolRRB J.E. (14.12.2014), Green paperAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itMans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
 (a) Tetrameter (b) Odometer (c) Thermometer (d) Barometer RRB NTPC 10.01.2021 (Shift-I) Stage Ist Ans : (d) See the explanation of above question. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter RRB NTPC 10.04.2016 (SHIFT-I) Stage-Ist Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
(c) Thermometer(d) BarometerRRB NTPC 10.01.2021 (Shift-I) Stage IstAns : (d) See the explanation of above question.113. Which device is used to see the Sun?(a) Stroboscope(b) Telescope(c) Helioscope(d) Sun meterRRB NTPC 10.04.2016 (SHIFT-I) Stage-I st Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.114. Potentiometer basically –(a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation toolAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
RRB NTPC 10.01.2021 (Shift-I) Stage IstAns: (d) See the explanation of above question.113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter RRB NTPC 10.04.2016 (SHIFT-I) Stage-IstAns: (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation toolAns: (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns: (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
 Ans : (d) See the explanation of above question. 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
 113. Which device is used to see the Sun? (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) See the explanation of above question. 120. Which instrument is used for measuring distance travelled by vehicle? (a) Accelerometer (b) Odometer (c) Smell (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
 (a) Stroboscope (b) Telescope (c) Helioscope (d) Sun meter RRB NTPC 10.04.2016 (SHIFT-I) Stage-I^t Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it (a) Speed (b) See the explanation of above question. 120. Which instrument is used for measuring distance travelled by vehicle? (a) Accelerometer (b) See the explanation of above question.
 (c) Helioscope (d) Sun meter <u>RRB NTPC 10.04.2016 (SHIFT-I) Stage-Ist</u> <u>Ans : (c) The helioscope is an instrument that is used</u> to see the Sun and Sun's surface area etc. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool <u>RRB J.E. (14.12.2014), Green paper</u> Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
RRB NTPC 10.04.2016 (SHIFT-I) Stage-I Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.Ans : (b) See the explanation of above question. 114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paper Ans : (b) See the explanation of above question. Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (b) See the explanation of above question. Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (b) See the explanation of above question. Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (b) Rotameter
Ans : (c) The helioscope is an instrument that is used to see the Sun and Sun's surface area etc.114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool120. Which instrument is used for measuring distance travelled by vehicle? (a) Accelerometer (b) Odometer (c) Speedometer (c) Is a notation tool RRB J.E. (14.12.2014), Green paperAns : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it120. Which instrument is used for measuring instrument is used for measuring (a) Accelerometer (b) Odometer (c) Speedometer (d) Tachometer RRB Group- D,05-11-2018(Shift-II Ans : (b) See the explanation of above question.121. Which of the following speed of flow measuring instrument is area meter? (a) Venturimeter (b) Rotameter
114. Potentiometer basically – (a) Is a measuring instrument (b) Is a connective device (a) Accelerometer (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paper Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it
 (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paper Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it (a) Accelerometer (b) Odometer (c) Speedometer (d) Tachometer RRB Group- D,05-11-2018(Shift-II Ans : (b) See the explanation of above question. 121. Which of the following speed of flow measuring instrument is area meter? (a) Venturimeter (b) Rotameter
 (a) Is a measuring instrument (b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paper Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it (c) Speedometer (d) Tachometer RRB Group- D,05-11-2018(Shift-II Ans : (b) See the explanation of above question. 121. Which of the following speed of flow measuring instrument is area meter? (a) Venturimeter (b) Rotameter
(b) Is a connective device (c) Is a calibration equipment (d) Is a notation tool RRB J.E. (14.12.2014), Green paper Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it RB J.E. (14.12.2014), Green paper Ans : (b) See the explanation of above question. 121. Which of the following speed of flow measuring instrument is area meter? (a) Venturimeter (b) Rotameter
(c) Is a calibration equipment(d) Is a notation toolAns : (b) See the explanation of above question.RRB J.E. (14.12.2014), Green paper121. Which of the following speed of flow measuring instrument is area meter?Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing itAns : (b) See the explanation of above question.OutputOutputOutput(a) Venturimeter(b) Rotameter(b) Rotameter(c) Notameter
(a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it121. Which of the following speed of flow measuring instrument is area meter?(a) Venturimeter(b) Rotameter(a) Venturimeter(b) Rotameter
Ans : (a) Potentiometer is a measuring instrument used for measuring an electromotive force by balancing it (a) Venturimeter (b) Rotameter
for measuring an electromotive force by balancing it (a) Venturimeter (b) Rotameter
for measuring an electromotive force by balancing it
against the potential difference produced by passing a (c) Pitot tube (d) None of these
known current through a known variable resistance. RRB SSE 21.12.2014
Potentiometers are commonly used to control electrical Ans : (b) Rotameter measuring instrument is an area
devices such as volume controls on audio equipment. If meter. A rotameter is a device that measure the
115. From which device is the electric current volumetric flow rate of liquids in a closed pipe or
measured? [1] tube. It belongs to a class of meters called variable-
(a) Voltmeter (b) Ammeter area flow meters, which measure flow rate by allowing the gross sectional area the liquid travelle
DDB LE (14 12 2014) Ded paper allowing the closs sectional area the inquid travens
Ans : (b) An ammeter is a measuring instrument used
to measure the current in a circuit Electric currents are 1122. Tachometer is used for-
measured in amperes (a), hence the named Instruments are (a) R.P.M.
used to measure smaller currents, in the milliampere or (b) Torque
microampere range, are designated as milliammeters or (c) Rotational kinetic energy
microammeters. (d) Distance
Hence- (i) Ammeter is connected in series to the circuit.
(ii) It must have the following legitimate resistance KRB NIPC Stage-1 51.05.2010 (SHIF1-II
(iii) Ammeter Draws less nower RKB 5.5.E. 2014(21-12-2014, Set-08, Green Paper
116. Anmeter is – [] Ans : (a) Tachometer is an instrument used for
(a) Is connected in a series to the circuit measuring the rotation or revolution speed of objects,
(b) Must have the following legitimate resistance such as an engine or a shaft. The tachometer measures
(c) Draws less power rotations per minute (RPM) of engines shafts and is
(d) All of the above widely used in automobiles, airplanes, marine
RRB J.E. (14.12.2014, Set-2), Red paper engineering field and many others.
Ans : (d) See the explanation of above question. 123. Multimeter consist of-
117. What does stalagmometer used to measure?(a) Current and Ohm meter(a) Dynamic viscosity (b) Surface tension(b) Voltmeter & Ohm meter
(a) Definition in day (d) Lighted estimite
PRR SSF 21 12 2014
Ans : (b) A stalagmometer is a device used for (d) voltmeter, Currentmeter & Onm meter
measuring surface tension using the stalagmometric RRB J.E. 2014(14-12-2014, Green Paper
method. It is also called a stactometer or Ans: (d) A multimeter is the combination of a DC
stalagmometer. The device is a capillary glass tube voltmeter, AC voltmeter, Ammeter, and Ohmmeter.
whose middle section is widened. The volume of a drop An un-amplified analog multimeter combines a meter
can be predetermined by the design of movement, range resistors and switches; VTVMs are amplified analog meters and contain active circuitry.
the stalagmometer. amplified analog meters and contain active circuitry.

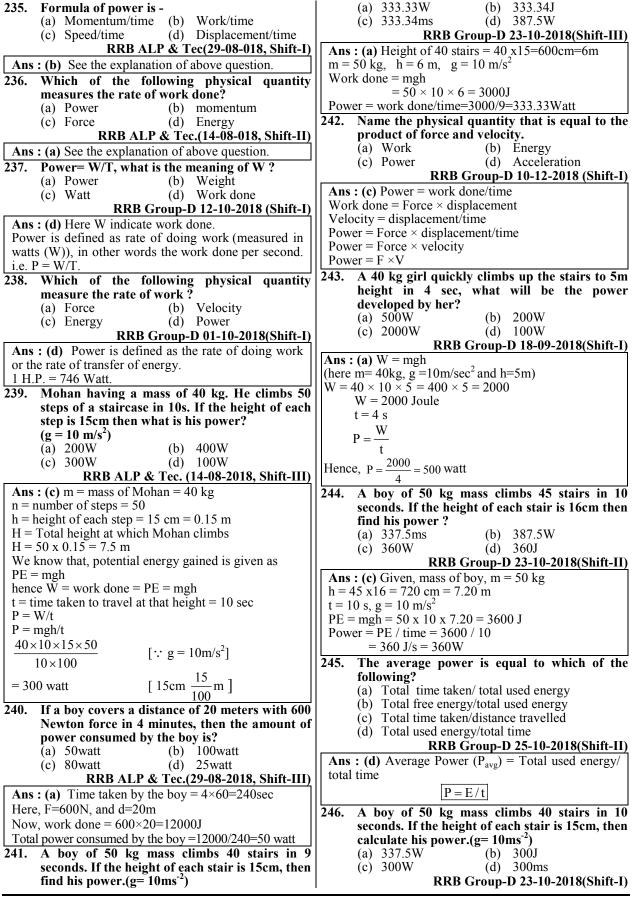
 124. What is false about richter scale? (a) It was developed by Charles Richter and Gutenberg in 1935. (b) It is a logarithmic scale (c) It can be measured using seismometer (d) A magnitude of 8-9 on the Richter scale means a light earthquake. RRB NTPC Stage-Ist 03.04.2016 (SHIFT-I) 	 130. Voltmeter is used for measuring- (a) Air resistance (b) Voltage (c) Magnetic flux (d) Electric current RRB J.E., 29-05-2019(Shift-III) RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) A voltmeter is an instrument used for measuring electrical potential difference between two points in an electric circuit. Analog voltmeters move a
 Ans : (d) A magnitude of 8-9 on the Richter scale means a destructive earthquake. The Richter magnitude scale is a scale of numbers used to tell the power (or magnitude) of earthquake. Charles Richter And Gutenberg developed the Richter Scale in 1935. 125. Instrument used for measuring density of liquid is- (a) Hygrometer (b) Hydrometer 	 pointer across a scale in voltmeter for the voltage of the circuit; digital voltmeters give a numerical display of voltage by the use of an analog-to-digital converter. 131. Which instrument is used for measuring voltage? (a) Ammeter (b) Potentiometer (c) Galvanometer (d) Voltmeter RRB Group- D, 08.10.2018 (Shift-I) RRB Group - D, 08-10-2018 (Shift-II)
 (c) Hypsometer (d) Fathometer RRB NTPC Stage-Ist 05.04.2016 (SHIFT-I) Ans : (b) A hydrometer is an instrument used for measuring the relative density of liquids based on the concept of buoyancy. They are typically calibrated and graduated with one or more scales such as specific gravity. 	Ans : (d) See the explanation of above question.132. Galvanometer is used for measuring- (a) Direction of speed (b) Direction of magnetic flux (c) Direction of sound (d) Direction of current RRB Group- D, 24-09-2018(Shift-I)
Fathometer is a depth finder that uses sound waves to determine the depth of water. A hygrometer is a meteorological instrument that is used to measure the humidity of the air. The common way these devices work by using a material that attracts moisture. A hypsometer is an instrument for measuring height or elevation.	RRB Group –D, 22-09-2018 (Shift-I) Ans : (d) A galvanometer is an electromechanical instrument used for detecting and indicating an electric current on a circuit. A galvanometer works as an actuator, by producing a rotary deflection, in response to electric current flowing through a coil in a
126. Which instrument is used for discovering the things in water? (a) Laser (b) Radar (c) Sonar (d) Scuba RRB NTPC Stage-I st 28.03.2016 (SHIFT-II) Ans : (c) SONAR (Sound Navigation and Ranging) is a technique that uses sound propagation (usually	constant magnetic field. 133. Which of the following is used to detect current in a circuit? (a) Galvanometer (b) Anemometer (c) Barometer (d) Lactometer RRB NTPC Stage-1 st 26.04.2016 (SHIFT-II) Ans : (a) See the explanation of above question.
underwater, as in submarine navigation) to navigate. communicate with or detect objects under the surface of the water, such as other vessels. 127. Echolocation in ships is used for measuring- (a) Depth of light (b) Density of fish	 134. Which is used for measuring speed of motor- (a) Speedometer (b) Voltmeter (c) Velometer (d) Lactometer RRB Group- D,05-11-2018(Shift-I) Ans : (a) A speedometer is a device used to measure the travelling speed of a vehicle, usually for the purpose of maintaining a sensible speed.
 (c) Depth of water (d) Density of oceanic vegetation RRB Group- D, 12-11-2018(Shift-I) Ans : (c) Echolocation in ships is used for measuring depth of water. The principle of echolocation is same as SONAR system. Hence, SONAR is the type of Echolocation. 	135. Ammeter : Electric current :: Ohmmeter : ? (a) Voltage (b) Pressure (c) Resistance (d) Speed RRB Group –D, 03-10-2018 (Shift-II) Ans : (c) Ohmmeter is related to measure resistance in a circuit. It measures the resistance in ohms.
128. is type of Echolocation – (a) Vibration (b) Frequency (c) Radar (d) Sonar RRB Group –D, 01-11-2018 (Shift-II) Ans : (d) See the explanation of above question. 129. Which instrument is used for measuring	 136. Which instrument is used for measuring power and speed of wind? (a) Lactometer (b) Speedometer (c) Thermometer (d) Anemometer RRB Group –D, 12-10-2018 (Shift-I) RRB NTPC 25.01.2021 (Shift-I) Stage Ist
density of milk?(a) Hydrometer(b) Lactometer(c) Barometer(d) ThermometerRRB Group- D,12-11-2018(Shift-III)Ans : (b) A lactometer is an instrument that is used to check the purity of milk by measuring its density. The lactometer works on the principle of specific gravity of milk.	RRB NTPC 23.07.2021 (Shift-II) Stage Ist Ans : (d) An anemometer is an instrument that measures wind speed and wind pressure and power. Anemometers are important tools for meteorologists, who study weather patterns. The anemometer counts the number of rotations, or turns, which is used to calculate wind speed. It is also a common weather station instruments.

137. Which of the following can be measured	Ans : (c) Momentum is a vector quantity, as it has both
temperature without touching to object?	direction and magnitude. Mass, distance and speed are
(a) Infrared thermometer	scalar quantities because they contain only magnitude.
(b) Filled system thermometer	144. In the given physical quantities which is not a relative quantity?
(c) Mercury glass thermometer	(a) Time (b) Acceleration
(d) Electric thermometer	(c) Velocity (d) Distance
RRB J.E. (14.12.2014, Green paper)	RRB Group-D, 03-12-2018 (Shift –III)
Ans : (a) Infrared thermometer enables to measure	Ans : (a) Time is not a relative quantity.
temperature quickly, at a distance and without touching the object. They are so useful, easy to use	Velocity is defined as the rate of displacement of an
even fun to use that they have become as common in	object
kitchens as they have on factory floors. Infrared	$Velocity (V) = \frac{Displacement}{Time}$
thermometer are often used to find over heated	Time
equipment and electrical circuits temperature but they	• Acceleration is defined as the rate of change of
have hundreds of other uses.	velocity.
	• Velocity and acceleration is a vector quantity.
(iv) Physical Quantities	Note : Negative acceleration is called as retardation.
	145. Which of the following is vector quantity ?(a) Volume(b) Mass
138. Which of the following is a scalar quantity?	(c) Force (d) Length
(a) Pressure (b) Displacement	RRB JE (14-12-2014, Red Paper)
(c) Force (d) Momentum	Ans : (c) Vector quantities refers to that physical
RRB Group-D 26-10-2018 (Shift-II)	quantities characterized by the presence of both
Ans : (a) Pressure is a scalar quantity, because it has	magnitude as well as direction. For example,
magnitude but does not have direction, whereas force,	displacement, force, torque, momentum, acceleration,
displacement and momentum all are vector quantities because they have both direction and magnitude.	velocity, etc. 146. Which of the given below is NOT a vector
139. Which of the following is not a vector	146. Which of the given below is NOT a vector quantity?
quantity-	
(a) Speed / Impulse (b) Force of gravity	(a) Power (b) Torque (c) Displacement (d) Acceleration
(c) Electric current (d) Displacement	RRB NTPC 09.03.2021 (Shift-I) Stage Ist
RRB NTPC 12.04.2016 (Shift-I) Stage I st	Ans : (a) The physical quantities which require
Ans : (c) Electric current is not a vector quantity	magnitude as well as direction to be fully represented
because it does not follow the vector law of addition.	are called vector quantities. Example- Momentum,
140. A vector quantity has both magnitude and	impulse, acceleration, force, displacement, velocity,
direction, whereas a scalar quantity has only magnitude and no direction. Which of the	electric field, torque etc. Whereas energy, distance, time, power etc, are scalar quantities.
following is a vector quantity?	147. Which of the following is a scalar quantity?
(a) Work (b) Speed	(a) Momentum (b) Force
(c) Displacement (d) Energy	(c) Mass (d) Velocity
RRB Group-D 12-11-2018 (Shift-I)	RRB NTPC 28.12.2020 (Shift-II) Stage Ist
Ans : (c) Vector Quantity- The physical quantities	Ans : (c) A quantity that has magnitude but no
which need both magnitude and direction for their	particular direction is described as scalar quantity. A
complete description are called 'vectors' or 'vector quantities'. Displacement, velocity, force, etc. are all	quantity that has magnitude and acts in a particular direction is described as vector quantity. Scalar
vector quantities.	quantities include: mass, distance, speed, time, power,
141. What is an example of vector quantity?	energy etc. Vector quantities include: displacement,
(a) Weight (b) Temperature	velocity, acceleration, force, weight, momentum etc.
(c) Velocity (d) Length	148. Which of the following only gives magnitude
RRB NTPC Stage 1 st 28.04.2016 (Shift-I)	and not direction?
Ans : (c) See the explanation of above question.	(a) Momentum (b) Displacement
142. Which of the following is a vector quantity?	(c) Work (d) Force RRB Group –D, 25-09-2018 (Shift-III)
(a) Time (b) Temperature	Ans : (c) Work is a scalar quantity because it is the
(c) Distance (d) Velocity	dot product of two vectors (Force and Displacement).
RRB NTPC 09.04.2016 (Shift-III) Stage Ist	Work $(W) = F.d$
Ans: (d) See the explanation of above question.	Work = Force \cdot Displacement
143. Which of the following has both direction and	$\downarrow \qquad \downarrow \qquad \downarrow$
magnitude?	Scalar quantity Vector Vector
(a) Mass(b) Distance(c) Momentum(d) Speed	Thus, dot product of two vectors becomes scalar
(c) Momentum (d) Speed RRB Group-D 05-11-2018 (Shift-II)	quantity. So, work done has only magnitude but not direction.
DDD Seienee Diemeen Diesies	

149.	In work – (a) There is no direction , only have magnitude (b) There are no direction & magnitude	154.	If an aeroplane travelled 4000m distance and work done is 20000J. Then force applied on it is (a) 5 N (b) 50 N (b) 50 N
	(c) Both magnitude and direction is present		(c) 0.20 N (d) 10 N
	(d) Only direction, no magnitude	A	RRB Group –D, 10-12-2018 (Shift-I)
Ang	RRB Group –D, 27-11-2018 (Shift-II) : (a) See the explanation of above question.		: (a) Work = Force \times Displacement 00 = Force \times 4000
150.	Which of the following has magnitude and no	200	F = 20000/4000
130.	direction?		= 5 N
	(a) Work (b) Impulse	155.	The gravitational potential energy of an object
	(c) Displacement (d) Force		at a point above the ground. Is defined as the
—	RRB Group –D, 12-11-2018 (Shift-II)		work done in
	: (a) Work is a scalar quantity which has only nitude, no direction.		(a) Lifting it from the ground to the point
mag			opposite gravity
2.	Mechanics		(b) Applying gravitational force on it
<u> </u>	witchanics		(c) Keep it at the center(d) Placing it on the ground of against gravity
(i)	Work		RRB Group –D, 22-10-2018 (Shift-II)
		Δns	(a) The gravitational potential energy of an
151.	Which of the following can do more work?		ect at a point above the ground is defined as the
	(a) A raised hammer		k done to lift it from the ground to the point
	(b) A bullet fired by the gun		osite to gravity.
	(c) A moving stone	156.	The work done, to increase speed 5 m/s to 10
	(d) A rotating wheel		m/s by a car of 800kg is
	RRB ALP & Tec. (31-08-2018) Shift-III PPP Crown D 12 10 2018 (Shift II)		(a) $30kJ$ (b) $40kJ$
Ans	RRB Group –D, 12-10-2018 (Shift-II) : (b) A bullet fired by gun has the maximum		(c) 20kJ (d) 10kJ RRB Group-D 22-09-2018(Shift-II)
work		Ans	: (a) Work done = change in kinetic energy
152.	A force of 20 N displaces an object through 2 m	Alls	$= 1/2m(v_2^2 - v_1^2)$
	and does a work of 20 J. The angle between the		$= \frac{1}{2 \times 800(10^2 - 5^2)}$
	force and displacement is: (a) 60° (b) 30°		$=\frac{1}{2}\times 800\times 75$
	(a) 60^{0} (b) 30^{0} (c) 90^{0} (d) 0^{0}		= 30000 J = 30 kJ
	RRB ALP & Tec.(20-08-2018)Shift-II	157.	An object of 1kg is dropped to the ground from
Ans	: (a) Given that,		a height of 30m. What is the work done by the force of gravity ? ($g = 10 \text{ m/s}^2$)
F = 2			(a) $10J$ (b) $300J$
d = 2			(c) $0.33J$ (d) $30J$
W =	$Vork(W) = F. d \cos\theta$		RRB Group-D 19-09-2018(Shift-I)
	$20 \times 2 \times \cos\theta$		(b) m = 1 kg
	$2\cos\theta$		10 m/s^2
	= 1/2		30 m
	$=\cos 60^{\circ}$		= mgh
$\theta = 0$			work done by the force of gravity $\times 10 \times 30 = 300$ Joule
153.	A porter raise 12 kg object from surface of	158.	A person picks up 20kg of goods at 2m above
	earth and put object 1.5 meter above from	1000	the ground and keeps it on his head, work done
	surface on his head. Calculate the work done on object $(g = 10 \text{ ms}^{-2})$.		by the person is?
	(a) 140 J (b) 150 J		(a) 200J (b) 400J
	(c) 180 J (d) 150 J		(c) $40J$ (d) $20J$
—	RRB Group-D, 04.10.2018 (shift-I)	Ang	RRB Group-D 17-09-2018(Shift-II)
Ans			: (b) Given that, $m = 20 \text{ kg}$ th (h) = 2 m
	$g = 10 m/s^2$ h = 1.5m		10 m/s^2
So. i	f an object of mass (m) is raised through a height		$mgh = 20 \times 10 \times 2 = 400 \text{ J}$
	e work done on the object is equal to potential		An object of 1 kg, raised 10m above the surface
ener	gy (mgh) of an object.		of earth then work done by gravitational force
	efore,		will- $(g = 9.8 \text{ m/s}^2)$
	mgh ×10×1.5		(a) $98J$ (b) $-9.8J$ (c) $9.8J$ (d) $98I$
= 12 = 18			(c) 9.8J (d) -98J PRR Group D 20.09 2018 (Shift II)
10		I	RRB Group –D, 20-09-2018 (Shift-II)

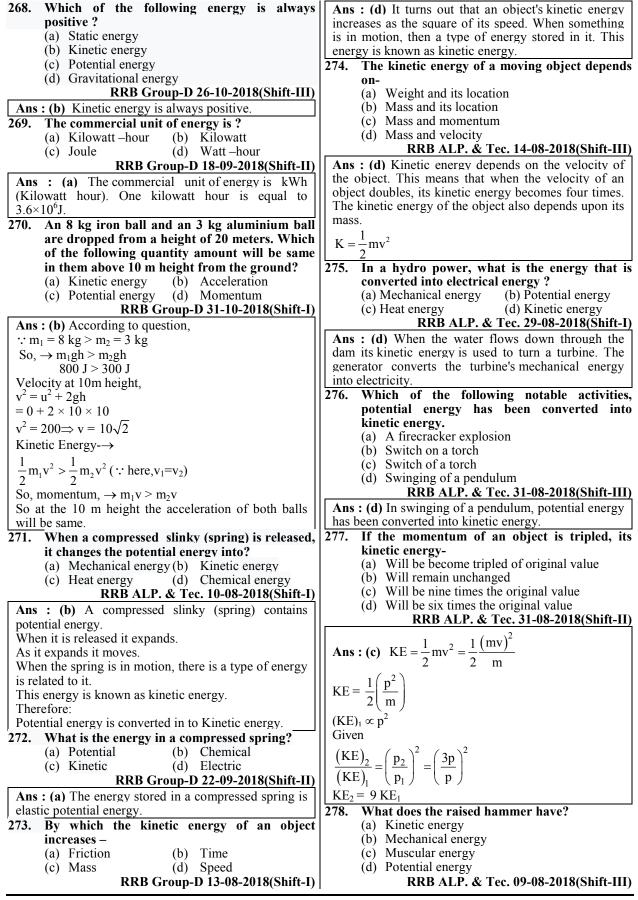
Ans: (d) $m = 1 kg$	1 (2 2)
$g = 9.8 \text{m/s}^2$ (object raise from surface against	$= \frac{1}{2} m \left(v_2^2 - v_1^2 \right) \\= \frac{1}{2} \times 4 \left(10^2 - 5^2 \right)$
gravitational force)	
h = 10m	$=\frac{1}{2} \times 4(10^2 - 5^2)$
As work done by an object is equal to the potential	
energy stored in an object.	Work done = $\{4 \times (10^2 - 5^2)\}/2 = 150 \text{ J}$
	Work done = $\{4 \times (10^2 - 5^2)\}/2 = 150 \text{ J}$ 164. A ball weighing 0.1 kilogram is dropped from a
Therefore,	stationary position when it falls from a distance
W = mgh	of 2 meters, then what will be the work done by
$= 1 \times 9.8 \times 10$	
= 98J.	the force of gravity.
When the displacement is opposite to the direction of	(a) 1.96 J (b) - 1.96 J
force, work is automatically -98J	(c) - 0.98 J (d) 0.98 J
160. A man raised 20kg object from the surface of	RRB ALP & Tec.(10-08-2018)Shift-III
earth and put the object 2m above on his head.	Ans: (a) Given, Mass of ball $(m) = 0.1$ kg
Calculate the work done by the man is- $(g = 10)$	Total height (h) = $2m$
Calculate the work usile by the main is- $(g = 10)$	Acceleration due to gravity (g) = 9.8 m/s^2
m/s^2) (1) 2001	
(a) 350J (b) 200J	Here, work done by the gravitational force = potential
(c) 400J (d) 150	energy of ball at 2 m height.
RRB Group –D, 24-09-2018 (Shift-II)	$W = 0.1 \times 9.8 \times 2 = 1.96 J$
Ans: (c) $m = 20 kg$	165. When the force exerted on an object, then the
$g = 10 \text{m/s}^2$	work done will be zero if it has displacement.
h = 2.0m	(a) Negative (b) Positive
	(c) Neutral (d) Zero
So, if an object of mass (m) is raised through a height	RRB ALP & Tec.(21-08-2018)Shift-III
h, the work done on the object is equal to potential	Ans : (d) If displacement of the object is zero then
energy (mgh).	
Therefore,	work done also will be zero.
W = mgh	\therefore W = F × d
$=20\times10\times2$	Where, $F = force$
= 400 J.	d = displacement
161. When an object move 1m distance by 1N force	$W = F \times 0$
on the direction of force then work done will-	W = 0
(a) 10J (b) 100J	
$\begin{array}{cccc} (a) & 103 & (b) & 1003 \\ (c) & 0.01J & (d) & 1J \end{array}$	166. A boy raises a box with a weight of 120 N
	through a height of 2 m. The work done by the
RRB ALP & Tec.(20-08-2018)Shift-II	boy is-
Ans : (d) Given, Force = 1 N , Distance = 1 m	(a) 60 J (b) 120 J
Work done = F.d $\cos\theta$	(c) 240 J (d) 180 J
$=1 \times 1 \times \cos^{0}$ (because force and displacement are in same	RRB ALP & Tec.(30-08-2018)Shift-I
direction)	Ans : (c) Given, Weight = $mg = 120N$, Height (h)= 2
direction) Hence work done = 1J	Ans : (c) Given, Weight = mg = 120N, Height (h)= 2 m
Hence work done $= 1J$	m
Hence work done = 1J 162. Work done by a man standing on a platform	m Work done = mgh
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is-	$m Work done = mgh = 120 \times 2$
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J	m Work done = mgh = 120×2 = $240J$.
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as-
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is-	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as- (a) Power (b) Pressure
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as - (a) Power (b) Pressure (c) Energy (d) Force
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$	$ \begin{array}{l} m \\ & \text{Work done} = \text{mgh} \\ & = 120 \times 2 \\ & = 240 \text{J.} \end{array} \\ \hline \textbf{167. Capacity of doing work is known as-} \\ & (a) \text{ Power} \qquad (b) \text{ Pressure} \\ & (c) \text{ Energy} \qquad (d) \text{ Force} \\ \hline \textbf{RRB ALP \& Tec.(31-08-2018)Shift-III} \end{array} $
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work.
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-I Ans : (b) $W = F \times d$ Here, $F = $ force d = displacement But there is no displacement of the man,	$ \begin{array}{l} m \\ & \text{Work done} = \text{mgh} \\ & = 120 \times 2 \\ & = 240 \text{J.} \end{array} \\ \hline \textbf{167. Capacity of doing work is known as-} \\ & (a) \text{ Power} \qquad (b) \text{ Pressure} \\ & (c) \text{ Energy} \qquad (d) \text{ Force} \\ \hline \textbf{RRB ALP \& Tec.(31-08-2018)Shift-III} \end{array} $
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'.
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man,	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity.
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic
Hence work done = 1J 162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-I Ans : (b) W = F × d Here, F = force d = displacement But there is no displacement of the man, Hence, d = 0 Work done = F×0 W = 0	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body -
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ $W = 0$ 163. A 4.0 kg object is moving horizontally with a	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ $W = 0$ 163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force <u>RRB ALP & Tec.(31-08-2018)Shift-III</u> Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ $W = 0$ 163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force <u>RRB ALP & Tec.(31-08-2018)Shift-III</u> Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ $W = 0$ 163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is:	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force <u>RRB ALP & Tec.(31-08-2018)Shift-III</u> Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980J RRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ $W = 0$ 163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × dHere, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0 $W=0$ 163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J(b) 100J (c) 50J	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group –D, 20-09-2018 (Shift-I)
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × d Here, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J(b) 100J (c) 75JRRB ALP & Tec.(09-08-2018)Shift-I	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) $W = F \times d$ Here, $F = force$ $d = displacement$ But there is no displacement of the man, Hence, $d = 0$ Work done = $F \times 0$ We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J (c) 75J (c) 50J RRB ALP & Tec.(09-08-2018)Shift-IAns : (a)	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is positive, then $\vec{F}.\vec{s} > 0$. Thus, the one component of
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J (d) 980JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × d Here, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J(b) 100J (c) 75JRRB ALP & Tec.(09-08-2018)Shift-I	m Work done = mgh = 120×2 = 240J. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J(b) 0J (c) 98JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × d Here, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J(b) 100J (c) 75J (d) 50J RRB ALP & Tec.(09-08-2018)Shift-IAns : (a) Given that, m = 4kg, V1 = 5 m/s and V2 = 10 m/s	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is positive, then $\vec{F}.\vec{s} > 0$. Thus, the one component of force is along the direction of displacement. Thus,
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J(b) 0J (c) 98J(d) 980JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × d Here, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J (c) 75J (d) 50J RRB ALP & Tec.(09-08-2018)Shift-IAns : (a) Given that, m = 4kg, V1 = 5 m/s and V2 = 10 m/s For raising speed of the object, the work done is equal	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is positive, then $\vec{F} \cdot \vec{s} > 0$. Thus, the one component of force is along the direction of displacement. Thus, speed of the object tends to increase as the force
Hence work done = 1J162. Work done by a man standing on a platform holding 10kg suitcase is- (a) 100J (b) 0J (c) 98J(b) 0J (c) 98JRRB ALP & Tec.(21-08-2018)Shift-IAns : (b) W = F × d Here, F = force d = displacementBut there is no displacement of the man, Hence, d = 0 Work done = F×0We = 0163. A 4.0 kg object is moving horizontally with a speed of 5.0 m/s. To increase its speed to 10 m/s, the amount of net work required to be done on this object is: (a) 150J (b) 100J (c) 75J(b) 100J (c) 75J (d) 50J RRB ALP & Tec.(09-08-2018)Shift-IAns : (a) Given that, m = 4kg, V1 = 5 m/s and V2 = 10 m/s	m Work done = mgh = 120×2 = $240J$. 167. Capacity of doing work is known as- (a) Power (b) Pressure (c) Energy (d) Force RRB ALP & Tec.(31-08-2018)Shift-III Ans : (c) Energy is defined as the capacity to do work. Work and energy has same S.I. unit i.e. 'Joule (J)'. Work and energy both are scalar quantity. 168. If the value of work is positive then the kinetic energy of the body - (a) Decrease his energy (b) Its value will be zero (c) It will stay (d) Increase his energy RRB Group -D, 20-09-2018 (Shift-I) Ans : (d) If work done by conservative forces is positive, then $\vec{F.s} > 0$. Thus, the one component of force is along the direction of displacement. Thus,

169. Which of the following position is no work	Ans : (b) A donkey is carrying weight on its back, in
done?	this case no work is being done because the
(a) Kapil stands with a weight of 10 kg on his	displacement of the object is perpendicular to the
shoulder	direction of the force applied.
(b) Sachin walks 4 km.	$W = f.d \cos\theta$
(c) A porter carries weight from a bus to a car.	$= f.d \cos 90^{\circ} = 0$
(d) Arun plays cricket on the field.	W = 0
RRB Group –D, 19-09-2018 (Shift-III)	174. Efficiency of work is known as-
Ans : (a) Kapil is standing with a weight of 10 kg on	(a) Energy (b) Velocity
his shoulder. It is clear that displacement is zero, so	(c) Force (d) Speed
the work done by Kapil will be zero.	RRB Group – D, 16-11-2018 (Shift-II)
170. The work done by the force is positive when-	Ans : (a) Energy is called the ability to do work.
(a) Displacement occurs in the direction of force	Efficiency can be determined quantitatively by the ratio of energy transferred to useful form compared to the total
(b) Displacement is perpendicular to the force	energy supplied initially is called the efficiency.
(c) There is no displacement due to the force	175. If the work done is zero, then the angle
(d) Displacement occurs in opposite direction of	
force	(a) 0° (b) 90°
RRB Group –D, 19-09-2018 (Shift-III)	(c) 45° (d) 30°
	RRB Group –D, 08-10-2018 (Shift-II)
	RRB Group –D, 17-09-2018 (Shift-II)
displacement are in the same direction, the work performed on an object is said to be positive work.	Ans : (b) We know that,
Negative Work–Negative work is performed if the	$W = F.d \cos\theta$
displacement is opposite to the direction of the force	when, $W = 0$
applied.	$0 = F.d \cos \theta$
Zero Work –When force and displacement are	$\therefore \cos\theta = 0 = \cos 90^{\circ}$
perpendicular to each other, or when force or	$0 = 90^{\circ}$
displacement is zero then there will be no work done.	In the case of zero work the angle between the
171. Which of the following activities can be said to	displacement and the applied force is 90 degree.
have work done ?	176. 20 N force is acting on a body. Body moves 4
(a) Harsh is reading the book	meter in direction of applied force, then work
(b) Pinky is walking on a flat road with a book on	done is-
her head	(a) 80W (b) 80Pa
(c) Shruti is sitting on the chair	(c) 80N (d) 80J
(d) Khusi is pushing the wall of the house, but	RRB Group –D, 05-10-2018 (Shift-II)
fails to do it.	Ans : (d) Given, Force (F)=20 N, Displacement (d) = 4 m
RRB Group –D, 18-09-2018 (Shift-II)	Work done (W) = $F.dcos\theta$
Ans. (*) Pinky is walking on a flat road with a book	$\begin{bmatrix} \theta = 0^{\circ} \text{ Displacement occurs in the direction of the force} \\ \text{Work} = 20 \text{ N} \times 4 \text{ m} \times \cos 0^{\circ} \end{bmatrix}$
on her head, it can be said their will be no work done.	$Work = 20 \text{ N} \times 4 \text{ m} \times \cos \theta$ $Work = 20 \text{ N} \times 4 \text{ m} \times 1$
Because here, the force due to the gravity is	$Work = 20 \text{ N} \land 4 \text{ III} \land 1$ $Work = 80 \text{ Nm} = 80 \text{ J}$
perpendicular to the displacement of object. In other	177. A worker takes 15kg object and put the object
options their are no any displacement of object.	1 meter above on his head from the surface of
So here remaining option also work done will be zero.	earth. Then work done by the worker is $-(g =$
172. A porter lifts 500 N up to a distance of 100	10 ms^{-2}).
meters work done by the porter is-	(a) 155J (b) 150J
(a) 50N (b) 0.20N	(c) $140J$ (d) $100J$
(c) 0N (d) 5N	RRB Group –D, 05-10-2018 (Shift-II)
RRB Group –D, 06-12-2018 (Shift-I)	Ans: (b) Given, $m = 15$ kg
Ans : (c) A porter lifts 500N up to a distance of 100	$g = 10 m/s^2$
meters then the work done by porter is zero because	h = 1.0m
the displacement of the object is perpendicular to the	As work done by an object is equal to the potential
direction of the force applied. So, the angle between	energy stored in an object.
the force and displacement is 90 degrees ($\theta = 90^{\circ}$).	Therefore, $W = mgh = 15 \times 10 \times 1 = 150J.$
Work done = $F.dcos\theta$	178. Work present if there is –
$= F.d\cos 90^0 = 0$	(a) Force (b) Energy
173. In which of the following work is not done –	(c) Friction (d) Power PBR Crown D 26 00 2018 (Shift D)
(a) A wind mill raising the water from well	RRB Group –D, 26-09-2018 (Shift-I)
(b) A donkey put a weight on his back	Ans: (a) Work is said to be done when body or
(c) Suman is swimming in a pool	object moves with the application of external force. We can define work as an activity involving
(d) A engine is pulling a train	a movement and force.
RRB Group –D, 02-11-2018 (Shift-II)	
• · · · · ·	
DDD Salanaa Dlannar Dhuglag	VCT


170 If displacement is hovizontal to the applied	
179. If displacement is horizontal to the applied	
force, then work done is –	F = 7N
(a) Zero (b) Negative (c) Positive (d) Neutral	Work = Force × Displacement
RRB Group –D, 26-10-2018 (Shift-II)	Displacement = $W/F = 56/7 = 8m$
Ans : (c) When a body moves on the horizontal	185. 10 N force is working on an object. Object
surface, force and displacement act in the same	displaced 5m in the direction of applied force,
direction. The work done in this case is known as	then work done is -
positive work.	(a) 50N (b) -50N
180. Which of the following work done does not	(c) $50J$ (d) $-50J$
depend -	RRB Group –D, 04-10-2018 (Shift-I)
(a) Applied force	RRB Group –D, 01-11-2018 (Shift-II)
(b) Mass of object	Ans : (c) Given, Force (F) = 10 N, Displacement (d) = 5
(c) Displacement	m
(d) The angle between force and displacement	Work = force \times displacement in the direction of force
	$= 10 \times 5 = 50J$
RRB Group –D, 09-10-2018 (Shift-II) BBB Group –D, 03-10-2018 (Shift-III)	186. If force F=0, then work done W = ?
RRB Group – D, 03-10-2018 (Shift-III) PBP Croup – D, 00, 10, 2018 (Shift, II)	(a) 20 (b) 0
RRB Group –D, 09-10-2018 (Shift-II)	(c) 1 (d) 100
Ans : (b) Work done (W) = F.d $\cos\theta$	RRB Group –D, 31-10-2018 (Shift-III)
where, $F = External/applied force$	Ans : (b) Given, Force = 0, Work done = ?
d = Displacement of the body/object	W = F.d
θ = Angle between force and displacement	= 0.d
From the above equation, the work done depends upon	= 0
applied force, displacement and angle between the force and displacement but does not depend upon mass or	187. A porter picks up 12 kg of goods from the
initial velocity of object/body.	ground and places it on his head 1.5 meters
181. Which of the following the work done by a	above the ground then work on the goods to be
body does not depend on ?	done by him is: $(g = 10 \text{ ms}^{-2})$
(a) Initial velocity of object	(a) 140J (b) 150J
(b) Displacement	(c) $180J$ (d) $155J$
(c) Angle between force and displacement	RRB Group –D, 04-10-2018 (Shift-II)
(d) Applied force	Ans: (c) Given, 12 has 10 mm^{-2} has 1.5 m
RRB Group –D, 15-11-2018 (Shift-II)	$m = 12 \text{ kg}, g = 10 \text{ ms}^{-2}, h = 1.5 \text{ m}$
RRB Group –D, 13-11-2018 (Shift-I)	As work done by the porter is equal to the potential energy stored in an object.
RRB Group –D, 13-12-2018 (Shift-II)	Therefore, $W = mgh$
RRB Group –D, 02-11-2018 (Shift-I)	$= 12 \times 10 \times 1.5 = 180J$
RRB Group – D, 08-10-2018 (Shift-III)	188. The force of 25 N is working on an object, that
Ans : (a) See the explanation of above question.	object is moved in the direction of force by 5 m,
182. A worker raise 10kg object from the ground	the work done by the force is:
and put 1.2m above on his head then work	(a) $125W$ (b) $125N$
done is- $(g = 10 \text{ ms}^{-2})$	(c) 125J (d) 125Pa
(a) 120J (b) 155J	RRB Group –D, 26-10-2018 (Shift-II)
(c) 150J (d) 140J	Ans : (c) Force $(F) = 25N$
<u>RRB Group –D, 08-10-2018 (Shift-II)</u>	Displacement (d) = $5m$
Ans: (a) Given, m= 10kg	$Work = force \times displacement$
h = 1.2m	W = F.d
acceleration due to gravity $(g) = 10 \text{ ms}^{-2}$	$= 25 \times 5 = 125 J$
As work done by an object is equal to the potential	189. When a man pushes a wall but fails to displace
energy stored in an object. Therefore,	it, it does ?
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$	it, it does ? (a) Positive work (b) Negative work
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$ 183. Work known as-	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$ 183. Work known as- (a) Force × displacement	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group –D, 12-12-2018 (Shift-II)
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$ 183. Work known as- (a) Force × displacement (b) Mass × acceleration	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work <u>RRB Group – D, 12-12-2018 (Shift-II)</u> Ans : (d) When a man pushes the wall but fails to
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2× 10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group –D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work.
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$ 183. Work known as- (a) Force × displacement (b) Mass × acceleration	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work <u>RRB Group – D, 12-12-2018 (Shift-II)</u> Ans : (d) When a man pushes the wall but fails to
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2× 10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group – D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work.
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2× 10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group –D, 08-10-2018 (Shift-I)	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group -D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2× 10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group –D, 08-10-2018 (Shift-I) Ans : (a) Work = Force × displacement	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0 190. When a person walks 4 meters with a constant
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2× 10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group -D, 08-10-2018 (Shift-I) Ans : (a) Work = Force × displacement 184. The work done by an object is 56 J and applied force on object is 7 N. Find the displacement.	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group -D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2×10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group -D, 08-10-2018 (Shift-I) Ans : (a) Work = Force × displacement 184. The work done by an object is 56 J and applied force on object is 7 N. Find the displacement. (a) 80ms ⁻¹ (b) 80m	 it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0 190. When a person walks 4 meters with a constant force of 12N, the work done by him is – (a) 6J (b) 2J
energy stored in an object. Therefore, Work done = $m \times g \times h = 10 \times 1.2 \times 10 = 120J$ 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group –D, 08-10-2018 (Shift-I) Ans : (a) Work = Force × displacement 184. The work done by an object is 56 J and applied force on object is 7 N. Find the displacement. (a) $80ms^{-1}$ (b) $80m$ (c) $8 m$ (d) $80ms^{-1}$	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group –D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0 190. When a person walks 4 meters with a constant force of 12N, the work done by him is – (a) 6J (b) 2J (c) 48J (d) 3J
energy stored in an object. Therefore, Work done = m ×g× h =10×1.2×10= 120J 183. Work known as- (a) Force × displacement (b) Mass × acceleration (c) Length × width (d) Mass × volume RRB Group -D, 08-10-2018 (Shift-I) Ans : (a) Work = Force × displacement 184. The work done by an object is 56 J and applied force on object is 7 N. Find the displacement. (a) 80ms ⁻¹ (b) 80m	it, it does ? (a) Positive work (b) Negative work (c) Most positive work (d) No any work RRB Group – D, 12-12-2018 (Shift-II) Ans : (d) When a man pushes the wall but fails to displace it, he does absolutely zero work. Work done (W) = Force × displacement Here, displacement = 0 W = 0 190. When a person walks 4 meters with a constant force of 12N, the work done by him is – (a) 6J (b) 2J (c) 48J (d) 3J

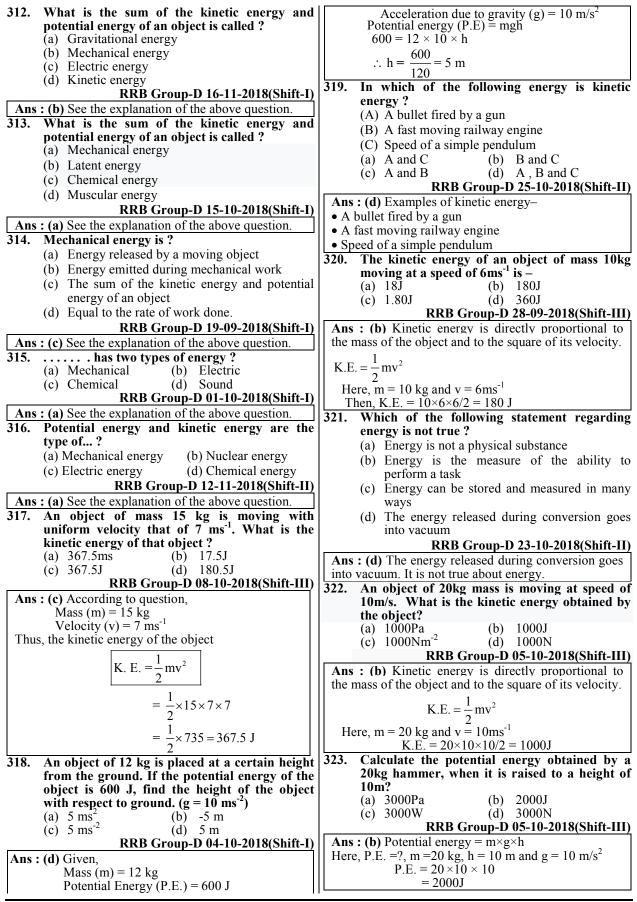
Ans: (c) Given, Force $(F) = 12N$	Ans : (d) If the angle between the applied force and
Displacement (d) = $4m$	the direction of displacement is 90 degrees ($\theta = 90^{\circ}$),
Work $(W) = ?$	the work done will be zero.
Work $(W) = F.d$	Work done = $F_{0.0} d \cos\theta$
$W = 12 \times 4 = 48J$	$= F.d \cos 90^0 = 0$
191. To say that the work has been done, two	197. The ability of an object to do the work energy
conditions must be completed, one of them is-	contained in an object is depend on the-
(a) Force is not required	(a) Mass and volume of object
(b) Object must be displaced	(b) Motion of object in a certain direction
(c) There should be no absorption and emission of energy	(c) State and condition of object
(d) There should be no change in the condition of	(d) The magnitude and the direction of the object
the object	
RRB Group –D, 24-10-2018 (Shift-III)	Ans : (c) The ability of an object to do the work or the
Ans : (b) To say that the work has been done, there	energy contained in an object depends on the
are two conditions must be completed-	condition and state of the object. 198. A worker takes 10 kg of goods from the ground
1- Force is required	and puts it on 1.1m above the land on his head.
2- Object must be displaced	What will be the work done by the worker.
192. The product of force and displacement is called-	(a) 140J (b) 155J
(a) Momentum (b) Acceleration	(c) 165J (d) 110J
(c) Work (d) Burden RB Group –D, 19-09-2018 (Shift-I)	RRB Group –D, 05-10-2018 (Shift-III)
Ans: (c) Work done(W)=Force(F)×Displacement(d)	Ans : (d) Given that,
193. The work is product of –	$m = 10 \text{ kg}, g = 10 \text{ m/s}^2, h = 1.1 \text{ m}$
(a) Energy and volume	As workdone by an object is equal to the potential energy stored in an object.
(b) Power and displacement	Therefore, W= mgh
(c) Force and Displacement of object towards the	$= 10 \times 10 \times 1.1$
direction of force	$= 10 \times 10 \times 11/10 = 110$ J
(d) Displacement of the object in the direction of	199. A moving car faces the wind in the opposite
the force	direction. What will be the work done by the
RRB Group – D, 08-08-2018 (Shift-I) Ans : (c) The work is the product of force and	wind on the car?
displacement of object towards the direction of force.	(a) Negative (b) Zero (c) Infinite (d) Positive
Work done (W)=Force (F)×Displacement (d)	RRB Group –D, 01-10-2018 (Shift-III)
194. If a stationary force applied to an object, the object	Ans : (a) When a car in motion faces the wind in the
moved in the direction of force. is expressed as a	opposite direction, then the force exerted on the car by
result of force and displacement, it is called –	the wind acts opposite to the displacement of the car.
(a) Retardment (b) Work done	Therefore the engle between the direction of the
	Therefore, the angle between the direction of the
(c) Impulse (d) Acceleration	applied force and the displacement of the car is 180°.
(c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III)	applied force and the displacement of the car is 180° . Work done (W) = F.d cos 180° [\because cos 180° =-1]
(c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object	applied force and the displacement of the car is 180 °. Work done (W) = F.d $\cos 180^{\circ}$ [$\because \cos 180^{\circ}$ =-1] W = -F.d
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work 	applied force and the displacement of the car is 180 °. Work done (W) = F.d $\cos 180^{\circ}$ [$\because \cos 180^{\circ}$ =-1] W = -F.d So, the work done by air on the car will be negative
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans: (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and 	applied force and the displacement of the car is 180° . Work done (W) = F.d cos 180° [\because cos 180° =-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities 	 applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which 	 applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. 	 applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec²) (a) 800J (b) 400J
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [.::cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m /sec²) (a) 800J (b) 400J (c) 200J (d) 2000J
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [.::cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m /sec²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III)
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∴cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J <u>RRB Group -D, 12-12-2018 (Shift-III)</u> Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [∵cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) 	applied force and the displacement of the car is 180 °. Work done (W) = F.d cos 180° [::cos 180° =-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = $200 \times 2 = 400J$ 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done.
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it 	applied force and the displacement of the car is 180 °. Work done (W) = F.d cos 180° [\because cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = 200×2 = 400J 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) 	applied force and the displacement of the car is 180 °. Work done (W) = F.d cos 180° [\because cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = 200×2 = 400J 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it experiences energy gain through a mechanical effect. 196. What is the work done if the angle between applied force and the direction of the 	applied force and the displacement of the car is 180 °. Work done (W) = F.d cos 180° [\because cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = 200×2 = 400J 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J RRB Group -D, 13-12-2018 (Shift-III)
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it experiences energy gain through a mechanical effect. 196. What is the work done if the angle between applied force and the direction of the displacement is 90⁶? 	applied force and the displacement of the car is 180 °. Work done (W) = F.d cos 180° [\because cos180°=-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = 200×2 = 400J 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J RRB Group -D, 13-12-2018 (Shift-II) Ans : (c) Force = 500N, Work = ?
 (c) Impulse (d) Acceleration RRB Group –D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when – (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group –D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it experiences energy gain through a mechanical effect. 196. What is the work done if the angle between applied force and the direction of the displacement is 90⁰? (a) Disintegrated (b) Negative 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [::cos 180° =-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m/sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = 200×2 = 400J 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J RRB Group -D, 13-12-2018 (Shift-II) Ans : (c) Force = 500N, Work = ? Displacement = 15km = 15000m
 (c) Impulse (d) Acceleration RRB Group -D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when - (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group -D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it experiences energy gain through a mechanical effect. 196. What is the work done if the angle between applied force and the direction of the displacement is 90⁰? (a) Disintegrated (b) Negative (c) Positive (d) Zero 	applied force and the displacement of the car is 180° . Work done (W) = F.d cos 180° [\because cos 180° =-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m /sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = $200 \times 2 = 400J$ 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J RRB Group -D, 13-12-2018 (Shift-II) Ans : (c) Force = 500N, Work = ? Displacement = 15km = 15000m Work = force×displacement
 (c) Impulse (d) Acceleration RRB Group -D, 27-09-2018 (Shift-III) Ans : (b) If a force applied to an object, the object moved in the direction of force, is expressed as a result of force and displacement, it is called work done. Work is a dot product of force and displacement. The dot product of vector quantities (force and displacement) is always scalar which means it has only magnitude not direction. Work done (W) = Force (F). Displacement (d) 195. Work is done on a body only when - (a) It experiences energy gain through a mechanical effect (b) Forces work on it (c) There is displacement (d) It moves through a certain distance RRB Group -D, 11-12-2018 (Shift-III) Ans : (a) Work is done on a body only when it experiences energy gain through a mechanical effect. 196. What is the work done if the angle between applied force and the direction of the displacement is 90⁰? (a) Disintegrated (b) Negative 	applied force and the displacement of the car is 180°. Work done (W) = F.d cos 180° [::cos 180° =-1] W = -F.d So, the work done by air on the car will be negative 200. A girl whose weight is 200 N, climbs on a tree which height is 2-meter. What was the work done by the girl after climbing the tree? (g = 10 m /sec ²) (a) 800J (b) 400J (c) 200J (d) 2000J RRB Group -D, 12-12-2018 (Shift-III) Ans : (b) Given, Weight = mg = 200N h = 2m Work done by the girl = Potential energy = mgh = $200 \times 2 = 400J$ 201. If someone travels 15 km distance with a fixed force of 500N, then calculate the work done. (a) 750000J (b) 75000J (c) 750000J (d) 7500J RRB Group -D, 13-12-2018 (Shift-II) Ans : (c) Force = 500N, Work = ? Displacement = 15km = 15000m Work = force×displacement W = 500×15000

202. A horizontal force of 10 N displaces an object of 5 kg to a distance of 2 m in the direction of the force.	(a) Velocity (b) Displacement
What will be the work done by the object? (a) 20J (b) 5J	(c) Power (d) Momentum RRB Group –D, 11-10-2018 (Shift-I)
(a) 20J (b) 5J (c) 50J (d) 10J	Ans : (b) See the explanation of above question.
RRB Group –D, 20-09-2018 (Shift-III)	208. Which of the following is not a characteristic of
Ans : (a) Work = force ×displacement in the direction	work?
of force	(a) Work has a direction
$W = F \times d$ [:: Given, F = 10N, d = 2m]	(b) For doing work it is necessary to apply a force on an object
$W = 10 \times 2$	force on an object (c) Work has only magnitude
= 20J	(d) For work done their should be a displacement
203. What is the amount of work done when an	of an object
object moves under a force of 10 N at a	RRB Group –D, 16-11-2018 (Shift-III)
distance of 10 m in the direction of force? (a) 1J (b) 10J	Ans : (a) Work is a scalar quantity, because it has
(a) 13 (c) $100J$ (d) $0.01J$	only magnitude, not direction. 209. A bus runs with a force of 4000 N. The work
RRB Group –D, 31-10-2018 (Shift-II)	done by the bus is 2000 J. What is the distance
Ans: (c) Given,	covered by the bus?
d = 10m F = 10N	(a) 1 meter (b) 2 meter
Work = F.d	(c) 1.5 meter (d) 0.5 meter \mathbf{P}
$= 10 \times 10$	RRB Group –D, 06-12-2018 (Shift-III) Ans: (d) Given,
= 100J	Force $(F) = 4000 \text{ N}$
204. A force of 50 N displaces an object 10 m. What	Work done (W) = 2000 J
will be the work done by the force?(a) 500J(b) 5J	Work = force \times displacement
(a) 5003 (b) 53 (c) $10J$ (d) $50J$	Displacement = Work/force = 2000/4000
RRB Group –D, 03-12-2018 (Shift-III)	= 2000/4000 = 0.5 meter
Ans: (a) Given,	210. If a man pulls a trolly by applying force of 50N
F = 50N, displacement = 10m, work =?	and trolly is displaced 30m. What is work done?
Work = force × displacement W = $50 \times 10 = 500$ J	(a) 1500J (b) 80J (c) 1500J (d) 20J
205. If an object not moving after applying a force,	(c) 1500J (d) 20J RRB Group –D, 15-11-2018 (Shift-II)
then we can say that –	Ans: (a) Given, Force = 50N
(a) Maximum power has used	Displacement = 30m
(b) Work has done(c) Minimum power has used	Work = force \times displacement
(d) Any work has not done	$W = 50 \times 30 = 1500J$ 211. A man puts 20kg object on his head by raising
RRB Group –D, 16-11-2018 (Shift-I)	the object 2m above from the surface of earth.
Ans : (d) If an object is not moving after applying a	Then work done will be –
force, then we can say that work done on an object will be zero.	(a) 400W (b) 400J
\therefore Displacement (d) = 0	(c) 200W (d) 200J RRB Group –D, 30-10-2018 (Shift-II)
Work done (W) = Force \times Displacement	Ans : (b) Given,
= F.d	$m = 20 \text{ kg}, g = 10 \text{ m/s}^2, h = 2 \text{ m}$
Work done (W) = $F \times 0$	Work done = Potential energy of object
Work done $(W) = 0$	$W = mgh$ $= 20 \times 10 \times 2 = 400J$
206. If the displacement of an object is zero. Then	212. A man puts 13kg object on his head by raising
work done by the applied force is – (a) Neutral (b) Negative	the object 1.5m above from the surface of
(c) Positive (d) Zero	earth. Then work done will be: (g=10ms ⁻²)
RRB Group –D, 16-11-2018 (Shift-I)	(a) 195J (b) 100N (c) 150J (d) 140J
Ans : (d) If the displacement of an object is zero, then	(c) 150J (d) 140J RRB Group –D, 05-10-2018 (Shift-I)
the work done will be zero. If a applied force on a	Ans : (a) The work done by the man is equal to the
object is zero, then the work done on an object will be zero, such as - if a person pushes a wall and that wall	potential energy stored in an object.
remains stationary.	Work done by the man = Potential energy of object
Work done (W) = Force \times Displacement (d)	W = mgh [Given, $m = 13kg, g = 10ms^{-2}, h = 1.5m$]
$= F \times d \qquad (Where d = 0)$	$W = 13 \times 10 \times 1.5$
Work done $(W) = 0$	$w = 13 \times 10 \times 1.5$ = 195J


212 A how hold 4 by school have for 20 seconds the	
213. A boy hold 4 kg school bag for 30 seconds, the work done by him will be in joule.	
(a) 4 (b) 4	displacement is 90 degrees ($\theta = 90^{\circ}$), then the work
(a) $+$ (b) $+$ (c) Zero (d) 39.20	done $W = E d \cos \theta$
RRB Group –D, 24-09-2018 (Shift-II)	$W = F.d.\cos\theta$ = F.d. cos 90 ⁰
Ans : (c) If the boy holds a school bag of 4 kg for 30	= 0 J
seconds, the force exerted by bag will be $mg = 4 \times 10^{-30}$	If the angle between the force and displacement is
seconds, the force exerted by bag will be fing -4×10 = 40 N.	180 degrees ($\theta = 180^\circ$) then the work done will be
The boy holds this force for 30 seconds, the work	negative because the value $\cos 180^\circ = -1$.
done is zero because displacement is zero	$W = F.d.\cos 180^{\circ}$
Work done = force \times displacement = 40 \times 0	$= -F \times d$
Work done -101 Ce × displacement -40×0 Work done (W) = 0	218. A force of 125 N is acting on an object, that object
214. Work can only be done when is present.	is moved up to 5 m in the direction of the force,
(a) Energy (b) Force	what will be the work done by the force.
(c) Momentum (d) Power	(a) 625W (b) 625Pa
RRB Group –D, 05-11-2018 (Shift-III)	(c) 625N (d) 625J
Ans : (a) Work can only be done when energy is	RRB Group –D, 09-10-2018 (Shift-I)
present. Energy is the ability to do work. Energy is a	Ans : (d) Given,
conserved quantity and the law of conservation of	Force $(F) = 125N$, displacement $(d) = 5m$
energy states that energy can neither be created nor be	Work done (W) = Force \times displacement
destroyed but can only be converted from one form to	$W = 125 \times 5 = 625 J$
another.	219. If a person pulls the trolley up to the distance
Work and energy both has same S.I unit 'Joule (J)'.	of 10 m with the force of 50 N, what will be the
Both are a scalar quantities.	work done by him ?
215. Which of the following is not an example of	(a) 5J (b) 500J
work done ?	(c) 20J (d) 0.2J
(a) A man pushing against the wall	RRB Group –D, 27-09-2018 (Shift-I)
(b) Trolley moves when the boy pushes the	Ans : (b) Given,
trolley	Force (F) = 50N, Displacement (d) = $10m$
(c) Applied force on an object in that direction	W = F.d
the object is moving	$W = 50 \times 10$
(d) Raise the book to some height and walking	= 500 N-m or 500J 220. If an object is rotated in a circular path, what
RRB Group –D, 26-10-2018 (Shift-III)	will be the work done on it in one rotation?
Ans : (a) Work is said to be done when the body	(a) Is zero
displaces form its initial position when the force is	(b) Cannot be determined
applied because.	(c) Is positive
Work done (W) = Force \times Displacement	(d) Is negative
Here, in this case the wall does not displace from its	RRB ALP & Tec. (17-08-018, Shift-III)
initial position even though the force is applied and since	
here displacement is zero, so the work done is said to be	Ans : (a) If an object is rotated in a circular path, the work done on it is zero because the displacement in
zero.	the circular path is zero.
216. When the direction of the force applied and the	221. A person picks up 25 kg of weight from the
direction of movement of the object is	ground and puts it 2.5 meters above from the
perpendicular to each other.	ground on his head if $g = 10 \text{ m/s}^2$ then work
(a) Power exercised	done by the person is-
(b) No work done	(a) 225 Joule (b) 22.5 Joule
(c) Power not exercised	(c) 625 Joule (d) 220 Joule
(d) Work done	RRB ALP. & Tec. 20-08-2018(Shift-III)
RRB Group –D, 24-10-2018 (Shift-I)	Ans : (c) Work done is given by the equation,
Ans : (b) If the direction of the force is perpendicular	W = mgh
to the displacement in the direction of motion of the	where $m = mass = 25 \text{ kg}$
object then, $0 - 20^{\circ}$	$g = acceleration due to gravity = 10 m/sec^2$
$\theta = 90^{\circ}$ Work done = E d cos 00°	h = height = 2.5 m
Work done = F.d $\cos 90^{\circ}$	Hence, work done = $25 \times 10 \times 2.5 = 625$ Joule
W = 0 217. If the work done is negative, then what will be	222. An object of 5.0 kg is raised to a height of 2 m,
217. If the work done is negative, then what will be the angle between the force and displacement?	in this process, how much work was done $(g=9.8 \text{ m/s}^2)$
(a) 45° (b) 0°	(a) 49 joule (b) 10 joule
$\begin{array}{cccc} (a) & 4.5 \\ (c) & 90^0 \\ (d) & 180^0 \end{array}$	(a) 49 joule (b) 10 joule (c) 19.6 joule (d) 98 joule
RRB Group –D, 09-10-2018 (Shift-I)	RRB ALP. & Tec. 20-08-2018(Shift-III)

Ans : (d) Work done is given by the equation	Ans. (a) : The kilowatt hour is a unit of energy
W = mgh	equivalent to one kilowatt of power expended for 1 hour
where $m = mass$	of time.
g = acceleration due to gravity	The kilowatt hour is not a standard unit in any formal
h = height	system, but is commonly used in electrical applications.
e	While 'watt', Joule/second and 'horsepower' is a unit of
Hence work done = $5 \times 9.8 \times 2 = 98$ Joule	power
223. An object of 5 kg is raised to a height of 4 m.	228. How is power interpreted?
What will be the value of the work done due to	(a) Work done in energy transfer
the force of gravity on that object?	
$(g = 10 m/s^2)$	(b) Force charged to increase load
(a) 200J (b) 20J	(c) Working rate or energy transfer rate
(c) -20J (d) -200J	(d) Work done in a minute
RRB ALP. & Tec. 21-08-2018(Shift-III)	RRB Group-D 19-09-2018(Shift-I)
Ans : (d) Work done is given by the equation,	Ans : (c) Power is defined as the rate of doing work or
W = -mgh	the rate of transfer of energy.
where $m = mass = 5 \text{ kg}$	229. What is working rate or energy transfer rate ?
$g = acceleration due to gravity = 10 m/s^2$	(a) Power (b) Work done
h = height = 4 m	(c) Impulse (d) Force
	RRB Group-D 15-10-2018(Shift-II)
Hence, work done $= -5 \times 10 \times 4 = -200$ Joule	Ans : (a) Power is defined as rate of doing work in
224. An object of 20 kg is raised through a height of	other words the work done per second or energy
2m, what will be the work done by the force of	transfer rate is called as power. It turns out that:
gravity on the object?	Power = Force \times Velocity. The SI unit of power is
(a) 400J (b) 50J	Joule per second or watt.
(c) 40J (d) 100J	230. Rate of doing work is called?
RRB ALP. & Tec. 14-08-2018(Shift-II)	(a) Energy (b) Velocity
Ans : (a) Work done, W = mgh	(c) Power (d) Force
Here, m is 20 kg, h is 2m and $g=10 \text{ m/sec}^2$	RRB Group-D 17-09-2018(Shift-III)
$W = 20 \times 10 \times 2 = 400 \text{ J}$	Ans : (c) See the explanation of above question.
225. When displacement occurs, the work done by	
the force is considered to be negative.	(a) Energy (b) Power
(a) Is perpendicular to the direction of force	(c) Pressure (d) Force
	RRB Group-D 05-10-2018 (Shift-I)
(b) Is in the direction of momentum	RRB Group-D 22-10-2018 (Shift-III)
(c) Is in the direction of force	Ans : (b) See the explanation of above question.
(d) Is in the opposite direction of the force	232. If a man do 'W' work in 't' time, then his
RRB Group –D, 03-12-2018 (Shift-II)	power 'P' will be-
Ans : (d) • When the displacement of a body or object	(a) t-W (b) $t\times W$
is in the opposite direction of the force, the work done	$\begin{array}{ccc} (a) & t & (b) & t & (c) \\ (c) & W/t & (d) & t/W \end{array}$
by the force is considered to be 'negative'.	RRB Group-D 01-10-2018(Shift-II)
• When the displacement of the object is in the same	
direction of the force, the work done by the force is	Ans: (c) The rate of doing work is called power.
considered to be positive.	Power = $\frac{\text{work}}{1}$
• When the displacement of the object is in	time
perpendicular to the force, the work done by the force	$P = \frac{W}{t}$
is considered to be zero.	P =
is considered to be zero.	Work, power and energy all are scalar quantities.
	SI unit of Power is Watt (W)
(ii) Power	1 Ioule
	11 I wall –
226. 1 horsepower equals:	1 Second
(a) 746 J (b) 74.6 J/s	233. What is the formula for power–
(c) 746 W (d) 746 kW	(a) Work/Time (b) Time/Area
RRB Group-D 18-08-2022 (Shift-I)	
Ans. (c) : S.I. unit of power is watt which is equivalent	RPF SI 24.12.2018 (Shift - I)
to Joules/Second. In some cases (for motor vehicles	Ans : (a) See the explanation of above question.
etc.) power is given in terms of Horsepower (hp) and	234. If an agent doing 'W' works in time 't', then
one Horsepower is equal to 746 watts (W).	his power will be –
	(a) $W \times t$ (b) $W+t$
227. Which of the following is NOT a unit of power?	$\begin{array}{ccc} (a) & \forall & \forall \\ (c) & t/W & (d) & W/t \end{array}$
(a) Kilowatt hour (b) Watt	
(a) $I_{a} = I_{a} = $	RRR Group_D 24_09_2018(Shift_D
(c) Joule/second (d) Horsepower	RRB Group-D 24-09-2018(Shift-I)
(c) Joule/second (d) Horsepower RRB Group-D 24-08-2022 (Shift-I)	

Ans: (c) Given, mass of boy, m = 50 kgAns : (b) A more powerful engine can do more work h = 40 x 15 = 600 cm = 6.0 min less time like an aeroplane travel more distance as compare to a car in less time. So aeroplane is more $t = 10 \text{ s}, g = 10 \text{ m/s}^2$ $PE = mgh = 50 \times 10 \times 6 = 3000 \text{ J}$ powerful than a car. It is the basic example of explaining power. Power = PE / timeWhat will be the average power required to lift = 3000/10 = 300 W252. an object of 80 kg to a height of 40 m in 50s? 247. A boy of 50 kg mass climbs 45 stairs in 9 $(g=10m/s^2)$ seconds. If the height of each stair is 15cm, then (a) 3200 J/s(b) 640 J/scalculate his power. $(g=10ms^{-2})$ (c) 800J/s (d) 600 J/s (a) 325W (b) 275W RRB Group-D 18-09-2018(Shift-III) (c) 475W (d) 375W **Ans : (b)** Power required to lift this weight = mgh/tRRB Group-D 22-09-2018(Shift-I) $p = (80 \times 10 \times 40) / 50$ Ans: (d) Given, p = 640 J/smass of boy = 50 kg253. A person does 1000J of work in 2s. What was h = 45 x 15 = 675 cm = 6.75 mthe energy he spent ? $t = 9 s, g = 10 m/s^{2}$ (b) 1000W (a) 50W $PE = mgh = 50 \times 10 \times 6.75 = 3375 J$ (c) 500W (d) 25W Power = PE / time = Energy / time RRB Group-D 17-09-2018(Shift-II) $\frac{3375}{2}$ = 375 J/s=375 W Ans : (c) The working rate is called power. The unit of power is watt (W). Power (P) = Work/time = $\frac{1,000}{2}$ = 500W 248. If a girl with a weight of 40 N, climbs on the rope for 20 seconds with the power of 160 watts, then at which height will she reach? Which of the following is the electric power's 254. (a) 80 meter (\breve{b}) 4 meter formula? (d) 0.8 meter (c) 8 meter (a) $P=V^2/R$ (b) $P=V\times I$ RRB Group-D 18-09-2018(Shift-III) (c) $P=I^2 \times R$ (d) All of these Ans : (a) Let assume that girl climbs to the h meter. RRB J.E. 27.06.2019(Shift-I) Then, power = potential energy (work)/time Ans : (d) All are the formula for the electric power. P = (mgh)/tPower = $V^2/R = V \times I = I^2 \times R$ Here. (iii) weight (mg) = 40N,t = 20 sec., Power (P) = 160WEnergy $160 = (40 \times h)/20$ h = 80 meter 255. Which energy of the wind does a windmill use? A boy of 50 kg mass climbs 44 stairs in 10 249. (a) Thermal energy (b) Kinetic energy seconds. If the height of each stair is 15cm then (c) Heat energy (d) Hydro energy find his power? RRB NTPC 09.02.2021 (Shift-II) Stage Ist (a) 337.5ms (b) 387.5W Ans : (b) Wind turbines convert the kinetic energy in (c) 330J (d) 330W the wind into mechanical power. Wind energy describes RRB Group-D 24-09-2018(Shift-I) the process by which wind is used to generate electricity. In India 40,034 MW (10.2%) energy Ans: (d) Given, mass of body, m = 50 kgh = 44 x 15 = 660 cm = 6.60 mproduced by wind turbines. t = 10 s, g = 10 m/s² PE = mgh = 50 x 10 x 6.60 = 3300 J 256. If the air resistance is negligible, then what will be sum of the potential energy and kinetic Power consumed by the boy=PE/time=3300/10=330 W energy of the freely falling object. A boy of 50 kg mass climbs 43 stairs in 10 250. (a) Endless seconds. If the height of each stair is 15cm then (b) Double the sum of the potential energy find its power ? (c) Zero (a) 337.5W (b) 325.5J (d) Constant (c) 322.5W (d) 322.5ms **RRB Group-D 28-11-2018(Shift-I)** RRB Group-D 24-10-2018(Shift-III) Ans : (d) An object can have both kinetic and Ans: (c) Given, mass of boy, m = 50 kgpotential energy at the same time. For example, an h = 43 x 15 = 645 cm = 6.45 mobject which is falling freely, but it not vet reached $t = 10 \text{ s}, g = 10 \text{ m/s}^2$ PE = mgh = 50 x 10 x 6.45 = 3225 J the ground has kinetic energy because it is moving downwards, and potential energy because it is able to Power of the boy = PE / time = 3225 / 10 = 322.5 Wmove downwards even further than it already has. The A more powerful engine can do more work in 251. sum of an object's potential and kinetic energy is less time like an aeroplane travel more distance called the object's mechanical energy. as compare to a car in less time. So aeroplane is As an object falls its potential energy decreases, while more powerful than a car. It is an example of its kinetic energy increases. The decrease in potential which of the following? energy is exactly equal to the increase in kinetic (a) Work performed (b) Power energy. So if the air resistance is negligible then the sum of the potential energy and kinetic energy of an (c) Energy (d) The wave RRB Group-D 29-10-2018(Shift-III) object will remain constant.


257. A uniform chain of length 2m is kept on a table such that a length of 60cm hangs freely from the edge of the table. The total mass of the chain is 4kg .What is the work done in pulling the entire chain on the table ? (a) 12J (b) 7.2J (c) 3.6J (d) 1.2J RRB Group-D 07-12-2018(Shift-I) Ans : (c) Definition of work done by variable force - $W = \int \vec{F} \cdot \vec{ds}$ \vec{F} is variable force and \vec{ds} is small displacement Consider a small part dx at a depth x from table. Work done in lifting this small portion is dw = dm gx	 Ans : (b) Potential energy of an object increases when it raised through a height. This is because work is done on it against gravity while it is being raised. The energy present in such an object is the gravitational-potential energy of an object at a point above the ground is defined as the work done in raising it from the ground to that point against gravity. An object of mass 'm', when raised through a height 'h' from the ground, then work done on the object will be W = force x displacement = mg x h = mgh 263. Which of the following energy varies with the height of an object ? (a) Kinetic energy (b) Nuclear Energy (c) Chemical energy
Total work done = $\int dw = \int_0^h \left(\frac{m}{\ell} dx\right) gx$	(d) Potential energy RRB Group-D 11-10-2018(Shift-I) Ans : (d) Potential energy varies with the height of an
$= \frac{\mathrm{mg}}{\ell} \int_{0}^{\mathrm{h}} \mathrm{xdx} = \frac{4 \times 10}{2} \times \frac{(0.6)^{2}}{2} = 3.6\mathrm{J}$	object.
 2 2 258 particles have a greater kinetic energy- (a) Liquid (b) Plasma (c) Solid (d) Gas RRB Group-D 26-10-2018(Shift-III) Ans : (d) Molecules in the solid phase have the least amount of kinetic energy, while in the gaseous phase particles or molecules have the greatest amount 	 264. What is the energy exerted due to the position and shape taken by an object ? (a) latent energy (b) Potential energy (c) Kinetic energy (d) Electrical energy
of kinetic energy.	RRB Group-D 23-10-2018(Shift-I) Ans : (b) Potential energy is the energy which
259. The kinetic energy of which particle is maximum – (a) Liquid and Solid (b) Solid (c) Liquid (d) Gases RRB Group-D 12-11-2018(Shift-III)	is stored in an object due to its position or shape position. An object possesses gravitational potential energy if it is positioned at a height above (or below) to the ground.
Ans : (d) Gas particles have the greatest or maximum	265. Which energy is in the water stored in the dam ?
amount of energy. 260. 900 ×10 ⁶ J of energy is consumed in a month in	(a) Potential energy(b) Electric energy
a house. How much this energy is in the unit?	(c) Kinetic energy
(a) 25 (b) 2.5 (c) 2500 (d) 250	(d) Gravitational energy
RRB Group-D 26-11-2018(Shift-III)	RRB Group-D 26-09-2018(Shift-I) Ans : (a) Water stored in a dam possesses potential
Ans : (d) 1 unit of energy is equal to 1 kilowatt hour (kWh). 1 unit = 1 kWh 1 kWh = $3.6 \times 10^6 \text{ J}$	energy and when the water is flowing or falling on turbine blade from the dam that energy is known as kinetic energy.
Then, 900×10^6 J energy in unit will be-	266. A moving object essentially receives -
$900 \times 10^6 \text{ J/3.6 x} 10^6 \text{ J} = 250 \text{ unit}$ 261. When a compressed spring is released, it	(a) Kinetic energy(b) Potential energy
converts its potential energy into-	(c) Mechanical energy
(a) Mechanical energy(b) Wind power	(d) Thermal energy
(c) Elastic potential energy	RRB NTPC 29.03-2016(Shift-III) Stage- I st Ans : (a) Kinetic energy is the energy of an object in
(d) Kinetic energy	motion. If an object is moving faster then it has more
RRB Group-D 31-10-2018(Shift-III) Ans : (d) When the compressed spring is released the	kinetic energy. Any object (car) that is moving or
stored potential energy is converted kinetic energy and	running it has kinetic energy – the moving object has kinetic energy because of its motion.
a transfer of momentum takes place between the	267. A car running at high speed, which energy does
spring and the object. 262. The potential energy of an object increases	it contains ?
with its-	(a) Gravitational force(b) Friction force(c) Potential energy(d) Kinetic energy
(a) Velocity (b) Height (c) Displacement (d) Distance	RRB Group-D 19-09-2018(Shift-II)
RRB Group-D 10-10-2018(Shift-I)	Ans : (d) See the explanation of above question.

$n.(K.E) = 4 \times \frac{1}{2} \text{mv}^2$ $n.(K.E) = 4 \times K.E.$ $n=4$ 280. Which type of energy is there in a stretched rubber band? (a) Chemical energy (b) Potential energy (c) Kinetic energy (d) Heat energy RRB ALP. & Tec. 14-08-2018(Shift-III) Ans : (b) A stretched rubber band has potential energy stored in it, when it is releases the potential energy gets converted into kinetic energy. Because it is an elastic material, the kind of its potential energy is called as elastic potential energy.	Ans : (d) A raised hammer have potential energy. A raised hammer possesses gravitational potential energy by virtue of its height above ground level.279. If the velocity of an object becomes twice that of its initial velocity, then its kinetic energy become n times of its initial kinetic energy. Then what would be the value of n? (a) 3 (b) 4 (c) 1/2 (d) 6 RRB ALP. & Tec. 13-08-2018(Shift-II)Ans : (b) When velocity of an object becomes twice that of its initial velocity. n.(K.E) = $\frac{1}{2}$ m.(2v) ²	285. If the kinetic energy of an object becomes 256 times that of its initial value, then the new linear momentum will be ? (a) 8 times its initial value (b) 16 times its initial value (c) Same as its initial value (d) 32 times its initial value RRB ALP. & Tec. 14-08-2018(Shift-I) Ans : (b) Relation between kinetic energy and linear momentum is given by , $K \cdot E = \frac{P^2}{2m}$ where K.E is kinetic energy , m is mass of body and P is linear momentum. if m remains constant.
(c) Kinetic energy (d) Heat energy RRB ALP. & Tec. 14-08-2018(Shift-III) Ans : (b) A stretched rubber band has potential energy gets converted into kinetic energy. Because it is an elastic material, the kind of its potential energy is called as elastic potential energy. I I I I I I I I	n.(K.E) = 4× $\frac{1}{2}$ mv ² n.(K.E) = 4×K.E. n= 4 280. Which type of energy is there in a stretched rubber band?	then, $K.E \propto P^2$ $\frac{K.E_1}{K.E_2} = \frac{P_1^2}{P_2^2}$ According to question, Kinetic energy of body becomes 256 times of its initial value. Let initial kinetic energy is K
band have? and configuration is called ?	 RRB ALP. & Tec. 14-08-2018(Shift-III) Ans : (b) A stretched rubber band has potential energy stored in it, when it is releases the potential energy gets converted into kinetic energy. Because it is an elastic material, the kind of its potential energy is called as elastic potential energy. 281. What type of energy does a stretched rubber 	now, $\frac{\frac{1}{2.56} = \frac{\Gamma_1^{2}}{\Gamma_2^{2}}}{\frac{P_1}{P_2} = \sqrt{\frac{1}{16}} = \frac{1}{16}}$ $P_2 = 16 P_1$ Hence, final linear momentum will be 16 times of its initial value 286. The energy received by an object by its position
 (a) Potential energy (b) Heat energy (c) Kinetic energy (d) Chemical energy (e) RRB Group-D 12-11-2018(Shift-III) Ans : (a) See the explanation of above question. 282. When you stretched a rubber band, the energy stored in it? (a) Potential energy (b) Nuclear energy (c) Potential energy (d) Electric energy (e) Potential energy possessed by the ol is the energy present in it by virtue of its pos or configuration that means potential energy is a st energy in the object when work is done on 	 (c) Kinetic energy (d) Chemical energy RRB Group-D 12-11-2018(Shift-III) Ans : (a) See the explanation of above question. 282. When you stretched a rubber band, the energy stored in it? (a) Potential energy (b) Muscular energy 	 (a) Kinetic energy (b) Nuclear energy (c) Potential energy (d) Electric energy RRB ALP. & Tec. 1-08-2018(Shift-I) Ans : (c) The potential energy possessed by the object is the energy present in it by virtue of its position or configuration that means potential energy is a stored energy in the object when work is done on the object but there is no change in the velocity or speed of
(d) Kinetic energy RRB Group-D 10-10-2018(Shift-I)Ans : (a) See the explanation of above question.283. Which of these can neither be created nor destroyed? (a) Energy (c) Velocity287. An object with mass 'M' moves with spect and has kinetic energy 'A'. If its veloc doubled, So what will be its kinetic energy (a) K/2 (b) Power (c) Velocity287. An object with mass 'M' moves with spect and has kinetic energy 'A'. If its veloc doubled, So what will be its kinetic energy (a) K/2 (b) 2K (c) 4K (c) 4K (c) 4K (c) If velocity is doubled, kinetic en	 (d) Kinetic energy RRB Group-D 10-10-2018(Shift-I) Ans : (a) See the explanation of above question. 283. Which of these can neither be created nor destroyed? (a) Energy (b) Power (c) Velocity (d) Speed 	287. An object with mass 'M' moves with speed 'V' and has kinetic energy 'A'. If its velocity is doubled, So what will be its kinetic energy – (a) K/2 (b) 2K
Ans : (a) The first law of thermodynamics, also known as Law of Conservation of Energy states that energy can neither be created nor destroyed, it can only be transferred or changed from one form to another. For example, conversion of electrical energy into heat energy and light energy.the energy possessed by virtue of its motion if body is moving with any velocity it will alw have kinetic energy i.e. become 4K.284. Which of the following can not be created nor be destroyed ? (a) Power (b) Velocity (c) Energy(b) Velocity (d) Force(a) Chemical energy (d) Heat energyAns : (b) A compressed spring possesses more en Man a spring of normal length (b) Potential energy (c) Kinetic energy (d) ForceA compressed spring has- (a) Chemical energy (b) Potential energy (c) Kinetic energy (d) Heat energy	Ans : (a) The first law of thermodynamics, also known as Law of Conservation of Energy states that energy can neither be created nor destroyed, it can only be transferred or changed from one form to another. For example, conversion of electrical energy into heat energy and light energy. 284. Which of the following can not be created nor be destroyed ? (a) Power (b) Velocity (c) Energy (d) Force 	 288. A compressed spring possesses more energy than a spring of normal length because the compressed spring has— (a) Chemical energy (b) Potential energy (c) Kinetic energy (d) Heat energy RRB ALP. & Tec. 20-08-2018(Shift-I) Ans : (b) A compressed spring possesses more energy than a spring of normal length because the

289. When a bullet is fired from a gun, its potential energy is converted into?	Ans : (b) The energy stored in a compressed spring is elastic potential energy. The flowing water is not an
(a) Kinetic energy	example of potential energy because the flowing
(b) Mechanical energy	water has kinetic energy.
(c) Heat energy(d) Chemical energy	295. There is a body falling from a mountain has?
RRB ALP. & Tec. 29-08-2018(Shift-III)	(a) Both Kinetic energy and Potential energy
Ans : (a) A bullet stores chemical potential energy in	(b) Only Kinetic energy
its gunpowder. When the bullet is fired, this chemical	(c) Only Friction energy (d) Only Potential energy
potential energy is converted into kinetic energy and	(d) Only Potential energy RRB Group-D 17-09-2018(Shift-III)
heat.	Ans : (a) Body falling from a mountain has both
290. Two steel balls of mass 5 kg and 10 kg have	kinetic energy and potential energy.
same kinetic energy, which ball is moving fast.	296. What will be the value of the kinetic energy of
(a) Kinetic energy does not depend on the speed of the system.	an object moving along the mass of 'm' if its
(b) 5 kg ball is moving fast	speed is changed from 'v' to 2v '?
(c) Both balls are moving at the same speed	(a) $E_k/2$
(d) 10kg ball is moving fast	(b) $4E_k$
RRB ALP. & Tec. 30-08-2018(Shift-I)	(c) there will be no change in E_k
Ans : (b) Let, velocity of 5kg ball $=$ v ₁	(d) $2E_k$ DDD ALD & Too 00.09 2019(Shift III)
And velocity of 10 kg hall =v. $\left[\cdot \cdot K E - \frac{1}{mv^2} \right]$	RRB ALP. & Tec. 09-08-2018(Shift-III)
And, velocity of 10 kg ball = v_{2} , $\therefore K.E = \frac{1}{2}mv^2$	Ans : (b) If, $E_k = \frac{1}{2} mv^2$
	$\frac{1}{2}$
$\frac{1}{2}m_{1}v_{1}^{2} = \frac{1}{2}m_{2}v_{2}^{2}$	and $KE = \frac{1}{2}m (2v)^2$, $KE = \frac{1}{2}m 4v^2$
	and $KE = -\frac{1}{2}m(2v)$, $KE = -\frac{1}{2}m4v$
$\frac{1}{2} \times 5v_1^2 = \frac{1}{2} \times 10v_2^2$	
$v_1^2 = 2v_2^2$	$KE = 4 \times \frac{1}{2} \text{ m v}^2$, Or $KE = 4E_k$
1 2	So kinetic energy become 4 times.
\Rightarrow v ₁ > v ₂	297. An object with the mass of 2 kg is thrown
.: 5 kg ball is moving fast.	upward with the initial velocity 20 m/s after 2
291. The energy contained in an object due to the	seconds its kinetic energy will be -
change in position and shape is called. (a) Kinetic energy (b) Chemical energy	(a) 100J (b) 0J
(c) Nuclear energy (d) Potential energy	(c) 400J (d) 200J RRB ALP. & Tec. 09-08-2018(Shift-II)
RRB ALP. & Tec. 29-08-2018(Shift-I)	Ans : (b) According to Newton's first law
Ans : (d) Potential energy is the energy in a body due	v = u - gt
to change in its position and shape.	Given,
The formula for potential energy depends on the force	$u = 20 \text{ m/s}, t = 2 \text{ sec}$ $g = 10 \text{ m/s}^2$
acting on that objects. For the gravitational force the formula is P.E. = mgh. where m is the mass in kilograms.	$v = 20 - 10 \times 2, v = 0$
g is the acceleration due to gravity (9.8 m / s^2 at the	So, after 2 second kinetic energy also be zero.
surface of the earth) and h is the height in meters.	298. What will be the kinetic energy of an object
292. The energy possessed by a body due to its	weighing 22 kg moving at a speed of 5 m / s?
change in position or shape is called -	(a) $275\overline{J}$ (b) $1\overline{1}0\overline{J}$ (c) $1100\overline{J}$ (d) $2750\overline{J}$
(a) Nuclear energy (b) Potential energy (c) Kinetic energy (d) Chemical energy	RRB ALP. & Tec. 09-08-2018 (Shift-II)
RRB Group-D 30-10-2018 (Shift-I)	Ans : (a)
Ans : (b) See the explanation of above question.	
293. At the time of releasing an arrow in a drawn	K.E. = $\frac{1}{2}$ mv ² , m = 22 Kg, v = 5 m/s
bow, the potential energy of the bow change	
(a) Chemical energy (b) Kinetic energy	$E_{k} = \frac{1}{2} \times 22 \times 5 \times 5 = \frac{1}{2} \times 550 = \boxed{275J}$
(c) Sound energy (d) Thermal energy	299. Falling coconut has –
RRB ALP. & Tec. 30-08-2018(Shift-I)	(a) Nuclear energy (b) Sound energy
Ans : (b) At the time of releasing an arrow from a drawn bow, the potential energy of the bow change in	(c) Kinetic energy (d) Chemical energy
to the kinetic energy.	RRB Group-D 24-09-2018(Shift-II)
294. Which of the following is not an example of	Ans : (c) Falling coconut has kinetic energy.
potential energy?	300. When an object of 11 kg is at a height of 5 m
(a) A compressed spring	from the ground, then find the energy $\frac{1}{2}$
(b) Flowing water	contained in it $?(g=9.8 \text{ms}^{-2})$ (a) 5391 (b) 5281
(c) A raised hammer(d) Water stored in a dam	(a) 539J (b) 528J (c) 588J (d) 520J
RRB ALP. & Tec. 30-08-2018(Shift-II)	
, , ,	6 YCT
A A A A CIENCE FIXIMER FUXSICS	YU YU

high and when it hits the target its velocity becomes Ans: (a) Given, zero in a very short time. Therefore, the rate of change $m = 11 \text{ kg}, h = 5 \text{ m}, g = 9.8 \text{ m/s}^2$ P.E. = mgh = $11 \times 9.8 \times 5 = 55 \times 9.8 = 539$ J in momentum of the bullet is very high, so the bullet moves deep within the target. When an object of 14 kg is at a height of 5 m 301. from the ground, then find the energy **307.** By the turbines flowing water and air are used for change in....? contained in it ? (g=9.8ms⁻²) (b) 686m (a) Potential energy into electric energy (a) 528J (c) 686J (d) 668J (b) Nuclear energy into electric energy RRB Group-D 15-10-2018(Shift-II) (c) Kinetic energy into electric energy Ans: (c) Given, (d) Chemical energy into electric energy m = 14 kg, h = 5 m, g = 9.8 m/s² P.E= mgh= 14 × 9.8 × 5 = 686 J RRB Group-D 16-11-2018(Shift-III) Ans : (c) The water flowing through the turbine are 302. When an object of 15 kg is at a height of 10 m used to convert kinetic energy into electrical energy. from the ground, then find the energy The turbine operates on the basis of Newton's third contained in it ? (g=10ms⁻²) law (the law of action-reaction). (a) 1500Pa (c) 1500ms⁻² (b) 1500N (d) 1500J What is the kinetic energy of a bullet when a 308. bullet is fired from a gun? RRB Group-D 31-10-2018(Shift-III) (b) Infinite (a) Less than gun Ans: (d) Given, (d) equivalent to gun (c) More than gun m = 15 kg, h = 10 m, g = 10 m/s² RRB Group-D 22-09-2018(Shift-I) $P = mgh = 15 \times 10 \times 10 = 1500 J$ **Ans : (c)** Gun mass = m_1 , velocity = v_1 303. The kinetic energy of an object is 120J and its Bullet mass = m_2 , velocity = v_2 mass is 15 kg Find the velocity of the object- \therefore m₁ > m₂.....(i) By the rule of principle of conservation of momentum-(a) 4 ms(c) 4 ms^{-2} (b) 4 ms (d) 4 ms^2 $m_1 v_1 = m_2 v_2$ RRB Group-D 09-10-2018(Shift-II) Multiplying by 1/2 and squaring on both sides -Ans: (b) $\Rightarrow \frac{1}{2} (\mathbf{m}_1 \mathbf{v}_1)^2 = \frac{1}{2} (\mathbf{m}_2 \mathbf{v}_2)^2$ $K.E. = \frac{1}{2}mv^2$ \Rightarrow E₁. m₁ = E₂m₂ $120 = \frac{1}{2} \times 15 \times v^2 \implies \qquad v^2 = \frac{120 \times 2}{15}$ $\Rightarrow \frac{E_2}{E_1} = \frac{m_1}{m_2}$ \Rightarrow v² = 16 \Rightarrow v = 4 ms⁻¹ $\Rightarrow \frac{E_2}{E_1} > 1$ from (i) equation 304. What is the kinetic energy of an object of mass 15 kg moving at the velocity of 8ms⁻¹ $\Longrightarrow E_2 > E_1$ When a bullet is fired from a gun, the kinetic energy of (b) 180.5J (d) 187.5J (a) 480J (c) 480ms the bullet is higher than that of the gun. RRB Group-D 09-10-2018(Shift-II) 309. Mechanical energy – kinetic energy = ? Ans: (a) (a) Chemical energy (b) Potential energy $(K.E) = \frac{1}{2}m.v^{2}$ m = 15 kg, V = 8 m/s (d) Nuclear energy (c) Electric energy RRB Group-D 19-09-2018(Shift-III) **RRB Group-D 12-10-2018(Shift-II)** $\therefore \text{ K.E.} = \frac{1}{2} \times 15 \times 8 \times 8 = 480 \text{ J}$ **RRB** Group-D 16-11-2018(Shift-III) **Ans**: (b) Mechanical energy is due to the position or movement of an object. The formula for mechanical 305. When an object of 11 kg is at a height of 6 m energy is. from the ground, then find the energy Mechanical energy = kinetic energy + potential energy contained in it? (g=9.8ms⁻²) Mechanical energy - kinetic energy = potential energy (b) 646.8J (d) 520J (a) 539J What does mechanical energy equal? 310. (c) 528J (a) Kinetic energy+ chemical energy RRB Group-D 15-10-2018(Shift-III) (b) Kinetic energy+ potential energy Ans: (b) Given, (c) Kinetic energy+ heat energy $m = 11 \text{ kg}, h = 6 \text{ m}, g = 9.8 \text{ m/s}^2$ (d) Kinetic energy + electric energy P.E. = mghRRB ALP. & Tec. 30-08-2018(Shift-I) $= 11 \times 9.8 \times 6 = 646.8 \text{ J}$ Ans: (b) See the explanation of the above question. 306. The bullet fired from the gun goes deep inside 311. Mechanical energy is a combination of kinetic the target because it has -(b) Potential energy energy and -(a) Heat energy (c) Chemical energy (d) Kinetic energy (a) Heat energy (b) Chemical energy RRB Group-D 10-10-2018(Shift-III) (c) Potential energy (d) Nuclear energy RRB ALP. & Tec. 10-08-2018(Shift-II) Ans : (d) The bullet fired from the gun goes deep RRB ALP. & Tec. 13-08-2018(Shift-III) inside the target because it contains kinetic energy. Ans: (c) See the explanation of the above question. The velocity of the bullet fired from the gun is very

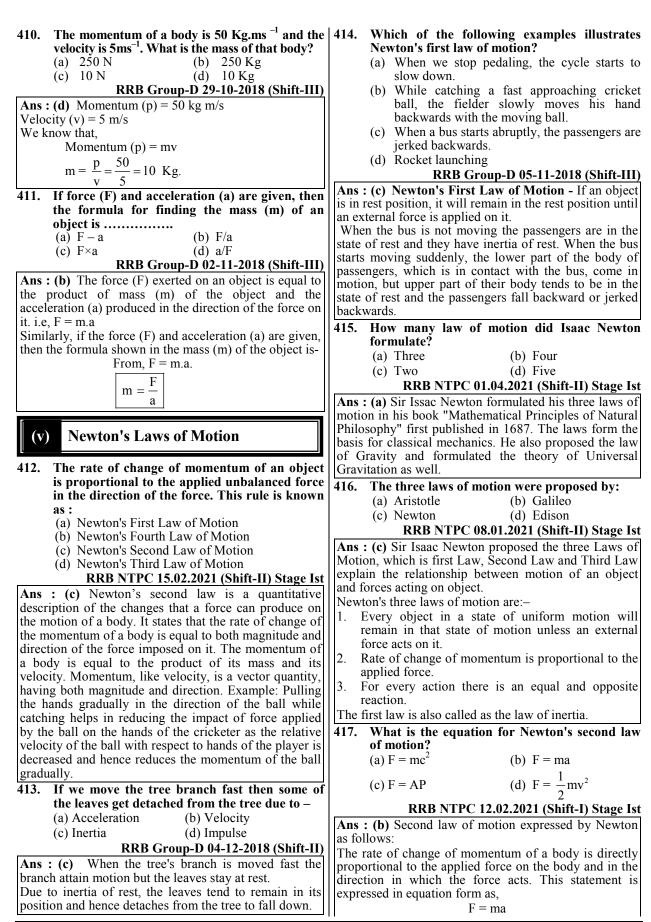
RRB Science Planner Physics

324. An object of 13kg mass is moving with constant	329. The kinetic energy of an object of mass m moving at a speed of 5 ms ⁻¹ is 25J. What will be its kinetic
speed of 5m/s ,what will be kinetic energy	
contained in the object ?	energy when its speed will be double?
(a) 187.5J (b) 17.5J (c) 162.5J (d) 162.5ms	(a) 100J (b) 50J
(c) 162.5J (d) 162.5ms RRB Group-D 11-10-2018(Shift-I)	(c) $100N$ (d) $50N$
Ans : (c) Kinetic energy is directly proportional to	RRB Group-D 01-10-2018(Shift-II)
the mass of the object and to the square of its velocity:	Ans: (a) Mass of object = m kg Velocity of object = 5 m/s
1	Kinetic energy = 25 J
K.E. = $\frac{1}{2}$ mv ²	1
Here, m = 13 kg and v = 5ms^{-1}	$\therefore \qquad \text{Kinetic energy} = \frac{1}{2} \times \text{m.v}^2$
Then, K.E. = $13 \times 5 \times 5/2 = 162.5$ J	
325. What will be the kinetic energy of an object of	$25 = \frac{1}{2} \times m \times 5^2$
mass 20kg moving at a speed of 5ms ⁻¹ ?	\therefore m = 2 kg
(a) 250kg (b) 250J	New velocity = $2 \times \text{Initial velocity} = 2 \times 5 = 10 \text{ m/s}$
(c) 250N (d) 250Pa RRB Group-D 11-12-2018(Shift-II)	
Ans : (b) Kinetic energy is directly proportional to	\therefore New kinetic energy = $\frac{1}{2} \times 2 \times 10 \times 10 = 100 \text{ J}$
the mass of the object and to the square of its velocity:	330. When an object of 12kg is at a height of 5m
	from the ground, then the energy contained in
$KE = \frac{1}{2}mv^2$	it will be ? $(g=9.8 m s^{-2})$
Here, $m = 20$ kg and $v = 5$ ms ⁻¹	(a) 539J (b) 520J
Then, K.E. = $20 \times 5 \times 5/2 = 250$ J	(c) 528J (d) 588J
326. Formula for gravitational potential energy is -	RRB Group-D 12-10-2018(Shift-I)
(a) $U=mgh_1h_2$ (b) $U=mgh$	Ans : (d) According to question,
(c) $U=mhG$ (d) $U=1/2 mv^2$	mass (m) = 12 kg
RRB Group-D 23-10-2018(Shift-III)	height (h) = 5 m
Ans : (b) The equation for gravitational potential	acceleration due to gravity (g) = 9.8 m/s^2
energy is $U = mgh$, where m is the mass in kilograms, g is the acceleration due to gravity (9.8 m/s ² on Earth),	Energy stored in the object is potential energy = mgh 120500 s 500 L
and h is the height above the ground in meters	$= 12 \times 5 \times 9.8 = 588 \text{ J}$ 331. What is the change in the total energy of a
327. What is wrong statement about kinetic energy?	body falling freely towards the earth ?
(a) During static state the energy contained in the	(a) Does not change
object is called kinetic energy	(b) Initially there will be decrease and after there
(b) The energy received by an object based on its	will be increase
speed is known as kinetic energy	(c) It will increase
(c) K.E.= $1/2(mv^2)$	(d) It will decrease
(d) Moving objects have kinetic energy	RRB Group-D 13-12-2018(Shift-II)
RRB Group-D 12-11-2018(Shift-II) Ans : (a) The energy contained in the static state is	
called potential energy. So, option (a) is incorrect. The	332. An object of 10kg is moving at a speed of 5m/s.
kinetic energy is the additional energy of a body due	what will be the kinetic energy of object?
to its linear velocity or angular velocity, or both. The	(a) 125J (b) 2J
kinetic energy is a scalar quantity, it has no direction. The kinetic energy of the body is expressed by K.E.	(c) $25J$ (d) $50J$
1	RRB Group-D 10-10-2018(Shift-I)
$KE = \frac{1}{2}mv^2$	RRB Group-D 19-09-2018(Shift-I)
2 228 An object meaning with the uniform velocity of	Ans : (a) Kinetic energy is directly proportional to the mass of the object and to the square of its velocity.
328. An object moving with the uniform velocity of 4m/s has a kinetic energy of 120J. Find the	
mass of the object?	$K.E. = \frac{1}{2}mv^2$
(a) 15N (b) 15kg	-
(c) 19Pa (d) 15W	here, $m = 10 \text{ kg}$, $v = 5 \text{ m/s}$
RRB Group-D 01-10-2018(Shift-I) RRB Group-D 01-10-2018(Shift-III)	Kinetic energy $=\frac{1}{2} \times 10 \times (5)^2 = 5 \times 25 = 125$ Joule
Ans : (b) Kinetic energy is directly proportional to	333. Just before hitting the earth, the kinetic energy
the mass of the object and to the square of its velocity:	of an object of mass 2 kg is 400 J. At which
K.E. = $1/2 \text{ m v}^2$	height it was dropped?
Here, m = ? and v = 4 ms ⁻¹ and K.E. = 120J There 120 = $m_{1}(4)(4/2)$	(a) $10m$ (b) $25m$ (d) $15m$
Then, $120 = m \times 4 \times 4/2$ m = 15 kg	(c) 20m (d) 15m RRB Group-D 04-12-2018(Shift-II)
· · · · · · · · · · · · · · · · · · ·	СТ ККВ Group-D 04-12-2016(Sunt-II)

Ang (a) From concernation of energy	339. Which of these objects does not have kinetic
Ans : (c) From conservation of energy, Kinetic energy of body before striking (hitting) the	energy?
ground = potential energy of body at height h from the	(a) Flowing wind (b) Raised hammer
ground, P.E. = mgh	(c) Falling stone (d) Moving bullet
here, $m = 2 \text{ kg}$, P.E = 400 J & g = 10 m/s ²	RRB Group-D 05-10-2018(Shift-II)
400 = mgh	Ans: (b) See the explanation of the above question.
$400 = 2 \times 10 \times h$	340. The energy of 9800J was used to lift the 70kg
\Rightarrow h = 20 m.	(a) 14m (b) 140m
334. Which of the following contains potential	(a) $14m$ (b) $14m$ (c) $-140m$ (d) $-14m$
energy?	RRB Group-D 17-09-2018(Shift-III)
(a) Dam water (b) Flying Aeroplane	Ans: (a) $PE = mgh$
(c) A falling Aeroplane(d) Running runner	here, $PE = 9800 \text{ J}$, m = 70 kg & g = 10 m/s ²)
RRB Group-D 30-10-2018(Shift-II)	$9800 = 70 \times 10 \times h$ $9800 = 700 \times h$
Ans : (a) Potential energy is the energy in a body due to its position or shape.	
Dam water has potential energy.	$h = \frac{9800}{700} = 14m$
335. Which of the following objects will have	341. What is the potential energy of an object of
potential energy?	mass 40 kg when it is lifted at a height of 5m
(a) Moving bullet (b) Flowing air	above the ground?
(c) A rolling stone (d) Raised hammer	(a) $200W$ (b) $2000I$
RRB Group-D 03-10-2018(Shift-II)	$\begin{array}{c} (a) 2000W \\ (b) 2000J \\ (c) 2000W \\ (d) 200J \\ ($
Ans : (d) The raised hammer has potential energy.	RRB Group-D 15-11-2018(Shift-I)
336. What is the kinetic energy of the bicycle having	Ans : (b) (U) = mgh here, m = 40 kg, h = 5 m & $g = 10 m/s^2$
10kg weight moving at a speed of 20m/s?	Potential energy, $(U) = 40 \times 10 \times 5 = 2000 \text{ J}$
(a) $4000J$ (b) $400J$	342. During the free falling of an object –
(c) 200J (d) 2000J	(a) The kinetic energy increase
RRB Group-D 28-09-2018(Shift-II)	(b) The potential energy increase
Ans: (d)	(c) The kinetic energy decrease
$KE = \frac{1}{2}mv^2$	(d) There is no change in kinetic energy RRB Group-D 15-11-2018(Shift-I)
2	Ans : (a) When an object is in a static state, it has
(here, $m = 10 \text{kg}, v = 20 \text{m/s}$)	potential energy but when it is dropped down freely,
$= \frac{1}{2} \times 10 \times (20)^2 = \frac{1}{2} \times 10 \times 400 = \frac{4000}{2} = 2000 \text{ J}$	the energy generated due to its motion is called kinetic
	energy. But as the body moves downwards, the force
337. An object of mass 14kg is moving at the	of gravity acts on it, which increases the kinetic energy as its speed increases.
velocity of 5m/s. Find the kinetic energy	343. If the velocity of an object moving at a certain
contained in an object?	height is increase 4 times, then what will be the
(a) 180.5J (b) 17.5J (c) 175m (d) 175J	change in the potential energy of the object?
RRB Group-D 11-10-2018(Shift-II)	(a) Potential energy will be constant
Ans : (d)	(b) Potential energy will be half of its original value(c) Potential energy will be doubled
1	(d) Potential energy will be 4 times of its original
$KE = \frac{1}{2}m \times v^2$	value
	RRB Group-D 15-11-2018(Shift-II)
$=\frac{1}{2}\times14\times5^{2}$	Ans: (a) The energy that exists in each object due to its
	position or shape is called potential energy. According to the question, increasing the velocity of an object moving
$=\frac{1}{2}\times 14\times 25$	at a certain height four times will change its kinetic
= 175 J	energy and not the potential energy. Therefore, potential
338. Which of the following does not have kinetic	energy of that object will remain constant.
energy?	344. How would energy be converted while cycling ?
(a) A rolling stone (b) Falling coconut	(a) Potential energy is converted into muscular energy
(c) Raised hammer (d) Moving car	(b) The chemical energy is converted into
RRB Group-D 08-10-2018(Shift-II)	muscular energy then kinetic energy
Ans: (c) Kinetic energy is the energy that is caused	(c) Chemical energy is converted into
by the motion of an object, such as the energy of a rolling stone, the energy of a folling scorenit and the	(d) Mechanical energy is converted into kinetic
rolling stone, the energy of a falling coconut and, the energy of a moving body, etc. The raised hammer has	(d) Mechanical energy is converted into kinetic energy
potential energy. Potential energy is due to the	RRB Group-D 05-11-2018(Shift-II)
specific position or the shape of an object.	Ans : (b) While cycling, chemical energy is converted
Mechanical energy = Kinetic energy + Potential energy	into muscular energy and then kinetic energy.
<u> </u>	

345. A compressed spring has energy	Ans : (b) Here, $m = 10 \text{ kg}$, $h = 7 \text{ m}$ & $g = 9.8 \text{ m/s}^2$
compared to a normal spring.	PE = mgh
(a) Less (b) Zero	$E = 10 \times 9.8 \times 7 = 686 \text{ J}$
(c) Equal (d) Greater	352. What type of energy changes during the rain ?
RRB Group-D 12-11-2018(Shift-III)	(a) Mechanical energy is converted into kinetic
Ans : (d) A compressed spring has more energy than	energy (b) Museular energy
a normal spring. A spring is made up of an elastic materials and in which (mechanical) energy is stored.	(b) Muscular energy is converted into mechanical energy
Compressed springs have more energy than normal	(c) Chemical energy is converted into kinetic
springs due to the greater mechanical energy	energy
accumulated.	(d) Potential energy is converted into kinetic energy
346. An object is dropped from a certain height to	RRB Group-D 24-10-2018(Shift-II)
the ground. When it touches the ground it will	Ans : (d) During the rain potential energy is converted
contain-	into kinetic energy.
(a) Thermal energy(b) Chemical energy(c) Kinetic energy(d) Potential energy	353. Which of the following increase or decrease
RRB Group-D 18-09-2018(Shift-II)	with height ?
Ans : (c) The energy that is generated due to the	(a) Nuclear energy(b) Chemical energy(c) Potential energy(d) Mechanical energy
motion of an object is called kinetic energy. If an	RRB Group-D 03-10-2018(Shift-III)
object of mass m is moving at a velocity v, then the	Ans : (c) Potential energy (P.E) = mgh
kinetic energy of that object will be K.E. = $1/2 \text{ m v}^2$	Potential energy \propto h
such as - when an object is dropped to the ground	Therefore, it is clear from the above equation that the
from a certain height, it has kinetic energy when it	potential energy will increase as the height increases
touches the ground. 347. is known as the strength of an object.	and the energy will decrease as the height decreases. 354. The energy contained in an object is 1500J and
(a) Energy (b) Pressure	354. The energy contained in an object is 1500J and its mass is 15kg. Find the height of the object
(c) Inertia (d) Force	above the ground.
RRB Group-D 27-09-2018(Shift-I)	(a) 10m (b) 10N
Ans : (a) Energy is known as the strength of an	(c) 10Pa (d) 10 cm
object. The ability of an object to do the work is called	RRB Group-D 02-11-2018(Shift-I)
energy. The unit of energy is 'joule'.	Ans : (a) here, $PE = 1500 \text{ J}$, $m = 15 \text{ kg}$
348. What would be the energy contained at a	$(PE) = mgh$ $15 \times 10 \times h = 1500$
height of 6m by a body of mass 50kg? (a) 3000J (b) 30J	h = 10 m
(a) $300J$ (b) $30J^4J$	355. Potential energy is equal to-
RRB Group-D 22-09-2018(Shift-III)	(a) $m(-g)h$ (b) mgh_2
Ans : (a) Here, $m = 50 \text{ kg}$, $h = 6 \text{ m}$	(c) Fs (d) 1/2mv ² RRB Group-D 18-09-2018(Shift-III)
(P.E.) = mgh	Ans : (b) The energy that is accumulated due to the
$= 50 \times 10 \times 6 = 3000 \text{ J}$	position or distorted state in an object is called
349. Find the potential energy of an object mass m raised from the ground level at a height of 4h-	potential energy. If a mass of m kg is raised to h
(a) 4 mgh (b) 8 mgh	height above the earth, the gravitational potential
(c) 0.4 mgh (d) $\frac{1}{4} \text{ mgh}$	energy contained in the object is- $U = mgh$
RRB Group-D 16-10-2018(Shift-II)	356. Potential energy=?
Ans : (a) From, $(P.E.) = mgh'$	(a) Fs (b) mgh (d) $m_2^2/2$
$= mg(4h) \qquad (\because h' = 4h)$ $= 4 mgh$	(c) mv ² /2 (d) mu ² /2 RRB Group-D 20-09-2018(Shift-I)
350. When an object of 11kg is placed at a height of	
7m from the ground, how much energy it will	357. If an object of 10kg mass is moving at a speed
contained?	of 2m/s, then kinetic energy of the object is-
(a) 528J (b) 520J	(a) $5J$ (b) $40J$
(c) $588J$ (d) $754.6J$	(c) 10J (d) 20J RRB Group-D 27-09-2018(Shift-I)
RRB Group-D 22-10-2018(Shift-II) Amon (d) Hore $m = 11 \log h = 7 m \frac{6}{5} \alpha = 0.8 m/s^2$	Ans : (d) Kinetic energy is directly proportional to
Ans : (d) Here, $m = 11 \text{ kg}$, $h = 7 \text{ m} \& g = 9.8 \text{ m/s}^2$ P.E = $m \times g \times h$	the mass of the object and to the square of its velocity:
$= 11 \times 7 \times 9.8$	$K.E. = 1/2 \text{ m v}^2$
$= 77 \times 9.8 = 754.6 \text{ J}$	$=$ $\frac{1}{2}$ × 10 × 2× 2 = 20 Joule
351. When an object of 10kg is placed at a height of	2
7m from the ground, how much energy it will	358. What is the formula for finding the kinetic
contained -	energy of an object ? (b) $1/2mv^2$
(a) $528J$ (b) $686J$ (c) $520J$ (d) $588J$	(a) ma (b) $1/2mv^2$ (c) mgh (d) $1/2mv^2$
(c) 520J (d) 588J RRB Group-D 22-10-2018(Shift-I)	
RRB Science Planner Physics 4	YCT

Ans : (b) Kinetic energy of an object is directly	Ans : (d) The energy that is genrated due to a
proportional to the mass of the object and to the	particular state or position of an object is called
square of its velocity:	potential energy. Examples of potential energy are, a
$K.E. = 1/2 \text{ m v}^2$	brick placed on the roof of the house, a clock spring when it rotates, compressed spring or spring energy
Where m is mass and v is velocity.	and the energy stored in the elevated reservoir under
359. What does the kinetic energy equal ?	the water supply system.
(a) $1/2mv^2$ (b) mgh	364. An object capable of performing a work has
(c) mv (d) Ma	(a) Force (b) Energy
RRB ALP. & Tec. 17-08-2018(Shift-II)	(c) Momentum (d) Power
Ans : (a) See the explanation of above question.	RRB Group-D 15-11-2018(Shift-III)
360. An object of mass 11kg is moving at a velocity	Ans : (b) An object capable of performing a work has
of 5m/s. How much the energy is contained in	energy. The ability of any worker to do the work is
that object ?	called energy. There are different forms of energy. It
(a) 137.5 ms (b) 137.5J	can be converted from one form to another.
(c) 180.5J (d) 17.5J	365. The water flowing in a hydroelectric power station
RRB Group-D 10-10-2018(Shift-II)	can run the turbine because it containes.
Ans : (b) Kinetic energy is directly proportional to	(a) Electric energy (b) Chemical energy
the mass of the object and to the square of its velocity:	(c) Kinetic energy (d) Potential energy
	RRB Group-D 02-11-2018(Shift-II
$K.E = \frac{1}{2}mv^2$	Ans : (c) The water flowing in a hydroelectric power station can run the turbine because it containes
	kinetic energy. The kinetic energy is the excess
$=\frac{1}{2} \times 11 \times 5^{2} = \frac{1}{2} \times 11 \times 25 = \frac{1}{2} \times 275 = 137.5 \text{ J}$	energy of a body due to its linear velocity or angular
$\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$ $\frac{2}{2}$	velocity, or both. Its value is equal to the work done in
361. An object of mass 15kg is moving at the	accelerating that body from rest to motion.
uniform velocity as 5m/s. Find the kinetic	
energy contained in an object ?	$\mathbf{K}.\mathbf{E} = \frac{1}{2} \mathbf{m} \mathbf{v}^2$
(a) 187.5J (b) 17.5J	2
(c) 180.5J (d) 187.5ms	366. Which of the following statements is false?
RRB Group-D 08-10-2018(Shift-II)	(a) Compressed spring has potential energy
Ans : (a) Kinetic energy is directly proportional to	(b) The raising hammer has potential energy
the mass of the object and to the square of its velocity:	(c) Dam water has kinetic energy
$K.E. = 1/2 \text{ m v}^2$	(d) A moving car has kinetic energy
here, $m = 15 \text{ kg}$, $v = 5 \text{ m/s}$	RRB Group-D 01-12-2018(Shift-II
1	Ans : (c) Dam water has potential energy.
$KE = \frac{1}{2} \times 15 \times 5^2$	367. An object of mass 20kg is moving at a velocity of
	6m/s. What is the kinetic energy of the object?
$=\frac{375}{2}=187.53$	(a) 3600J (b) 360J
2	(c) $36J$ (d) $3.6J$
362. An object of mass 12kg is placed at a certain	RRB Group-D 05-12-2018(Shift-III
height from the ground. If the potential energy	Ans : (b) Kinetic energy is directly proportional to the mass of the chiest and to the square of its valuation.
of the object is 480J, find the height from the	the mass of the object and to the square of its velocity: $K.E. = 1/2 \text{ m v}^2$
ground of an object ?	here, $m = 20 \text{ kg}$, $v = 6 \text{ m/s}$
(a) 6m (b) 5m	
(c) $4m$ (d) $8m$	$K.E = \frac{1}{2} \times 20 \times (6)^2$
RRB Group-D 03-10-2018(Shift-II)	
Ans : (c) Here, $m = 12 \text{ kg}$, PE = 480 J, g = 10 m/s ²	$=\frac{1}{2} \times 20 \times 36 = 10 \times 36 = 360 \text{ J}$
P = mgh	$\frac{2}{2} = 10 \times 30 - 300 \text{ J}$
480 = mgh	368. What can be predicted with respect to the
$480 = 12 \times 10 \times h$	energy in the given figure?
h = 4 m	
363. Which of the following is an example of	
potential energy?	Schoolphysics.co.ut
A. Bricks placed on the roof of the house	000 000
B. Spring of a clock when it rotates	
C. Compressed spring	(a) Both vehicles have gravitational potential energy
D. Stored water in an elevated reservoir under	(b) Both vehicles are moving in forward direction
	using maximum energy.
the water supply system	(c) Both vehicles are converting mechanica
(a) A, D (b) C, D	energy into musculer energy
(c) A, B and C (d) A, B, C, D	(d) Both vehicles have kinetic energy
RRB Group-D 31-10-2018(Shift-II)	RRB Group-D 05-11-2018(Shift-I)
RRB Science Planner Physics 4	2 VCT


RRB Group-D 25-09-2018(Shift-I)	RRB Group-D 22-10-2018(Shift-I)
(c) 375 kg m/s (d) 375 Pascal	(c) $5m$ (d) $5ms^2$
(a) 375 N (b) 375 Joule	(a) $-5m$ (b) $5ms^{-2}$
the object?	ground of the object?
velocity of 5 m/s. What is the kinetic energy of	height from the ground. If the potential energy of the object is 600J, find the height from the
373. An object of mass 30 kg is moving at a uniform	378. An object of mass 12kg is placed at a certain
$=\frac{1}{2} \times 30 \times 10 \times 10 = 1500 \text{ J}$	So, kinetic energy becomes 4 times.
	$E = 4\frac{1}{2}mv^2 \Rightarrow E = 4E_K$
K.E. = $1/2 \text{ m v}^2$ here, m = 30 kg, v = 10 m/s	$E = 4^{1} mv^{2} \rightarrow E = 4E$
the mass of the object and to the square of its velocity: $K = \frac{1}{2} m r^2$	$1 1001, D = \frac{1}{2} m(2v) \rightarrow D = \frac{1}{2} m4v$
Ans : (b) Kinetic energy is directly proportional to	Then, $E = \frac{1}{2}m(2v)^2 \Rightarrow E = \frac{1}{2}m4v^2$
RRB Group-D 26-09-2018(Shift-III)	2
(c) -1500J (d) 150J	If $E_k = \frac{1}{2} mv^2$
(a) -150J (b) 1500J	energy becomes 4 times.
10 m/s uniform velocity. What is the kinetic energy of an object?	energy. Hence, when velocity is doubled, kinetic
372. An object of mass 30 kg is being transferred by 10 m/s uniform valuativ. What is the kinetia	the product of square of its speed is called its kinetic
2 1	its motion, equal to one half the mass of the body and
$\mathbf{E}_{\mathbf{k}_{2}}^{\mathbf{k}_{1}} = 4 \mathbf{E}_{\mathbf{k}_{2}}$	Ans : (a) The energy possessed by a body because of
$\frac{1}{E_{k_1}} = 4$	(c) 3 (d) 2 RRB Group-D 24-09-2018(Shift-II)
$\frac{\mathbf{E}_{\mathbf{k}_2}}{\mathbf{E}_c} = 4$	(a) $\frac{4}{1}$ (b) 5 (d) 2
$E_{k_1} V_1 V_1$	energy increase?
$\frac{E_{k_2}}{E_{k_1}} = \frac{V_2^2}{V_1^2} = \frac{(2V_1)^2}{V_1^2} = 4$	initial velocity, how many times will its kinetic
	377. If the velocity of an object is twice that of its
$E_k \propto V^2$	here, m = 2 kg, v = 30 m/s = $2 \times 30 \times 30/2 = 900$ J
Ans : (c) $(E_k) = \frac{1}{2}mv^2$	K.E. = $1/2 \text{ m v}^2$
Ans: (c) (F ₁) = $\frac{1}{2}$ my ²	the mass of the object and to the square of its velocity.
RRB Group-D 22-09-2018(Shift-III)	Ans : (b) Kinetic energy is directly proportional to
(c) 4 time (d) 2 time	RRB Group-D 04-10-2018(Shift-II)
(a) 16 time (b) 8 time	(c) 900W (d) 900Pa
s/1. If the speed of the cycle is doubled then the kinetic energy will be?	(a) 900N (b) 900J
decreases. 371. If the speed of the cycle is doubled then the	376. What is the kinetic energy of a ball of mass 2kg moving at a speed of 30ms ⁻¹ ?
and the potential energy will decrease as the height	$= 15 \times 10 \times 10 = 1500 \text{J}$
potential energy will increases as the height increases	Here, m =15 kg, h = 10m and g = 10 m/s ²
Therefore, it is clear from the above equation that the	Ans : (a) Potential energy = $m \times g \times h$
Potential energy ∞ h.	RRB Group-D 05-10-2018(Shift-I)
height	(a) 1500J (b) -150J (c) -1500J (d) 150J
'h' increases, thereby increasing the potential energy. Potential energy = mass \times gravitational acceleration \times	
filled with gas that goes upward direction the value of 'b' increases, thereby increasing the potential energy	of 10m, find the potential energy obtained by it?
with increasing height. When a boy leaves a balloon	375. When the hammer of 15kg is raised to a height
Ans : (d) The potential energy in an object increases	200
RRB Group-D 07-12-2018(Shift-I)	$h = \frac{400}{2} = 2 m$
(c) It is infinite (d) Increase	$400 = 200 \times h$
(a) Decrease (b) Remains constant	$400 = 20 \times 10 \times h$
370. If a boy leaves a gas-filled balloon that goes upward direction, its potential energy will be?	PE = mgh
the Earth in raising an object from the Earth.	Ans : (d) Here, PE = 400 J, m = 20 kg, g = 10 m/s^2
that is, it has to work against the gravitational force of	RRB Group-D 28-09-2018(Shift-I)
gravitational force of the Earth is applied in raising it,	(a) $0.5m$ (b) $4m$ (c) $1m$ (d) $2m$
placed at a height above the earth surface the	the height of that object? (a) 0.5m (b) 4m
Ans : (b) The water raised at a certain height has potential energy. In potential energy, if an object is	mass of 20kg and a gravity of 10 m/s ² , what is
RRB Group-D 15-11-2018(Shift-II)	374. An object has a potential energy of 400J with a
(c) Electric (d) Chemical	K.E. = $15 \times 5 \times 5$ =375 Joule
(a) Kinetic (b) Potential	$K.E. = \frac{1}{2} \times 30 \times 5 \times 5$
369. The water raised at a certain height has energy.	1
the motion of the object is called kinetic energy.	$K.E. = 1/2 \text{ m v}^2$
are in the state of motion, so both vehicles will have kinetic energy. Thus, the ability to do the work due to	the mass of the object and to the square of its velocity. here, $m = 30 \text{ kg}$, $v = 5 \text{ m/s}$
Ans: (d) According to the given figure, both vehicles	Ans : (b) Kinetic energy is directly proportional to the mass of the chiest and to the square of its velocity

RRB Science Planner Physics

Ans: (c) Potential energy = $m \times g \times h$	Ans : (d) Potential energy = $m \times g \times h$
Here, $P = 600 \text{ J}$, $m = 12 \text{ kg}$, $h = ?$ and $g = 10 \text{ m/s}^2$	Here, m =11kg, h = 8m and g = $9.8m/s^2$
$600 = 12 \times 10 \times h$	$= 11 \times 9.8 \times 8 = 862.4 \text{ J}$
h = 600/120 = 5 m	385. When an object of 15kg is at a height of 5m
379. Which of the following energy increases with	from the ground, then how much energy it will
speed ?	contains?
(a) Chemical energy (b) Potential energy	(a) 520 J (b) 528 J
(c) Kinetic energy (d) Electrical energy	(c) 725 J (d) 735 J
RRB Group-D 24-10-2018(Shift-I)	RRB Group-D 15-10-2018(Shift-I)
Ans : (c) Kinetic energy is related to an object's	Ans : (d) Potential energy = $m \times g \times h$
momentum. For a rigid body travelling in a linear	Here, $m = 15$ kg, $h = 5$ m and $g = 9.8$ m/s ²
path, kinetic energy increases with the square of	$= 15 \times 9.8 \times 5$
velocity. So, if the velocity becomes doubles,	=735 J
the kinetic energy becomes 4 times of the object that	
of its initial velocity.	386. An object of mass 10kg is placed at the height
380. Following given example represent-	of 6 meter from the ground. Calculate the
1. A high speed pebble can hurt a person or break	potential energy stored in it. (g=9.8 m/sec ²)
a window glass.	(a) 578 J (b) 588 J
	(c) 578 W (d) 588W
2. Energy of a moving vehicle	RRB Group-D 31-10-2018(Shift-II)
3. Fast moving air can damage many homes	Ans : (b) Potential energy = $m \times g \times h$
4. Wind can drive the wind mill	here, $m = 10 \text{ kg}$, $h = 6 \text{ m}$, $g = 9.8 \text{ m/s}^2$
(a) Kinetic energy	=10×9.8×6
(b) Very fast speed	=98×6 = 588J
(c) Gravitational stretch	387. An object was thrown vertically upwards and
(d) Frictional force	it reached a maximum height 'h' from the
RRB Group-D 24-10-2018(Shift-I)	ground. While going over it, the object at 1/4 of
· · · · · · · · · · · · · · · · · · ·	height 'h' will have
Ans : (a) All the given example represents kinetic energy.	
381. Find the potential energy of an object 3m mass	(a) Less potential energy and more kinetic energy
raised from the ground at a height of h-	(b) Only potential energy
(a) 6 mgh (b) 9 mgh (d) $1/2$ mgh	(c) Equal potential and kinetic energy
(c) 3 mgh (d) $1/3 \text{ mgh}$	(d) More potential energy and less kinetic
RRB Group-D 27-11-2018(Shift-I)	energy
Ans : (c) Potential energy = $m \times g \times h$	RRB Group-D 28-11-2018 (Shift-I)
Here, mass = $3m$	Ans : (a) An object was thrown vertically upwards and
Then, $P = 3m \times h \times g = 3 \text{ mgh}$	it reached a maximum height 'h' from the ground. While
382. If a bullet is fired from the gun, comes	going over it, the object at 1/4 of the height 'h' will have
backwards, what will be the kinetic energy of	less potential energy and more kinetic energy.
the gun?	388. Fill in the blank with the correct option.
(a) Equivalent to bullet	An object is thrown vertically upward during
(b) Zero	their rise up potential energy and kinetic
(c) More than the bullet	energy is –
(d) Less than the bullet	(a) Increases ,decreases
RRB Group-D 16-10-2018(Shift-I)	(b) Decreases , increases
Ans : (d) When a bullet is fired from a shotgun and	
the gun strikes backwards, the gun's kinetic energy is	(c) Increases, increases
T THE ZUIL SUINES DUCKWARDS. THE ZUILS KITCHE CHERVER	
	(d) Remains the same, remains the same
less than the bullet.	(d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II)
less than the bullet. 383. A mobile was dropped from a balcony if the	(d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its
less than the bullet.383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the	(d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its matrix is called his the approximation protection of the same set of the
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 	(d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its matrix is called his the approximation protection of the same set of the
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans: (a) The ability of an object to work due to its motion is called kinetic energy while potential energy
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object.
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic
less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s ² . So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches
less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 5000J RRB Group-D 24-09-2018(Shift-II) Ans : (d) Potential energy = m×g×h	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero,
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans : (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases.
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans: (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans : (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path?
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans : (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 8m from the ground, then how much energy it 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path? (a) Mechanical energy
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans: (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 8m from the ground, then how much energy it will contains? 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path? (a) Mechanical energy (b) Kinetic energy
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans: (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 8m from the ground, then how much energy it will contains? (a) 520 J (b) 539 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path? (a) Mechanical energy (b) Kinetic energy (c) Potential energy
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans: (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 8m from the ground, then how much energy it will contains? (a) 520 J (b) 539 J (c) 588 J (d) 862.4 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path? (a) Mechanical energy (b) Kinetic energy (c) Potential energy (d) Chemical energy
 less than the bullet. 383. A mobile was dropped from a balcony if the mass of the mobile phone is 0.5kg and the mobile phone was dropped from a height of 100m, g=10m/s². So what is the potential energy of mobile phone? (a) 5000J (b) 5 J (c) 50 J (d) 500 J RRB Group-D 24-09-2018(Shift-II) Ans : (d) Potential energy = m×g×h Here, m = 0.5kg, h = 100m and g = 10 m/s² = 0.5 × 100 × 10 = 500 J 384. When an object of 11kg is placed at a height of 8m from the ground, then how much energy it will contains? (a) 520 J (b) 539 J 	 (d) Remains the same, remains the same RRB Group-D 20-09-2018(Shift-II) Ans : (a) The ability of an object to work due to its motion is called kinetic energy while potential energy is the ability to the work due to a particular state or condition of an object. When an object is thrown vertically upward, then its potential energy increases gradually and the kinetic energy decreases and at time when the object reaches the last point, then its kinetic energy becomes zero, i.e. decreases. 389. During the free fall of an object, which of following energy increases at one point in its path? (a) Mechanical energy (b) Kinetic energy (c) Potential energy

Ans : (b) Kinetic energy increases at any point in its	394. Which one of the following is not related to this
path during the free fall of an object.	group?
390. What is the kinetic energy of a bullet when a	(a) Speed (b) Time
bullet is fired from a gun ?	(c) Mass (d) Acceleration
(a) Less than that of a gun	RRB NTPC 31.03.2016 (Shift-I) Stage I st
(b) Infinite	Ans : (c) Time, acceleration, and speed are variables of
(c) More than that of a gun	linear motion while mass is not included in this group.
(d) Equivalent to a gun	395. Which of the following quantity measures the
RRB Group-D 22-09-2018(Shift-I)	inertia of a body?
Ans : (c) Law of conservation of momentum, states that	(a) Mass
a free recoiling gun and bullet will have equal	(b) Density
momentum in opposite direction. Since the gun is always	(c) Temperature
heavier, it will have lower velocity, but the bullet has	(d) Volume
higher velocity because the mass of bullet is less than as	RRB Group-D 26-10-2018 (Shift-III)
compare to the gun. When calculating kinetic energy, the kinetic energy of the bullet will be always higher.	Ans : (a) Inertia is that quality of things, due to which
391. A block of 2 kg slides on a parallel surface at a	objects try to maintain their state of rest or state of
speed of 4 m/s. It falls on an uncompress spring	motion. Due to inertia, the object opposes its state of change. Mass quantity of measures the inertia of an
and presses it until the block becomes	object.
completely motionless. The value of kinetic	396. Inertia of an object is measured in which of the
friction is 15N and the spring constant is	following?
10000N/m. spring presses –	(a) Velocity (b) Colour
(a) 8.5m (b) 8.5cm	(c) Weight (d) Mass
(c) $5.5m$ (d) $5.5cm$ PPP Crown D 10 12 2018(Shift D)	RRB Group-D 31-10-2018 (Shift-III)
RRB Group-D 10-12-2018(Shift-I) Ans : (d) Let, spring's x part is pressed	Ans : (d) See the explanation of above question.
m = 2 kg, k = 10000 N/m and v = 4 m/sec.	397. Measurement of mass of an object is called
According to question,	measurement of
$Mv^{2}/2=kx^{2}/2$	(a) Acceleration (b) Inertia
$0.5 \times 2 \times 4^2 = 10000 \times x^2 \times 0.5$	(c) Momentum (d) Speed
$x^2=32/10000, x=0.056 m$	RRB Group-D 11-10-2018 (Shift-II)
x = 5.5 cm (approx) 392. What is the form of energy that is not	Ans : (b) Expressing the magnitude of a physical amount in quantity is called 'measurement'. The
392. What is the form of energy that is not generated when riding a bicycle?	property that opposes any change in the state of motion
(a) Chemical energy (b) Heat energy	of an object is called inertia. Inertia is the property that
(c) Mechanical energy (d) Kinetic energy	causes an object to move at the same velocity in a
RRB ALP & Tec. (10-08-18, Shift-I)	straight line without changing direction. Measurement
Ans : (a) Chemical energy is the energy stored in the	of mass of an object called measurement of inertia.
chemical compounds. This energy is released when a	398. What is the definition of mass?
chemical reaction takes place. Usually, once chemical	(a) The mass of an object is directionless.
energy has been released from a substance, that	Therefore it is a scalar quantity.
substance is transformed into a completely new	(d) Mass can be determined based on chemical equilibrium.
substance, so it is not generated by riding a bicycle.	(c) The mass of an object remains constant at any
	place and is not affected by the change in
(iv) Mass	height.
	(d) The amount of matter contain in an object is
393. Which of the following quantity does not	called the mass of that object.
change even after changing place?	RRB Group-D 24-10-2018 (Shift-III)
(a) Mass	Ans: (d) Mass is defined as the amount of the matter
(b) Force due to friction	inside a body. All the objects have a matter inside them and the measurement of the matter is the mass.
(c) Weight	
(d) Gravity	399. Mass / Volume =? (a) Density (b) Momentum
RRB ALP & Tec. (30-08-18 Shift-I)	(c) Inertia (d) Force
Ans : (a) Mass is the amount of matter in the body which does not depend on the value of g. Weight of a	RRB Group-D 01-10-2018 (Shift-II)
body is the gravitational force on it. Thus, weight is	Ans : (a) The density of a substance is the measure of
dependent on gravitational acceleration (g).	how much matter that an object has in a unit volume.
Hence, weight of a body will change from one place to	The symbol ρ represents it or it can also be represented
another place because the value of g is different in	by letter D.
different places. As mass is independent of g, so it will	Mathematically, the density of an object is expressed as
not change from place to place.	follows
RRB Science Planner Physics 4	5 YCT

$Density = \frac{Mass(m)}{Volume(V)}$	Ans : (a) The value of acceleration due to gravity 'g' is affected by
	(i) Altitude above the earth's surface.
* S.I. unit of density is kg/m ³	(ii) Depth below the earth's surface.
400. The mass density of an object is defined as its	(iii) The shape of the earth.
	(iv) Rotational motion of the earth. If a body is located on the surface of earth then
(a) Mass per unit length	acceleration due to gravity is given by –
(b) Mass per cubic area	
(c) Mass per unit volume	$g = \frac{GM}{R^2}$
(d) Mass per unit ampere. ALP Stage -II 22.01.2019 (shift - I)	Where,
	G = Universal gravitational constant
Ans : (c) The mass density or density of a substance is defined as, its mass per unit volume.	M = Mass of earth
	R = Radius of earth
401. What is the mass per unit volume of a substance called?	The above equation gives acceleration due to gravity at the surface of earth. Clearly 'g' is independent of mass
(a) Energy (b) Mass	'm' of the body.
(c) Density (d) Matter	406. Density of pure water is that of saline water.
RRB Group-D 05-10-2018 (Shift-I)	(a) Less than
Ans : (c) Mass per unit volume of substance is called	(b) Equal to
density. Density is denoted by ρ or d. Its unit is kg per	(c) More than
cubic meter.	(d) Negligible compared to
$Density = \frac{mass}{volume}$	ALP Stage -II 22.01.2019 (shift - I)
volume	Ans : (a) Density of pure water is less than that of
m	saline water.
$\rho = \frac{1}{v}$	407. What will be the mass of the girl weighing 450
402. What is the mass of a unit volume of substance	N? (a) 450 kg (b) 45 kg
called?	(a) 450 kg (b) 45 kg (c) 459 kg (d) 45.9 kg
(a) Density (b) Pressure	RRB Group-D 20-09-2018 (Shift-II)
(c) Buoyancy (d) Force	Ans: (d) Girl's weight $(W) = 450 \text{ N}$
RRB-JE 30.08.2019, Ist Shift	\therefore W = m × g
Ans : (a) See the explanation of above question.	$\{m = mass, \tilde{W} = weight, g = acceleration due to \}$
403. If the weight of an object is 200 N, find its	gravity} $450 = m \times 0.8$ ($\alpha = 0.8 m/c^2$)
mass. $(g = 10 \text{ ms}^{-2})$	$450 = m \times 9.8$ (g = 9.8 m/s ²)
(a) 20 N (b) 20W	$m = \frac{450}{9.8} = 45.9 \text{ kg}$
(c) 20 Pa (d) 20 kg (d) $20 kg$	408. The weight of an object is 980 N. If the
RRB Group-D 22-10-2018 (Shift-III)	408. The weight of an object is 580 N. If the gravitational acceleration is 9.8 ms^{-2} , find the
Ans : (d) According to the question -	mass of the object -
W = 200 N g = 10 ms ⁻²	(a) 100 kg (b) 8.8 kg
m = ?	(c) 10 kg (d) 1 kg
According to formula -	RRB Group-D 28-11-2018 (Shift-I)
W = m.g	Ans: (a) Weight of object (W) = 980 N Acceleration due to gravity (g) = 0.8 mg ⁻²
$200 = m \times 10$	Acceleration due to gravity $(g) = 9.8 \text{ ms}^{-2}$ Mass of object $(m) = ?$
200 201-	from , $W = mg$
$m = \frac{200}{10} = 20kg$	-
404. Force/acceleration ?	$m = \frac{980}{9.8} = 100 \text{ kg}$
(a) Momentum (b) Speed	
(c) Mass (d) Pressure	409. The of an object is fixed and does not change when it is moved -
Ans : (c) From Newton's Second Law,	(a) Velocity (b) Mass
F = ma	(c) Speed (d) Weight
\Rightarrow m = $\frac{F}{-}$	RRB Group-D 20-09-2018 (Shift-III)
a	Ans : (b) The amount of matter in a body or object is
Mass = force/acceleration	called the mass of the object whereas the force with
405. Which of the following does not affect the value	which the earth pulls the object towards itself is called
of acceleration due to gravity?	the weight of that object. The mass is always fixed and unchanging while the weight is variable depending on
(a) Mass (b) Vertically (c) Size of earth (d) Depth	the gravitational acceleration. The mass remains
RRB Group-D 24-09-2018 (Shift-I)	unchanged when the object is moved to any place.

RRB Science Planner Physics

where,	422. Which of the following Newton's Law of
F = force	Motion provides an explanation for why a ball
m = mass of object	thrown on the wall collides and returns?
a = acceleration	(a) First law of motion (b) Second law of motion
The unit of force is kg.m.s ⁻² or Newton, which is	(c) Third law of motion (d) None of the rules
represented by symbol N. The second law of motion	RRB NTPC Stage I st 26.04.2016 (Shift-II)
gives us a method to measure the force acting on an	Ans. : (c) The ball thrown on the wall bounces back
object as a product of its mass and acceleration.	which explains the third law of motion. When in the
418. What is the other name of Newton's first law	interaction of two objects, the force of one object exerts the same force on the other object, the second object
of motion?	also exerts the same force on the first object in the
(a) Law of momentum	opposite direction, one of these forces is called action
(b) Law of movement	and the other force is called reaction. The rule is also
(c) Law of inertia	called Newton's Third Law of Motion.
(d) Law of displacement	423. Which of the following statements is true for
RRB NTPC 04.01.2021 (Shift-II) Stage Ist	Newton's Third Law of Motion.
Ans: (c) The first law of Newton is also termed as Law	(a) The force is applied to the same body.
of Inertia. It states that a body in rest or motion	(b) The force is applied on the same body in the
continues to be in such state, untill and unless an external force is applied on it.	opposite direction.
The second law of Newton says that force applied on a	(c) The force is applied on different body in opposite direction.
body is equal to product of its mass and acceleration.	(d) Force is dependent on distance.
$\overline{F} = m \times a$	RRB Group-D 12-10-2018 (Shift-I)
The third law of Newton mentions about action-reaction	Ans : (c) Newton's Third Law of Motion : According
process.	to this law, to every action, there is an equal and
419. Second law of motion is related to	opposite reaction.
(a) Pressure (b) Inertia	When one objects exert a force (action) on another
(c) Thrust (push) (d) Momentum	object, then the second object also exert a force
RRB Group-D 30-10-2018 (Shift-I)	(reaction) on the first object. These two forces are always equal in magnitude but opposite in direction.
Ans : (d) The second law of motion is related to	
momentum. According to the second law of motion,	424. The famous law of motion is given by- (a) Dalton (b) Newton
"the change in momentum of an object is proportional	(c) Galileo (d) Thomson
to the force exerted on that object and occurs in the same direction."	Group-D 26-10-2018 (Shift-II)
From Newton's second law of motion,	Ans : (b) Newton gave three laws of motion, which are
, →	as follows :
$\vec{F} = \frac{dp}{dt}$	(i) Law of Inertia
Here, F is the force, p is momentum and t is time.	(ii) Law of Force, Mass and Acceleration
420. Newton's second law of motion:	(iii) Law of Action-Reaction
(a) Explains the relationship between forces on	425. The rate of change in momentum of a body is
two mutually effective objects.	proportional to (a) Applied displacement
(b) Also known by the law of inertia.	(b) Applied force
(c) It is helpful to understand the effects of force.	(c) Applied potential energy
(d) Also known by the law of conservation of energy.	(d) Applied pressure
RRB Group-D 27-11-2018 (Shift-III)	RRB Group-D 22-09-2018 (Shift-III)
\mathbf{A} and \mathbf{A} The metric of the metric	Ans : (b) The rate of change in momentum of an object
Ans : (c) The rate of change of momentum of an object	
is proportional to the force exerted on that object. The	is proportional to the force applied on it and in the
is proportional to the force exerted on that object. The momentum changes in the direction of the force.	is proportional to the force applied on it and in the direction of force. It is also called Newton's second law
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to	is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion.
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration.	is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion.426. The second law of motion shows-
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. \therefore F = ma	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration.	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. \therefore F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force.	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force.
is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. \therefore F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to
 is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. ∴ F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's law of motion: 	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force. (b) When pure force is applied, each object will move in the same speed. (c) The rate of change in the speed of the object
 is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. ∴ F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's law of motion: (a) II (b) III 	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force. (b) When pure force is applied, each object will move in the same speed. (c) The rate of change in the speed of the object will change with the applied net force.
 is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. ∴ F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's law of motion: (a) II (b) III (c) I (d) IV 	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force. (b) When pure force is applied, each object will move in the same speed. (c) The rate of change in the speed of the object will change with the applied net force. (d) The rate of change of momentum of an object
 is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. ∴ F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's law of motion: (a) II (b) III (c) I (d) IV RRB Group-D 05-12-2018 (Shift-I) 	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force. (b) When pure force is applied, each object will move in the same speed. (c) The rate of change in the speed of the object will change with the applied net force. (d) The rate of change of momentum of an object is proportional to the net force applied to the
 is proportional to the force exerted on that object. The momentum changes in the direction of the force. In the second law, the force on an object is equal to product of its mass and its acceleration. ∴ F = ma where, m = mass and a = acceleration. Hence Newton's second law of motion is helpful to under stand the effects of force. 421. The equation F = ma, is given by Newton's law of motion: (a) II (b) III (c) I (d) IV 	 is proportional to the force applied on it and in the direction of force. It is also called Newton's second law of motion. 426. The second law of motion shows- (a) Every object will remain in a state of constant or uniform motion, unless it is forced to change its state by the action of pure force. (b) When pure force is applied, each object will move in the same speed. (c) The rate of change in the speed of the object will change with the applied net force. (d) The rate of change of momentum of an object

Ans : (d) Second Law of Motion - The rate of change of momentum is directly proportional to the applied force. The larger the force acting on a body, greater is the change in its momentum. Since change in momentum is equal to the product of mass and the acceleration and the mass of the body remains constant, so the rate of change of momentum is directly proportional to the rate of change of velocity i.e., acceleration. Hence force (F) is directly proportional to mass (m) and acceleration (a) $\boxed{F \propto ma}$ Rate of change of momentum = $\frac{Change of momentum}{Time taken} = \frac{m(v-u)}{t} = ma$	 Ans : (c) The fielder turns his arm backwards while catching a fast approaching cricket ball. It follows Newton's second law of motion. i.e. the rate of momentum changes in the ball decreases due to which it experiences less force over a longer time. Therefore, the impact of the ball is less on the arm. 431. Shot from a rifle. What will be the kinetic energy of the rifle if the rifle comes backwards without stopping? (a) More than the kinetic energy of the bullet (b) Less than the kinetic energy of the bullet (c) Equal to the kinetic energy of the bullet (d) Zero
$\left[\because \frac{v-u}{t} = a \right]$ where, a is the acceleration of the body. 427. Which of the following statements is false (a) When a bus stops suddenly, a passenger sitting in the bus is jerked backwards.	 Ans : (b) According to Newton's third law, when we apply force on a body, it exerts the same force back, it is also called action-reaction force. This is why if the gun pushes the gunner backwards, then the kinetic energy of the gun will be less than the kinetic energy of the bullet. 432. The product of mass and acceleration is called.
(b) When a person jumps from a moving bus, he falls.(c) When a rotating fan stops, it rotates for some time.(d) When a bus stops suddenly, a passenger sitting in the bus gets a shock in the front	(a) Pressure (b) Impulse (c) Thrust (d) Force RRB Group-D 12-10-2018 (Shift-I) Ans : (d) The rate of change of momentum is directly proportional to the applied force. The larger the force acting on a body, greater is the change in its
RRB Group-D 07-12-2018 (Shift-I) Ans : (a) 1. When a moving bus stops, the lower part of our body in contact with the bus comes to rest while the upper part of our body tends to keep moving due to inertia of motion. Hence, we fall (or forwards) 2. When the bus accelerates from rest, the lower part of our body comes into motion along with the bus while the upper part of body tends to remain at rest due to	momentum. Since change in momentum is equal to the product of mass and the rate of change in velocity and the mass of the body remains constant, so the rate of change of momentum is directly proportional to the rate of change of velocity i.e., acceleration. Hence force (F) is directly proportional to mass (m) and acceleration (a) $\overline{F = ma}$
inertia of rest. Hence we fall backwards. 428. 1 Kg × 1 ms ⁻² , It is said (a) 1 newton (b) 1 coulomb (c) 1 pascal (d) 1 joule RRB Group-D 15-11-2018 (Shift-II) Ans : (a) From Newton's Second Law -	 433. Which of the following examples explains Newton's third law of motion? (a) Rocket launching (b) On the sudden move of the bus, the passengers get jerked backwards.
Force = mass × acceleration = 1 Kg × 1 m/s ² = 1 Newton The unit of force is Newton. 429. What was the year of publication of Newton's laws of motion? (a) 1678 (b) 1778	 (c) When we stop pedaling, the cycle starts to slow down. (d) While catching a fast approaching cricket ball, the fielder slowly moves his hand backwards with the moving ball. RRB Group-D 02-11-2018 (Shift-III)
(d) 1078 (d) 1778 (c) 1787 (d) 1687 RRB Group-D 27-11-2018 (Shift-III) Ans : (d) Newton published the laws of motion in his book Principia in 1687 AD. Newton gave three physical laws of motion. These laws indicate the relationship between the force exerted on an object and the motion of that object generated from it.	 Ans. : (a) According to the Newton's third law of motion, if an object exerts a force on another object, the second object exerts the same force on the first object in the opposite direction. It is also called the law of action reaction. For example – Pushing the gun backwards when firing from the gun. Rocket launching etc.
 430. Why does a fielder turn his arms backwards while catching a fast approaching cricket ball? (a) Because he is nervous. (b) Because it helps to aim the ball. (c) Because he experiences less force over a longer period of time. (d) Because it gives him vigilance. 	 434. When a sailor jumps in the forward direction, the boat drifts backwards. Which law of Newton represent the example - (a) Second law of motion (b) First and second law of motion (c) Third law of motion (d) First law of motion
RRB Group-D 15-11-2018 (Shift-I) RRB Science Planner Physics	RRB ALP & Tec. (31-08-18 Shift-III) 9 YCT