Railway Recruitment Board **RRBJE Electrical Engineering** Chapterwise Solved Papers

Inapier wise Sulveu I ap

Chief Editor A. K. Mahajan

Written & Complied by Er. Santosh Kumar Yadav

Computer Graphics By Balkrishna Tripathi & Charan Singh

Editorial Office

12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com / www.yctfastbook.com / www.yctbooksprime.com © All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP YCT BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

1.	Basic Concepts	
2.	Circuit Law	
3.	Magnetic Circuit	
4.	A.C. Fundamentals	
5.	Measurement and Measuring instruments	
6.	Electrical Machines	
	Part-A	
	(i) D.C. Generator	
	(ii) D.C. Motor	
	Part-B	
	□ 1–φ and 3–φ Transformer	
	Part-C	
	□ 3-φ Induction Motor & 1-φ Motor	
7.	Synchronous Machines	
	(A) Alternator	
	(B) Synchronous Motor	
8.	Power System	
	A. Power plant	
	B. Transmission and Distribution	
	C. Switch gears and Protection	
	D. Fuse	
	E. Circuit Breaker and Relay	
	F. Protection of Machine	479
	G. Protection of Feeders	481
9.	Estimation and Costing	
10.	Utilization of Electrical Energy	
	A. Illumination	
	B. Electric Welding	
	C. Electric Heating	
	D. Electroplating	
	E. Electric Drives and Motor	
11.	Basic Electronics	
	A. Analog Electronics	
	B. Digital Electronics	
	C. Power Electronics	

SYLLABUS

Government of India, Ministry of Railways, Railway Recruitment Boards CENTRALISED EMPLOYMENT NOTICE (CEN) No.03/2018 Recruitment of Junior Engineer (JE), Junior Engineer (Information Technology) [JE(IT)], Depot Material Superintendent (DMS)

 2^{nd} Stage CBT : Short listing of Candidates for the 2^{nd} Stage CBT exam shall be based on the normalized marks obtained by them in the 1st Stage CBT Exam. Total number of candidates to be shortlisted for 2^{nd} Stage shall be 15 times the community wise total vacancy of Posts notified against the RRB as per their merit in 1st Stage CBT. However, Railways reserve the right to increase/decrease this limit in total or for any specific category(s) as required to ensure availability of adequate candidates for all the notified posts.

Duration : 120 minutes (160 Minutes for eligible PwBD candidates accompanied with Scribe)

No of Questions : 150

Syllabus : The Questions will be of objective type with multiple choices and are likely to include questions pertaining to General Awareness, Physics and Chemistry, Basics of Computers and Applications, Basics of Environment and Pollution Control and Technical abilities for the post. The syllabus for General Awareness, Physics and Chemistry, Basics of Computers and Applications, Basics of Environment and Pollution Control is common for all notified posts under this CEN as detailed below:-

- a) **General Awareness :** Knowledge of Current affairs, Indian geography, culture and history of India including freedom struggle, Indian Polity and constitution, Indian Economy, Environmental issues concerning India and the World, Sports, General scientific and technological developments etc.
- b) **Physics and Chemistry:** Up to 10th standard CBSE syllabus.
- c) Basics of Computers and Applications: Architecture of Computers; input and Output devices; Storage devices, Networking, Operating System like Windows, Unix, Linux; MS Office; Various data representation; Internet and Email; Websites & Web Browsers; Computer Virus.
- d) **Basics of Environment and Pollution Control:** Basics of Environment; Adverse effect of environmental pollution and control strategies; Air, water and Noise pollution, their effect and control; Waste Management, Global warming; Acid rain; Ozone depletion.
- e) **Technical Abilities:** The educational qualifications mentioned against each post shown in Annexure-A, have been grouped into different exam groups as below. Questions on the Technical abilities will be framed in the syllabus defined for various Exam Groups given at Annexure-VII-A, B, C, D, E, F & G.

Subjects	No. of Questions	Marks for each Section
	Stage-II	Stage-II
General Awareness	15	15
Physics & Chemistry	15	15
Basics of Computers and Applications	10	10
Basics of Environment and Pollution Control	10	10
Technical Abilities	100	100
Total	150	150
Time in Minutes	120	

The section wise Number of questions and marks are as below :

The section wise distribution given in the above table is only indicative and there may be some variations in the actual question papers.

Minimum percentage of marks for eligibility in various categories: UR -40%, OBC-30%, SC-30%, ST -25%. This percentage of marks for eligibility may be relaxed by 2% for PwBD candidates, in case of shortage of PwBD candidates against vacancies reserved for them.

Virtual calculator will be made available on the Computer Monitor during 2nd Stage CBT.

2nd Syllabus for Electrical & Allied Engineering Exam Group-JE

SI. No.	Subject
1.	Basic concepts: Concepts of resistance, inductance, capacitance, and various factors affecting them. Concepts of current, voltage, power, energy and their units.
2.	Circuit law: Kirchhoff's law, Simple circuit solution using network theorems.
3.	Magnetic Circuit: Concepts of flux, mmf, reluctance, Different kinds of magnetic materials, Magnetic calculations for conductors of different configuration e.g. straight, circular, solenoidal, etc. Electromagnetic induction, self and mutual induction.
4.	AC Fundamentals: Instantaneous, peak, R.M.S. and average values of alternating waves, Representation of sinusoidal wave form, simple series and parallel AC Circuits consisting of R.L. and C, Resonance, Tank Circuit. Poly Phase system star and delta connection, 3 phase power, DC and sinusoidal response of R-L and R-C circuit.
5.	Measurement and measuring instruments: Measurement of power (1 phase and 3 phase, both active and re-active) and energy, 2 wattmeter method of 3 phase power measurement. Measurement of frequency and phase angle. Ammeter and voltmeter (both moving coil and moving iron type), extension of range wattmeter, Multimeters, Megger, Energy meter AC Bridges, Use of CRO, Signal Generator, CT, PT and their uses. Earth Fault detection.
6.	Electrical Machines: (a) D.C. Machine-Construction, Basic Principles of D.C. motors and generators, their characteristics, speed control and starting of D.C. Motors, Method of braking motor, Losses and efficiency of D.C. Machines. (b) 1 phase and 3 phase transformers– Construction, Principles of operation, equivalent circuit, voltage regulation, O.C. and S.C. Tests, Losses and efficiency. Effect of voltage, Frequency and wave form of losses. Parallel operation of 1 phase/3 phase transformers. Auto transformers. (c) 3 phase induction motors, rotating magnetic field, principle of operation, equivalent circuit, torque-speed characteristics, starting and speed control of 3 phase induction motors. Methods of braking, effect of voltage and frequency variation on torque speed characteristics, Fractional Kilowatt Motors and Single Phase Induction Motors : Characteristics and applications.
7.	Synchronous Machines: Generation of 3- phase e.m.f., armature reaction, voltage regulation, parallel operation of two alternators, synchronizing, control of active and reactive power, Starting and applications of synchronous motors.
8.	Generation, Transmission and Distribution: Different types of power stations, Load factor, diversity factor, demand factor, cost of generation, inter-connection of power stations. Power factor improvement, various types of tariffs, types of faults, short circuit current for symmetrical faults. Switchgears and Protection: Rating of circuit breakers, Principles of arc extinction by oil and air, H.R.C. Fuses, Protection against earth leakage/over current, etc Buchholz relay, Merz-Price system of protection of generators & transformers, protection of feeders and bus bars. Lightning arresters, various transmission and distribution system, comparison of conductor materials, efficiency of different system. Cable– Different type of cables, cable rating and derating factor.
9.	Estimation and costing: Estimation of lighting scheme, electric installation of machines and relevant IE rules. Earthing practices and IE Rules.
10	Utilization of Electrical Energy: Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.
11.	Basic Electronics: Working of various electronic devices e.g. P N Junction diodes, Transistors (NPN and PNP type), BJT and JFET. Simple circuits using these devices.

UPMRC JE Electrical Syllabus

- Basic Electrical Engg. And Elect. Measurements: Concepts of currents, Voltage Resistance, Power and energy, their units, Ohm's law. Circuit Law. Kirchhoff's law Solution of simple network problems. Network theorems and their applications, Electro-magnetism concept of flux, Emf, Reluctance, Magnetic circuits, Electro-magnetic induction, Self and mutual inductance. A.C. fundamentals Instantaneous, peak, R.m.s. And average values of alternating waves. Equation of sinusoidal wave form, Simple series and parallel a.c. Circuits consisting of R.L. and C. Resonance, Measurement and measuring instruments moving coil and moving iron ammeters and voltmeters, Extension of range. Watt meters. Multimeters, Megger, Basic Electronics.
- Electrical machines: Basic principles D.C. motors of generators, their characteristics, Speed control and starting of D.C. motors. Losses and efficiency of D.C. machines.
- 1-phase and 3-phase Transformers: Principles of Operation, Equivalent Circuit, Voltage Regulation O.C. and S.C Tests, Efficiency, Auto Transformers. Synchronous Machines. Generation of Three phase Emf, Armature Reaction. Voltage Regulation, Parallel operation of two alternators. synchronizing , Starting And Applications of synchronous Motors, 3-phase Induction Motor. Rotating Magnetic Field, principle of Operation Equivalent circuit. Torque speed characteristics, starting and speed control of 3-phase induction Motors, Fractional kW Motors, 1-phase induction motors A.C. series motor reluctance motor.
- General, Transmission and Distribution: Different types of power stations, Load factor, diversity factor, demand factor, simple problems theorem. cost of generation inter connection of power stations, power factor improvement. Various types of tariffs, Types of faults current for symmetrical faults, Switchgears-rating of circuit breakers. Principles of a arc extinction by oil and air, H.R.C. fuses, protection earthier leakage, Over current Buchholz relay Merge-Prize system of protection of generators & transformers, protection of feeders and bus bars. Lighting arresters, Various transmission and distribution systems, comparison of conductor materials, Efficiency for different systems.
- Utilization of Electrical Energy: Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.

■ BASIC ELECTRICAL ENGINEERING

Basic concepts and principles of D.C and A.C fundamental, AC circuits, batteries, electromagnetic induction etc. including constant voltage and current sources.

ANALOG ELECTRONICS

Fundamental concepts of basic electronics and basic understanding of conductors, semiconductors and insulators, extrinsic and intrinsic semi-conductors, p-n junction, need of rectifiers in electronics, understanding of filters in rectifiers, tunnel diodes, LEDs, varactors diodes, working of transistors in various configurations; Concept of FETs and MOSFET etc.

■ CONTROL SYSTEMS

Basic elements of control system, open loop control system, closed loop control system, control system terminology, manually controlled closed loop systems, automatic controlled closed loop systems, basic elements of a servo mechanism, Examples of automatic control systems, use of equivalent systems for system analysis, linear systems, non-linear system, control system examples from chemical systems mechanical systems electrical systems, introduction to Laplace transform.

Transfer function analysis of ac and dc servomotors synchronous, stepper motor, amplydyne. ac position control system, magnetic amplifier.

Control system representation: Transfer function, block diagram, reduction of block diagram, problems on block diagram, Mason's formula signal flow graph

Non-Linear Control System: Introduction, behavior of non-linear control system. Different types of nonlinearities, saturation, backlash, hysteresis, dead zone relay, function, characteristics of non-linear control system, limit cycles jump resonance, jump phenomenon. Difference between linear and non-linear control system.

■ ELECTRONIC COMPONENTS AND MATERIALS

- Materials: Classification of Materials, Conducting, semi-conducting and insulating materials through a brief reference to their atomic structure.
- **Conducting Materials:** Resistors and factors affecting resistivity such as temperature, alloying and mechanical stressing. Classification of conducting materials into low resistivity and high resistivity materials.
- Insulating Materials: Important relevant characteristics (electrical, mechanical and thermal) and applications of the following material: Mica, Glass, Copper, Sliver, PVC, Silicon, Rubber, Bakelite, Cotton, Ceramic, Polyester, Polythene and Varnish.
- Magnetic Materials: Different Magnetic materials; (Dia, Para, Ferro) and their properties. Ferro-magnetism, Domains, permeability, Hysteresis loop. Soft and hard magnetic materials, their examples and typical applications.
- MEASURING INSTRUMENTS Introduction to Testing and Measurements, Measurement of Resistance, Inductance and Capacitance, Ammeter, Voltmeter and Multimeter, Power and Energy Measurements, Frequency and phase difference Measurement.
- PRINCIPLES OF INSTRUMENTATION Basic building blocks of any instrumentation systems, Performance characteristics of Oscillator Instruments, Instrument selection; Factors affecting instrument selection, accuracy, precision, linearity, resolution, sensitivity, hysteresis, reliability, serviceability, loading effect, range advantage and limitation cost effectiveness and availability Static and dynamic response-Environmental effects-Calibration tools

FUNDAMENTALS OF DIGITAL ELECTRONICS Concepts of Digital electronics, Number system, gates, codes arithmetic logic circuits, flip-flops, shift resistors and counters.

ALP/Technician Online Exam Syllabus

Second Stage (CBT)

Total Duration : 2 hours and 30 minutes (for Part A and Part B together)

The Second Stage CBT shall have two parts viz Part A and Part B as detailed below.

PART A

Duration: 90 Min.

No. of Questions: 100

Minimum percentage of marks for eligibuility in various categories: UR-40%, OBC-30%, SC-30%, ST-25%. These percentages of marks for eligibility may be relaxed by 2% for PWD candidates in case of shortage of PWD candidates against vacancies reserved for them.

The marks scored in Part A alone shall be used for short listing of candidates for further stages of recruitment process subject to the condition that the candidate is securing qualifying mark in Part B.

(A) Mathematics

Number system, BODMAS, Decimals, Fractions, LCM, HCF, Ratio and Proportion, Percentages, Mensuration, Time and Work; Time and Distance, Simple and Compound Interest, Profit and Loss, Algebra, Geometry and Trigonometry, Elementary Statistics, Square Root, Age Calculations, Calendar & Clock, Pipes & Cistern etc.

(B) General Intelligence and Reasoning

Analogies, Alphabetical and Number Series, Coding and Decoding, Mathematical operations, Relationships, Syllogism, Jumbling, Venn Diagram, Data Interpretation and Sufficiency, Conclusions and Decision Making, Similarities and Differences, Analytical reasoning, Classification, Directions, Statement– Arguments and Assumptions etc.

(C) Basic Science and Engineering

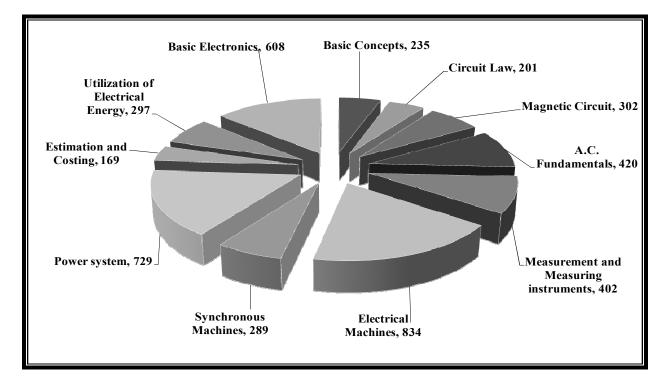
The board topics that are covered under this shall be Engineering Drawing (Projections, Views, Drawing Instruments, Lines, Geometric figures, Symbolic Representation), Units, Measurements, Mass Weight and Density, Work Power and Energy, Speed and Velocity, Heat and Temperature, Basic Electricity, Levers and Simple Machines, Occupational Safety and Health, Environment Education, IT Literacy etc.

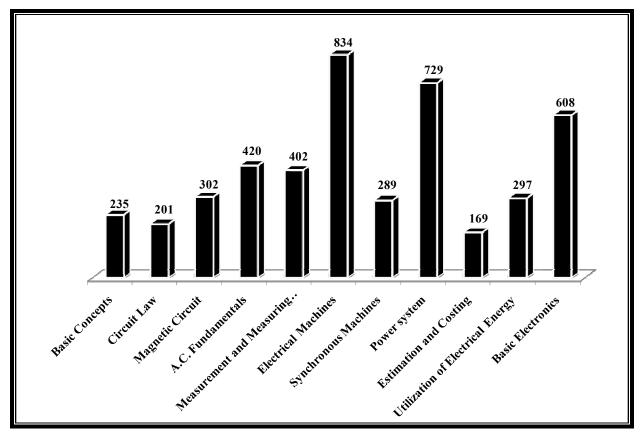
General awareness on current affairs in Science & Technology, Sports, Culture, Personalities, Economics, Politics and other subjects of importance.

	n: 60 Min. ing Marks: 35%	PART B No. of Questions: 75
SI. No.	Engineering Discipline (Diploma/Degree)	Relevant trade for PART B Qualifying Test to be selected from
1.	Electrical Engineering and combination of various streams of Electrical Engineering	Electrician/Instrument Mechanic/Wiremen/Winder (Armature)/Refrigeration and Air Conditioning Mechanic

RRB JE Previous Exam Papers Analysis Chart

SR. NO	Exam.	Year	No. of Q.
	RRB JE 2023		
1.	RRB JE (CRIS) Electrical	19.02.2023	96
	DFCCIL 2023	3	
2.	DFCCIL Executive (Electrical) 2023	20.12.2023	96
3.	DFCCIL (S & T) 2023	17.12.2023	60
4.	DFCCIL Executive (Electrical) 2021	30.09.2021	96
5.	DFCCIL Executive (Electrical) 2018	13.11.2018	96
	RRB JE 2019		
6.	RRB JE 2019	19.09.2019	100
7.	RRB JE 2019	01.09.2019	100
8.	RRB JE 2019	30.08.2019	100
	RRB JE 2015	5	
9.	RRB JE 2015	26.08.2015 Shift-I	21
10.	RRB JE 2015	26.08.2015 Shift-II	24
11.	RRB JE 2015	26.08.2015 Shift-III	22
12.	RRB JE 2015	27.08.2015 Shift-I	25
13.	RRB JE 2015	27.08.2015 Shift-II	26
14.	RRB JE 2015	27.08.2015 Shift-III	21
15.	RRB JE 2015	28.08.2015 Shift-I	18
16.	RRB JE 2015	28.08.2015 Shift-II	20
17.	RRB JE 2015	28.08.2015 Shift-III	22
18.	RRB JE 2015	29.08.2015 Shift-I	24
19.	RRB JE 2015	29.08.2015 Shift-I	19
20.	RRB JE 2015	29.08.2015 Shift-I	23
21.	RRB JE 2015	30.08.2015 Shift-III	22
22.	RRB JE 2015	01.09.2015 Shift-I	20
23.	RRB JE 2015	01.09.2015 Shift-II	21
24.	RRB JE 2015	01.09.2015 Shift-III	19
25.	RRB JE 2015	02.09.2015 Shift-I	18


26.	RRB JE 2015	02.09.2015 Shift-II	17
27.	RRB JE 2015	02.09.2015 Shift-III	18
28.	RRB JE 2015	03.09.2015 Shift-I	15
29.	RRB JE 2015	03.09.2015 Shift-II	19
30.	RRB JE 2015	03.09.2015 Shift-III	20
31.	RRB JE 2015	04.09.2015 Shift-II	18
32.	RRB JE 2015	16.09.2015 Shift-I	21
33.	RRB Ranchi JE 2015	04.01.2015 Yellow Paper	20
34.	RRB Ranchi JE 2015	04.01.2015 Red Paper	25
	RRB JE/Sr. SE Exa	m 2014	
35.	RRB SSE 2015	01.09.2015, Shift-I	21
36.	RRB SSE 2015	01.09.2015, Shift-II	22
37.	RRB SSE 2015	01.09.2015, Shift-III	21
38.	RRB SSE 2015	02.09.2015, Shift-I	20
39.	RRB SSE 2015	02.09.2015, Shift-II	21
40.	RRB SSE 2015	02.09.2015, Shift-III	22
41.	RRB SSE 2015	03.09.2015, Shift-I	22
42.	RRB SSE 2015	03.09.2015, Shift-II	21
43.	RRB SSE 2015	03.09.2015, Shift-III	20
44.	RRB JE (Bilaspur/Kolkata/Mumbai/Guwahati) 2014	14.12.2014 SET : 01 Red Paper	20
45.	RRB JE (CHENNAI) 2014	14.12.2014 SET : 02 Red Paper	26
46.	RRB JE (Bilaspur/Guwahati/Patna) 2014	14.12.2014 SET : 03 Green Paper	25
47.	RRB JE (Muzaffarpur) 2014	14.12.2014 SET : 04 Green Paper	28
48.	RRB JE (Bilaspur/Guwahati) 2014	14.12.2014 SET : 05 Yellow Paper	31
49.	RRB JE (Patna/Muzaffarpur/Chennai/Ahmedabad/ Bangalore) 2014	14.12.2014 SET : 06 Yellow Paper	21
50.	RRB Sr. SE (Bilaspur/Secunderabad) 2014	21.12.2014 SET : 07 Red Paper	18

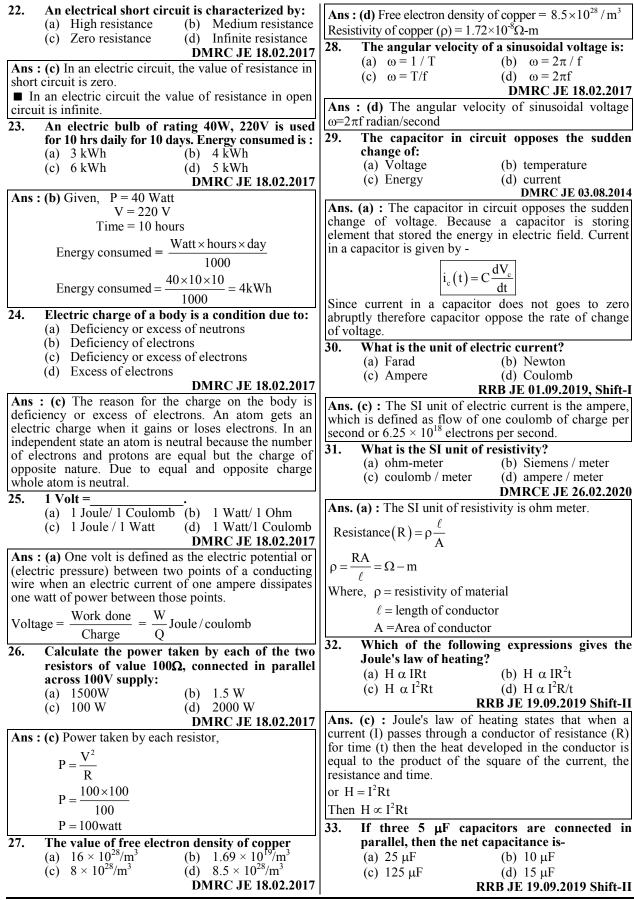

51.	RRB Sr. SE (Bilaspur/Secunderabad) 2014	21.12.2014 SET : 08 Green Paper	25
52.	RRB Sr. SE (Bilaspur/Secunderabad) 2014	21.12.2014 SET : 09 Yellow Paper	21
53.	RRB Sr. SE (BHOPAL) 2014	21.12.2014	15
	DMRC JE Exa	am	
54.	DMRC JE 2020	26.02.2020	75
55.	DMRC JE 2020	20.02.2020	75
56.	DMRC JE 2018	20.04.2018	75
57.	DMRC JE 2018	09.04.2018	75
57.		(4:00PM-6:45PM)	75
58.	DMRC JE 2018	09.04.2018	75
50.		(12:15PM - 2:30PM)	15
59.	DMRC JE 2018	10.04.2018	75
57.		(12:15PM - 2:30PM)	15
60.	DMRC JE 2017	18.02.2017	75
61.	DMRC JE 2017	22.09.2017	75
62.	DMRC JE 2016	06.03.2016	75
63.	DMRC JE 2015	15.03.2015	75
64.	DMRC JE 2014	07.09.2014	75
65.	DMRC JE 2013	21.07.2013	75
	UPMRC/LMRC/JMRC/NMF	RC/BMRCL JE Exam	
66.	UPMRC JE 2023	03.01.2023 (9:00 -11AM)	90
67.	UPMRC SCTO 2021	17.04.2021 (12:00-2:00PM)	90
68.	JMRC JE 2019	05.02.2021	50
69.	NMRC JE 2019	15.09.2019	45
70.	LMRC JE 2016	17.03.2016	75
71.	LMRC JE 2015	26.06.2015	75
72.	JMRC JE 2012	23.12.2012	50
73.	NMRC JE 2017	05.03.2017	75
74.	JMRC JE 2017	10.06.2017	50
75.	BMRCL JE 2019	24 Feb. 2019	75

	OTHER RAILWA	Y JE & SSE Exams.	
76.	RRB Bhubneshwar JE-II 2010	19.12.2010	19
77.	RRB Allahabad JE 2010	19.12.2010	25
78.	RRB Allabahad SSE 2010	19.12.2010	23
79	RRB Mumbai JE 2008	05.10.2008	28
80.	RRB Mumbai SSE 2008	05.10.2008	31
81.	RRB Mumbai JE 2010	19.12.2010	22
82.	RRB Mumbai SSE 2010	19.12.2010	26
83.	RRB Bhubneshwar JE-II 2010	19.12.2010	20
84.	Konkan Railway STA 2017	2017	24
85.	Konkan Railway TA 2017	2017	18
86.	Konkan Railway SSE 2015	2015	31
87.	RRB Kolkata Diesel JE 2009	25.10.2009	23
88.	RRB Chandigarh SSE 2009	25.10.2009	26
89.	RRB Mumbai C&G JE 2009	25.10.2009	24
90.	RRB Gorakhpur RDSO SSE 2009	25.10.2009	25
91.	RRB Jammu JE 2009	25.10.2009	23
92.	RRB Malda SSE 2009	25.10.2009	27
93.	RRB Allahabad JE 2009	25.10.2009	21
94.	RRB Mumbai C&G SSE 2009	25.10.2009	26
95.	RRB Patna JE	25.10.2009	23
96.	RRB Bhopal TM SSE 2009	25.10.2009	24
97.	RRB Allahabad SSE 2012	09.09.2012	25
98.	RRB Banglore SSE 2012	09.09.2012	29
99.	RRB Kolkala SSE 2012	09.09.2012	18
100.	RRB Gorakhpur Design SSE 2012	09.09.2012	23
101.	RRB Bhopal SSE 2012	09.09.2012	25
102.	RRB Chandigarh SSE 2012	09.09.2012	28
103.	RRB Jammu SSE 2012	09.09.2012	23
104.	RRB Allahabad JE 2012	09.09.2012	21
105.	RRB Bhubneshwar JE II 2008	29.11.2008	25
106.	Konkan Railway STA 2017	2017	23

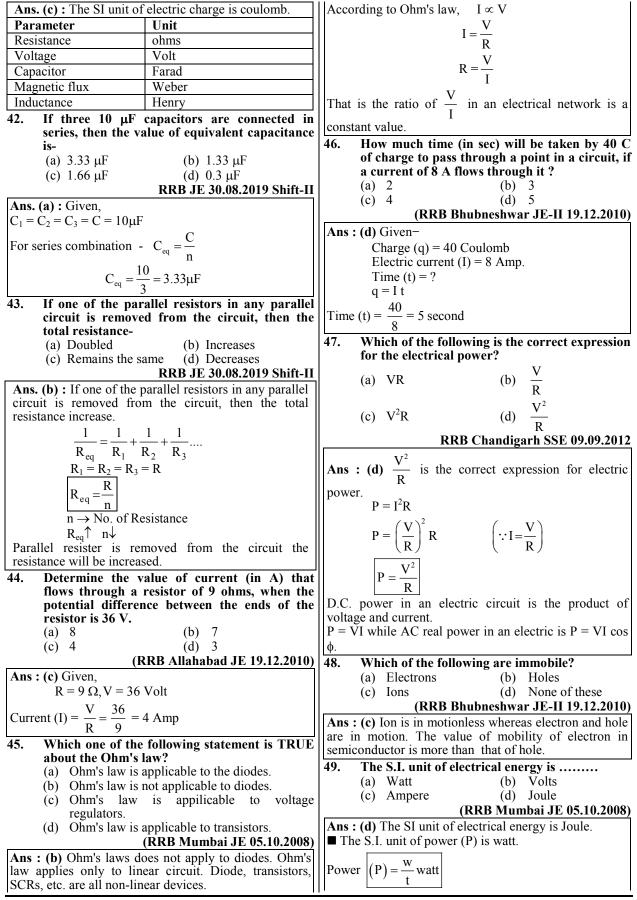
107.	Konkan Railway TA 2017	2017	24
108.	Konkan Railway SSE 2015	2015	20
109.	RRB Kolkata Diesel JE 2009	25.10.2009	22
110.	RRB Bhopal Section Engineer,	24.11.2002	24
111.	RRB Bhopal & Mumbai Apprentice Section Engg.	23.03.2003	28
112.	RRB Secunderabad Section Engineer (Elect.)	29.06.2008	22
113	RRB Bangalore Section Engineer (Elect.)	01.02.2009	23
114.	RRB Chandigarh Section Engineer,	15.03.2009	25
115.	RRB Chennai Section Engineer,	12.02.2012	27
116.	RRB Chandigarh Section Engineer (Elect.)	26.02.2012	24
117.	RRB Chandigarh Section Engineer,	26.02.2012	29
118.	RRB Jammu Section Engg., 2013	2013	20
119.	RRB Bhubaneswar Section Engineer (Electrical)	19.08.2001	18
120.	RRB Kolkata Engineer (P.Way)	20.02.2000	15
121.	RRB Kolkata Apprentice Engineer	14.10.2001	20
122.	RRB Bangalore Material Engineer	21.11.2004	23
123.	RRB Bangalore Material Engineer	21.11.2004	21
124.	RRB Kolkata Mech. Engineer	06.02.2005	15
125.	RRB Allahabad Junior Engineer-II	08.01.2006	15
126.	RRB Kolkata Jr. Engineer-II Electrical DRG & Design,	11.06.2006	15
127.	RRB Kolkata Technical- Engineer	20.08.2006	28
128.	RRB Chennai Technical (Engineer)	15.04.2007	25
129.	RRB Bangalore Technical (Engineer)	22.04.2007	27
130.	RRB Secunderabad Technical (Engineer)	20.05.2007	22
131.	RRB Patna Technical Engineer,	27.07.2008	28
132.	RRB Thiruvananthapuram Section Eng. (Electrical)	04.01.2009	19
133.	RRB Bangalore Section Engineer (Electrical)	01.02.2009	23
134.	RRB Chandigarh Section Engineer (Electrical)	15.03.2009	26
135.	RRB Chandigarh Section Engineer (Electrical)	26.02.2012	27
136.	RRB Chandigarh Section Engineer (Electrical)	26.02.2012	29
137.	RRB Bhopal Section Engineer	24.11.2002	20
		Total	5687

Trend Analysis of Electrical Questions Through Pie Chart and Bar Graph

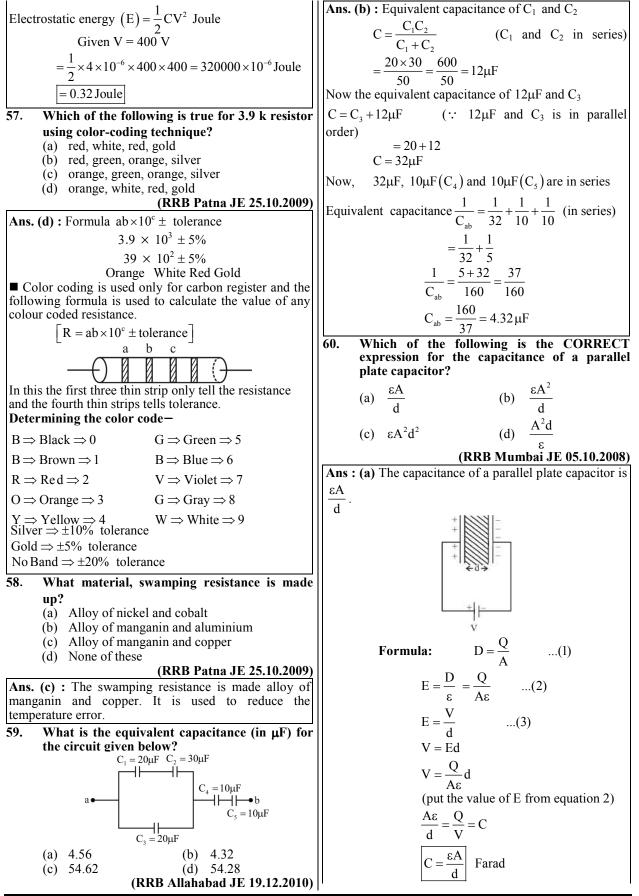
01.

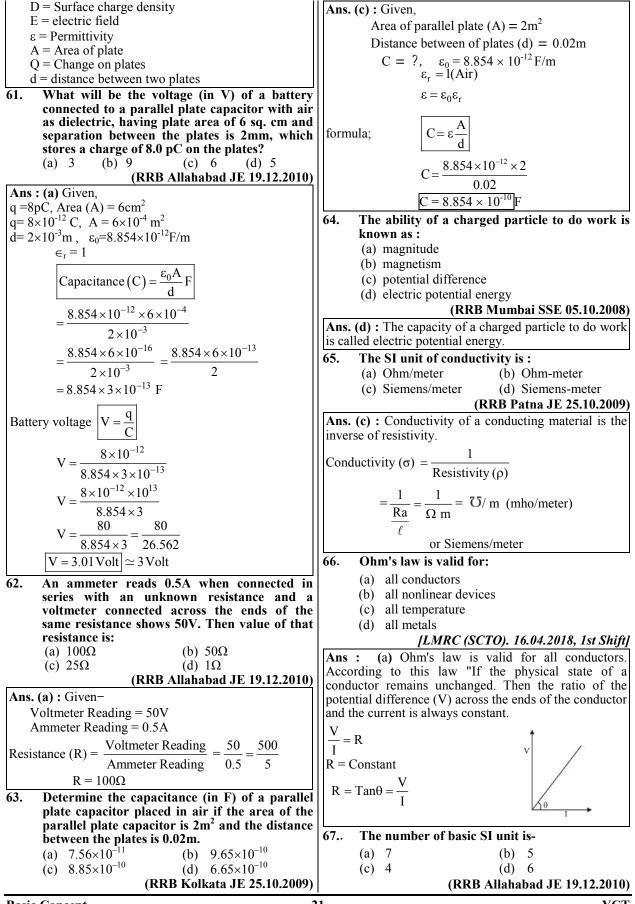

Basic Concepts

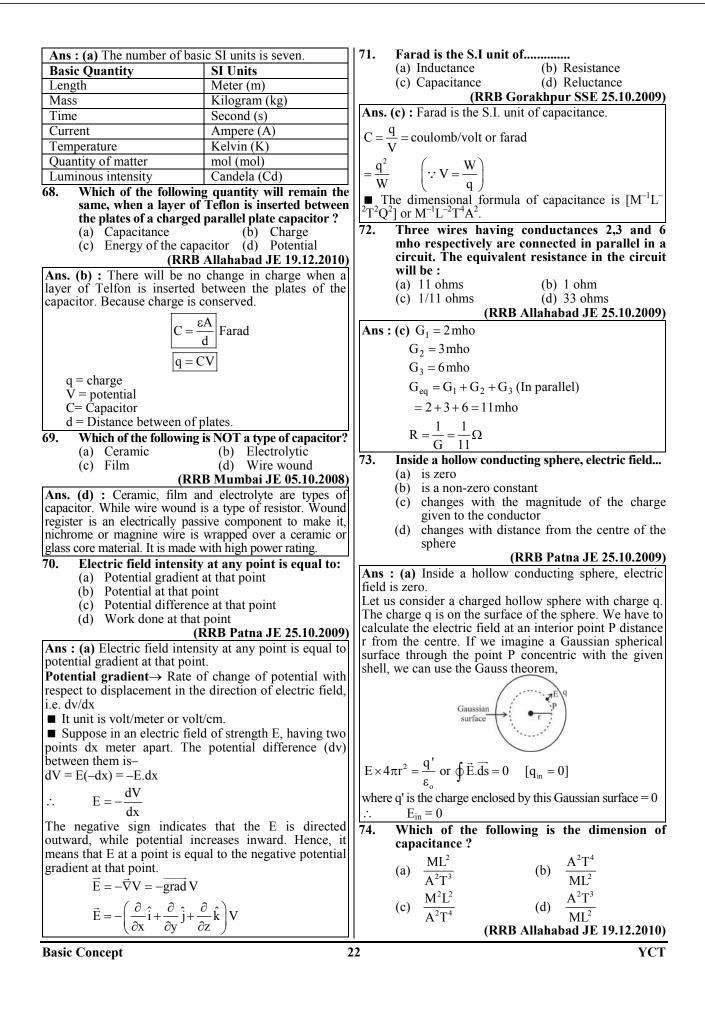
Basic concepts : Concepts of resistance, inductance, capacitance, and various factors affecting them. Concepts of current, voltage, power, energy and their units.

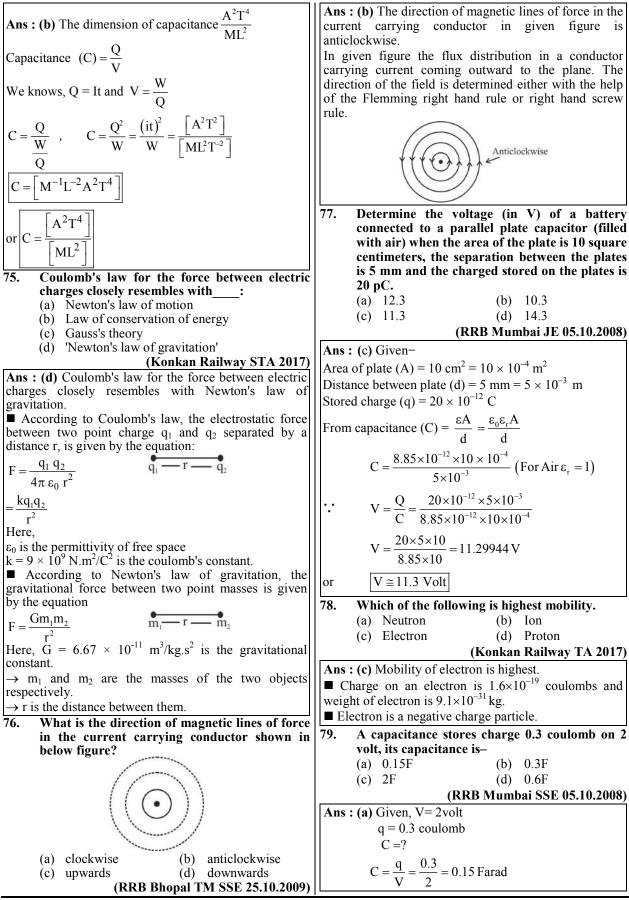

87		
1. For a given conductor, if the cross-sectional - area increases, then:- (a) resistance of the conductor increases (b) resistance of the conductor decreases (c) current rating of the conductor decreases (d) resistance of the conductor does not change RRB JE (CRIS) Electrical 19.02.2023, 12:30-2:30 PM DMRC JE, 26.02.2020 RRB JE 01.09.2019 Shift-I RRB Mumbai SSE 05.10.2008 Ans. (b) : Resistance is inversely proportional to the cross sectional area of the conductor. Hence, if the cross sectional area increases then resistance of conductor decreases. The resistance of the conductor is directly proportional to the length. R = Resistance $\ell = \text{Length}$ $\rho = \text{resistivity of conductor}$ $A = \text{Cross section area}$ 2. If a 100 Watts bulb is ON for 10 hours, then that will be the amount of electricity consumed? (a) 1500 Watts (b) 1 kWh (c) 300 Watts (d) 100 Watts per hour RRB JE (CRIS) Electrical 19.02.2023, 12:30-2:30 PM RRB JE 01.09.2019 Shift-I Ans. (b) : Given, P = 100W	$P = \frac{V^2}{R}$ If voltage rating of bulb is sample $\frac{1}{R}$ So, $\frac{P_1}{P_2} = \frac{R_2}{R_1}$ $\frac{400}{100} = \frac{R_2}{R_1}$ $\frac{R_2 = 4R_1}{R_1}$ 5. Ampere is the S.I. uni (a) Charge (c) Resistance DFCCIL Exect (Kore) (Kore) (Current I = $\frac{q}{t}$ = Coulomb/sect Parameter Resistance Voltage Capacitor Magnetic flux Inductance	t of (b) Voltage (d) Current utive Electrical 30.09.2021 onkan Railway STA 2017) I unit of electric current. ow is called current. cond Unit ohms Volt Farad Weber Henry
	$\mathbf{K}_2 = 4\mathbf{K}_1$	
	5. Ampere is the S.I. uni	t of
$ \mathbf{R} = \rho \frac{\ell}{\Gamma} \Omega $	(a) Charge	(b) Voltage
5	The rate of charge fl	ow is called current
	~	
	Current I = $\frac{1}{t}$ = Coulomb/sec	cond
	Parameter	Unit
(a) 1500 Watts (b) 1 kWh		
(c) 300 Watts (d) 100 Watts per hour		
KRB JE (CRIS) Electrical 19.02.2023, 12:30-2:30 PM DDD 1F 01 00 2010 Shift 1		Weber
P = 0.1 kW		ps of wattage 40W, 60 W
Time = 10 h		es with voltage of 230 V
Energy in kWh = power (kW) \times time (h)	(a) 40 W	lamps will glow brighter? (b) 60 W
$= 0.1 \times 10 = 1 \text{ kWh}$	(a) 40 w (c) both brightly	(d) both dim
3. 1 watt = ergs per second,		itive Electrical-20.12.2023
(a) 10^7 (b) 10 (c) 10^{-7} (d) 100		Mumbai SSE 05.10.2008
DFCCIL Executive Electrical-20.12.2023	Ans. (a): 40 watt lamp glow	brighter
Ans. (a) :	$\therefore P = \frac{V^2}{R}$	
1 watt = 10^7 ergs per second	$P = \frac{1}{R}$	
1 watt = 1 Joule per second		1.
The erg is a unit of energy and one erg equal to 10^{-7} Joules.	$R \propto \frac{1}{P}$ for given vol	ltage
4. What is the relation between resistance (R ₁ and R ₂) of two bulbs rated for the same voltage and	$R_1 = \frac{1}{40}, R_2 = \frac{1}{60}$	
having powers of 400 W and 100 W	$R_1 > R_2$	
respectively? (a) $R_1=4R_2$ (b) $R_2=4R_1$	$P_1 = I^2 R_1, P_2 = I^2 R_2$	(In series I is same)
(a) $R_1 = 4R_2$ (b) $R_2 = 4R_1$ (c) $R_2 = 2R_2$ (d) $R_2 = 2R_1$	$I^2 R_1 > I^2 R_2$	
RRB JE (CRIS) Electrical 19.02.2023, 12:30-2:30 PM	As both resistance of lamp	
DMRC JE, 26.02.2020	current flowing in them will	be square and power losses
Basic Concept 1	3	УСТ

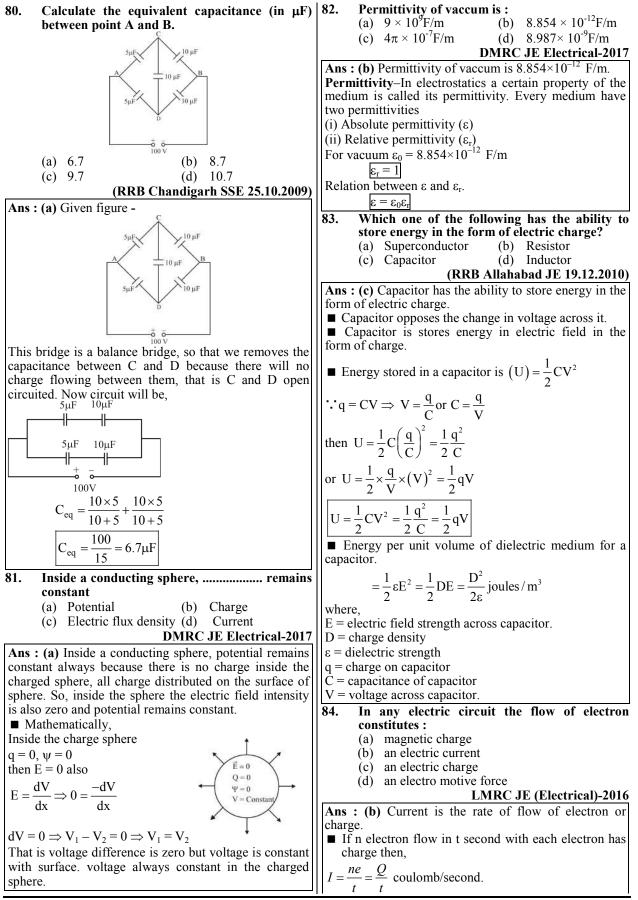
(a) Freq (c) Force D Ans. (d) : SI measurement and scientific r units. Name of L	resistance is ich power lo f the followin uency e FCCIL Exect base unit is that are use research to a the Quantit, ength Mass	larger or pow sses will more ng is the base (b) Veloc (d) Time cutive Electric an internation d universally void the confu	ver rating will e then it glow unit ? ity cal-20.12.2023 al system of in technical	to 10s in an electric bulb. If it emits 2.3 kJ of energy in the form of light and thermal energy. Find the voltage drop in the bulb? (a) 130 V (b) 260 V (c) 115 V (d) 230 V DMRC JE 20.02.2020
	Гime		Second	11. Which of the following type of resistors has
	urrent		Ampere	highest value of temperature coefficient?
	perature		Kelvin	(a) Wire wound (b) Carbon film (c) Metal film (d) Carbon composition
	of substance		Mole	CRIS Electrical JE-19.02.2023
	ous intensity	uence of Gau	Candela	DMRC JE 20.02.2020
8. An impo (a) Ohm		(b) Ampe		Ans. (c) : Metal film resistors has highest value of
	hoff's law			temperature coefficient from given option.
			cal-20.12.2023	12. If the current flowing through the conductor is
Ans. (d) : An i	important co			5A, then electrons per second will flow in the
Coulomb's law.				conductor at any passage. (a) 6.25×10^{18} (b) 31.35×10^{17}
Gauss's law stat				(a) 6.25×10^{18} (b) 31.35×10^{17} (c) 31.35×10^{19} (d) 31.35×10^{18}
a closed surface electric charges		proportional to	o the enclosed	DMRC JE 20.02.2020
	-			Ans. (d) : Given that,
<u>Q</u>	-			Current (i) = 5A, Time (t) = 1 sec
0				Charge on electron (e) = 1.6×10^{-19} Coulomb
9. If a resistance has the following colour code,			colour code.	We know that-
find the v	value of resi	stance.	-,	$Q = it$ $ne = it \qquad (\because Q = ne)$
	ed, Green, S			
(a) 82ks	$2 \pm 10\%$	(b) $8.2k\Omega$	$2 \pm 10\%$	$n = \frac{it}{e} = \frac{5 \times 1}{1.6 \times 10^{-19}} = 31.25 \times 10^{18} \simeq 31.35 \times 10^{18}$
(c) 82M	$\Omega \pm 10\%$	(d) 8.2M		10^{-17}
Ang (d) . Th	a valua of		JE 20.02.2020	
Ans. (d) : The code is 8.2 MS		esistance for	given colour	connected in series order to a 30V direct current (DC) source. Find the ratio (P_1/P_2) of
Colour	Digit	Multiplier	Tolerance	the power expended by the resistors.
Black	0	10°	1 ofer allee	(a) $P_1/P_2 = 1/3$ (b) $P_1/P_2 = 1/4$
Brown	1	10 10 ¹	- ±1%	(c) $P_1/P_2 = 1/2$ (d) $P_1/P_2 = 2/1$
		10^{10}		DMRC JE 20.02.2020
Red	2	10^{10}	±2%	Ans. (c) : Given, $R_1 = 10\Omega$, $R_2 = 20\Omega$
Orange	3	10^{3} 10^{4}	-	
Yellow	4	10 ⁵	-	I=1 A
Green	5		$\pm 0.5\%$	
Blue	6	106	$\pm 0.25\%$	30V
Violet	7 8	10^{7} 10^{8}	$\pm 0.1\%$	$I = \frac{V}{R} = \frac{30}{10 + 20} = \frac{30}{30} = 1A$
Gray		10°	± 0.05%	$ = R = 10 + 20 = 30^{-124}$
White	9	10^{-1}	- + 50/	$P_1 = I^2 R_1 = 10 W$
Gold		10^{-2}	$\pm 5\%$	$P_2 = I^2 R_2 = 20 W$
Silver		-	± 10%	$P_1 = 1 R_2 = 20 W$ $P_1/P_2 = 10/20 = 1/2$
Colourless		-	± 20%	14. How much energy will be a 100W electric bulb
Hence,	on 6:1			spend in two hours?
Gray, Red, Gree $82 \times 10^5 \pm 10\%$	een, Silver.			(a) 72 kJ (b) 7200 J
$82 \times 10^{\circ} \pm 10\%$ or 8.2 MΩ ± 10%	0%			(c) 720 J (d) 720 kJ
$01 \ 0.2 \ W1S2 \pm 1$	070			DMRC JE 20.02.2020
Basic Concent			1	14 VCT

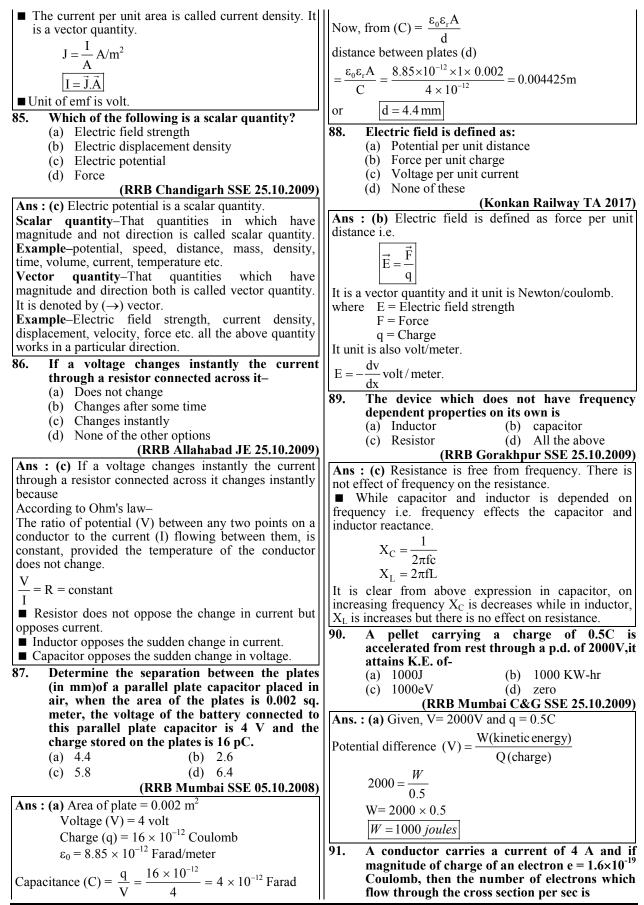

Ans. (d) : Given,	Ans. (d) : The capacitance of a parallel plates capacitor
$P = 100W$ $t = 2hr = 2 \times 3600$	can be given by-
t = 7200 Sec	$\epsilon_0 \epsilon_r A$
Energy = Power \times time	$C = \frac{\varepsilon_0 \varepsilon_r A}{d}$
$E = P \times t$	Where, $\varepsilon_0 = \text{Absolute permittivity}$
$E = 100 \times 7200$	
E = 720 kJ	ε_r = Relative permittivity
	A = Area of each plate
15. 1 Joule of electrical energy equals:	d = Distance between plates
(a) 1 watt. sec (b) 1 watt	Capacitance is measure in Farad.
(c) 1 watt/sec (d) 1 volt ampere	19. An ideal voltage source is one which has:
DMRC JE 2018, Shift-I	(a) infinite internal resistance
Ans. (a) : Energy consumed in electrical power system	
is-	(b) zero internal resistance
$\mathbf{E} = \mathbf{P} \times \mathbf{t}$	(c) very high internal resistance
Joule = watt.sec	(d) very low internal resistance
1 Joule = 1 watt.sec	DMRC JE 2018, Shift III
	Ans. (b) : An ideal voltage sources has zero internal
16. A varistor is made of:	resistance whereas an ideal voltmeter has infinite
(a) Copper (b) Carbon film	internal resistance.
(c) Carborundum crystals(d) Aluminium	• A • • A
DMRC JE 2018, Shift-I	
Ans. (c) : A varistor is an electronic component with-an	$V_s \Theta $ V $+ L$
electrical resistance that varies with the applied voltage.	* -T
It is made of carborundum crystals. It is also known as	B OB
voltage dependent resistor. Silicon carbide is also	Ideal AC voltage
known as corborundum crystal.	source Ideal DC voltage
17. Two equal resistors are first connected in series	source
	■ A practical voltage source should be minimum
and then in parallel across a dc supply. What is	internal resistance.
the ratio (series circuit to parallel circuit) of	■ A practical current source should be very high
total heat dissipated by the resistors for the	internal resistance.
two cases at a given time?	■ An ideal current source must be infinite internal
(Assume that the current from the dc source is	resistance.
same in both cases.)	20. Estimate the resistance of the filament of a 50
(a) 2:3 (b) 1:2	
(a) = 2.5 (0) 1.2	
	W, 100 V bulb.
(c) 4:1 (d) 3:2	W, 100 V bulb. (a) 200Ω (b) 100Ω
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same-	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection-	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ?
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ R = R	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ?
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection-	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ R = R	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ For parallel	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ For parallel	W, 100 V bulb. (a) 200 Ω (b) 100 Ω (c) 50 Ω (d) 150 Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ For parallel	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ For parallel $R_{eq} = \frac{R}{2}$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ For parallel $R_{eq} = \frac{R}{2}$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19}
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω <u>DMRC JE 2018, Shift III</u> Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} <u>DMRC JE 18.02.2017</u>
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω <u>DMRC JE 2018, Shift III</u> Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} <u>DMRC JE 18.02.2017</u> Ans. (a) : Given, Current (i) = 1A
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ R = $\frac{(100)^2}{50} = \frac{10000}{50}$ R = 200\Omega 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C.
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$ $H_1 : H_2 = 4:1$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection - $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2 \frac{Rt}{2}} = \frac{4}{1}$ $\frac{H_1 : H_2 = 4:1}{2}$ 18. Capacitance of a capacitor is given by:	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2 \frac{Rt}{2}} = \frac{4}{1}$ $\frac{H_1 : H_2 = 4:1}{2}$ 18. Capacitance of a capacitor is given by:	W, 100 V bulb. (a) 200Ω (b) 100Ω (c) 50Ω (d) 150Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$ $\overline{H_1: H_2 = 4:1}$ 18. Capacitance of a capacitor is given by: (a) $C = \frac{\varepsilon_0\varepsilon_r d}{A}$ (b) $C = \frac{\mu A}{d}$	W, 100 V bulb. (a) 200 Ω (b) 100 Ω (c) 50 Ω (d) 150 Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne $n = \frac{q}{e} = \frac{it}{e}$ (q = it) $n = \frac{1}{1.6 \times 10^{-19}} = 0.625 \times 10^{19}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$ $\overline{H_1: H_2 = 4:1}$ 18. Capacitance of a capacitor is given by: (a) $C = \frac{\varepsilon_0\varepsilon_r d}{A}$ (b) $C = \frac{\mu A}{d}$	W, 100 V bulb. (a) 200 Ω (b) 100 Ω (c) 50 Ω (d) 150 Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne $n = \frac{q}{e} = \frac{it}{e}$ (q = it) $n = \frac{1}{1.6 \times 10^{-19}} = 0.625 \times 10^{19}$ It means 6.25×10^{18} electrons flow through the cross
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ Heat dissipated $H_2 = i^2 \frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2 \frac{Rt}{2}} = \frac{4}{1}$ $\frac{H_1 : H_2 = 4:1}{2}$ 18. Capacitance of a capacitor is given by:	W, 100 V bulb. (a) 200 Ω (b) 100 Ω (c) 50 Ω (d) 150 Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne $n = \frac{q}{e} = \frac{it}{e}$ (q = it) $n = \frac{1}{1.6 \times 10^{-19}} = 0.625 \times 10^{19}$
(c) 4:1 (d) 3:2 DMRC JE, 26.02.2020 Ans. (c) : Assume current from dc source is same in both (series & parallel) case is same- For series connection- $R_{eq} = R + R = 2R$ Heat dissipated $H_1 = 2i^2Rt$ $R_{eq} = \frac{R}{2}$ Heat dissipated $H_2 = i^2\frac{R}{2}t$ $\frac{H_1}{H_2} = \frac{2i^2Rt}{i^2\frac{Rt}{2}} = \frac{4}{1}$ $\overline{H_1: H_2 = 4:1}$ 18. Capacitance of a capacitor is given by: (a) $C = \frac{\varepsilon_0\varepsilon_r d}{A}$ (b) $C = \frac{\mu A}{d}$	W, 100 V bulb. (a) 200 Ω (b) 100 Ω (c) 50 Ω (d) 150 Ω DMRC JE 2018, Shift III Ans. (a) : Given, P = 50W, V = 100V, R = ? As we know that $R = \frac{V^2}{P}$ $R = \frac{(100)^2}{50} = \frac{10000}{50}$ $R = 200\Omega$ 21. If 1 A current flows in a circuit, the number of electrons flowing through this circuit is (a) 0.625×10^{19} (b) 1.6×10^{19} (c) 1.6×10^{-19} (d) 0.625×10^{-19} DMRC JE 18.02.2017 Ans. (a) : Given, Current (i) = 1A Charge (q) = 1C Charge on electron = 1.6×10^{-19} C. q = ne $n = \frac{q}{e} = \frac{it}{e}$ (q = it) $n = \frac{1}{1.6 \times 10^{-19}} = 0.625 \times 10^{19}$ It means 6.25×10^{18} electrons flow through the cross

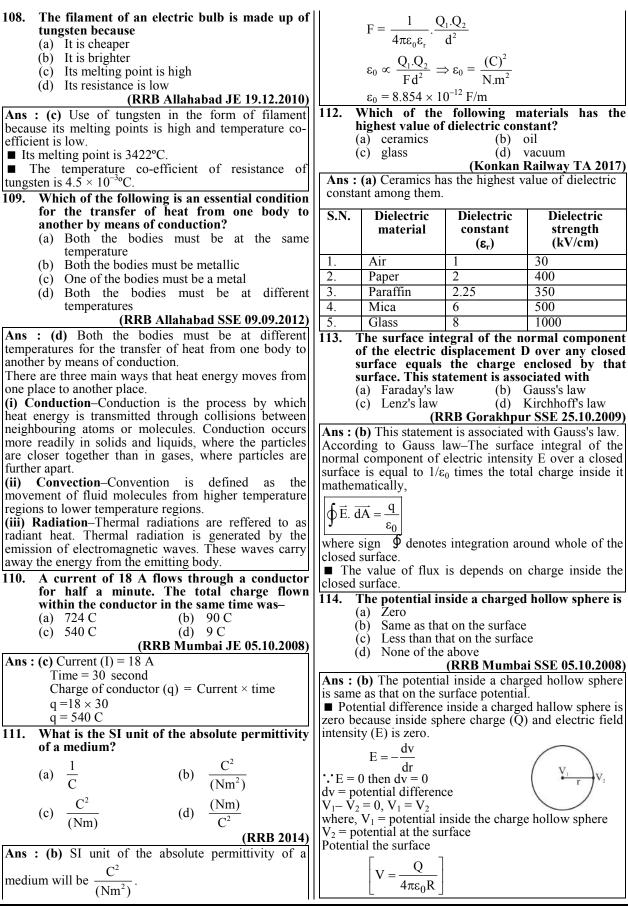


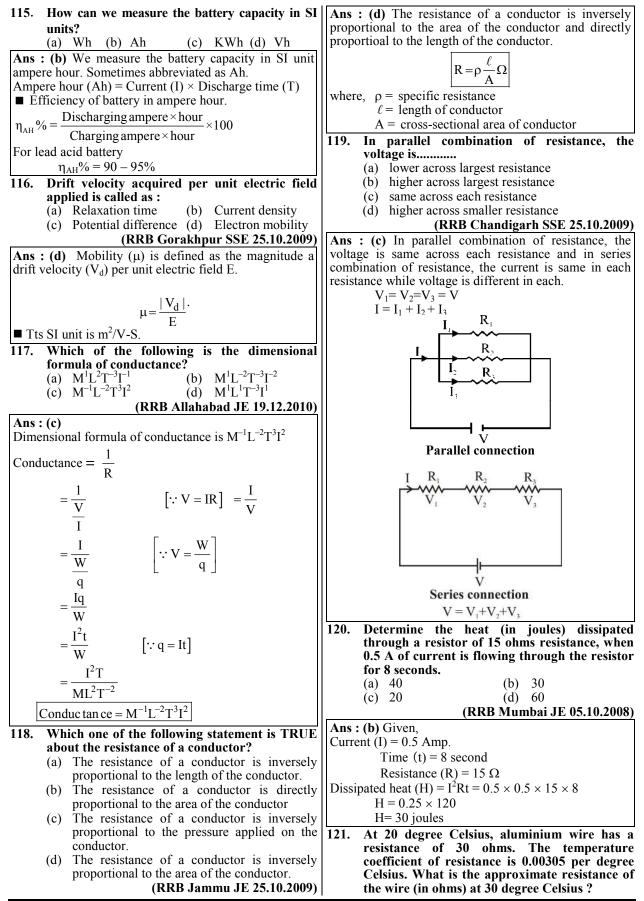

Ans. (d) : According to question three 5μ F capacitor are connected in parallel Then net capacitance = 5μ F + 5μ F + 5μ F = 15μ F 34. Components which obey Ohm's law are know as- (a) Resistors (b) Capacitors (c) Non-ohmic components (d) Ohmic components RRB JE 19.09.2019 Shift-1	(a) Inductance (b) Resistance (c) Impedance (d) Capacitance DFCCIL Executive Electrical 30.09.2021 RRB JE 01.09.2019 Shift-I Ans. (c) : The combined effects of resistance, inductive reactance and capacitive reactance is called impedance. Which produced the total opposition to current flow in an AC circuit. The total opposition offered to the flow of current in AC circuit is called impedance. It is combination of
Ans. (d) : Ohmic components follow ohm's law. Ohm' law is defined as the current through a conducto between two points is directly proportional to th voltage across the two points. V	r e then Z = R + jX 38. Two bulbs of 500 W and 200 W rated at 250 V
$I = \frac{V}{R}$ 35. If a power of 100 W is being supplied across potential difference of 200 V, find the curren flowing through the circuit. (a) 0.5 A (b) 1 A (c) 20 A (d) 2 A (d) 2 A	$\begin{bmatrix} (a) & 2 : 3 & (b) & 2 : 5 \\ (c) & 3 : 2 & (d) & 5 : 2 \\ \hline RRB JE & 01.09.2019 \text{ Shift-I} \\ \hline \text{Ans. (b) : Given, } P_1 = 500W, P_2 = 200W \end{bmatrix}$
RRB JE 01.09.2019 ShiftAns. (a) : Given, P = 100 WPotential difference (P.D) = 200V \therefore P = VI \therefore I = $\frac{P}{V}$ I = $\frac{100}{200} = \frac{1}{2} = 0.5 \text{ A}$ 36. Which of the following have the same unit, ms ⁻¹ ?(a) Velocity and acceleration(b) Speed and velocity(c) Acceleration and momentum(d) Speed and momentum	$ \begin{array}{c c} \hline R = \frac{V^2}{P} & \hline R \propto \frac{1}{P} \\ \hline \frac{R_1}{R_2} = \frac{P_2}{P_1} = \frac{200}{500} = \frac{2}{5} \\ \hline R_1 : R_2 = 2 : 5 \\ \hline 39. \text{ The centripetal force required to keep the moon in its orbit is provided by which force?} \end{array} $
RRB JE 01.09.2019 Shift Ans. (b) : Speed and velocity have the same unit, ms ⁻¹ Difference between speed and velocity- Speed Velocity	
1. The speed is the 1. The velocity is th	40.Calculate the total DC resistance of a 100 metre roll of 2.5 mm² copper wire if the resistivity of copper at 20° C is $1.72 \times 10^{-8} \Omega$ metre. (a) 0.867Ω (b) 0.713Ω (c) 0.214Ω (d) 0.688Ω RRB JE 01.09.2019 Shift-I
3. The speed is always positive 3. The velocity can b positive and negativ depending on th direction of th motion	$A = 2.5 \text{ mm}^2 = 2.5 \times (10^{-3})^2 = 2.5 \times 10^{-6} \text{ m}^2$ $\rho = 1.72 \times 10^{-8} \Omega - \text{m}$ $\ell = 100 \text{ meter}$
 4. During the circular motion, the average speed does not become zero after completing one round. 4. During the circular motion, average motion, average speed does not become zero after completing on round. 	$R = 1.72 \times 10^{-8} \times \frac{100}{2.5 \times 10^{-6}}$ $R = 0.688 \Omega$ 41. What is the SI unit of electric charge?
5. Unit = $\frac{m}{s} = ms^{-1}$ 5. Unit = $\frac{m}{s} = ms^{-1}$	(a) Volt (V) (b) Joule (J) (c) Coulomb (C) (d) Ampere (A) RRB JE 01.09.2019 Shift-I

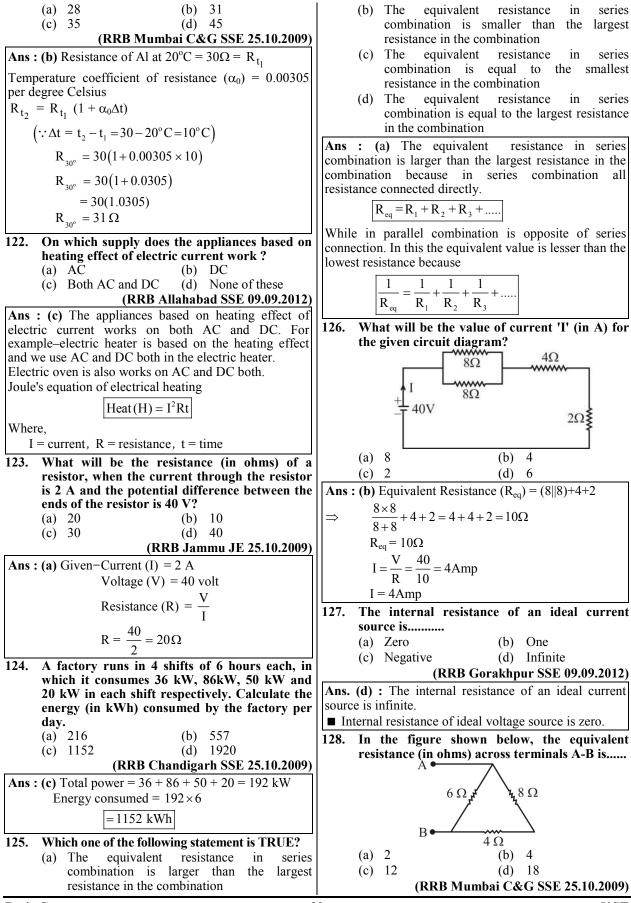



Energy $E = vit$ joule Energy = Power × Time Energy = Watt-second	Ans. (a) : 'Erg' is a unit of measurement of energy. Generally the unit of energy is joule or watt second. Energy is a scalar quantity. Energy is the capacity to do work.
Joule = Watt-second 50. Which of the following symbol represents absolute permittivity of dielectric medium correctly?	1 Joule = 10^7 erg 54. If 12.25×10^{16} electrons pass through a conductor in 1 s, then how much current (in mA) will
(a) ε_r (b) ε_0	(a) 17.6 (b) 18.6
(c) $\varepsilon_r \times \varepsilon_0$ (d) $\varepsilon_r / \varepsilon_0$	(c) 19.6 (d) 20.6 (RRB Kolkata JE 25.10.2009)
(RRB Bhubneshwar JE-II 19.12.2010)	Ans. (c) : Given,
Ans. (c) : Absolute permittivity (ε) = $\varepsilon_0 \varepsilon_r$ ε_0 = free space electric permittivity	$e = 1.6 \times 10^{-19} \text{ C}$
$\varepsilon_{0} = 8.854 \times 10^{-12} \text{ F/m}$ $\varepsilon_{0} = \varepsilon_{0} \times \varepsilon_{r} \text{ F/m}$	$n = 12.25 \times 10^{16}$
• \in_{r} is relative permittivity. It has no units. Its value varies for different substances and its value is 1 for air.	t = 1 sec q = ne q = 1.6 × 10 ⁻¹⁹ × 12.25 × 10 ¹⁶ C q = 19.6 × 10 ⁻³ C q = it i = $\frac{q}{t}$
	$q = 1.6 \times 10^{-19} \times 12.25 \times 10^{16} C$. q
51. Which of the following is the dimension of resistance? O^{2T^2}	$q = 19.6 \times 10^{-3} C$ $\begin{bmatrix} 1 = \frac{1}{t} \\ t \end{bmatrix}$
(a) $\frac{ML^2}{Q^2T}$ (b) $\frac{Q^2T^2}{ML^2}$ (c) $\frac{ML^2}{QT^2}$ (d) $\frac{ML}{QT^2}$	it = q $i = \frac{q}{t} = \frac{19.6 \times 10^{-3}}{1}$
(c) $\frac{ML^2}{OT^2}$ (d) $\frac{ML}{OT^2}$	$\frac{t}{i = 19.6 \text{ mA}}$
(RRB Allahabad JE 19.12.2010)	55. Find the odd one out regarding Ohm's Law.
Ans. (a) : Dimension of resistance is $\frac{ML^2}{Q^2T}$	 (a) Vacuum tubes (b) Conductor (c) DC circuit (d) High Voltage Circuit
Q = IT	(RRB Gorakhpur SSE 25.10.2009)
V	Ans : (a) Vacuum tube does not obey Ohm's law– ■ Ohm's law–The physical state of a conductor if
$I = \frac{V}{R}$	remaining unchanged, the ratio of the potential
	difference (V) and the current (I) across the conductor is always constant which is called resistance.
$Q = \frac{VT}{R}$ $V = \frac{W}{Q}$	$I \propto V$
	I = V/R
$R = \frac{VT}{Q} = \frac{WT}{Q^2} = \frac{ML^2T^{-2}T}{Q^2} = \frac{ML^2}{Q^2T}$	$\frac{V}{I} = R$ (Constant)
52. Which of the following statements is correct	Where R = resistance ■ Ohm's law is applicable only for linear circuits.
about capacitors? (a) None of these	56. For the circuit shown below, find the
(b) The capacitor disconnects short circuit in	electrostatic energy (in J) stored between
direct current (DC) circuits and connectes in	terminals A and B. 6μF
alternating current (AC) circuits (c) The capacitor disconnects short circuit in	_{6μ} F
both direct current (DC) and alternating	
current (AC) circuits (d) the capacitor disconnects circuit in direct	
current (DC) circuits and short circuit in	$A \bullet \qquad 6\mu F \bullet B$
alternating current (AC) circuits	400 V, 50 Hz
(RRB Mumbai SSE 05.10.2008) Ans : (d) The capacitor blocks the DC supply. That is	(a) 0.32 (b) 3.32
the capacitor in the circuit behaves like an open circuit	(c) 33.2 (d) 332 (RRB Allahabad JE 25.10.2009)
and passed the capacitor AC supply. That is, the capacitor behaves like a short circuit in AC circuit.	Ans. (a) : For given circuit equivalent capacitance
53. 'Erg' is a unit of measurement for	
(a) Energy (b) Power	$C_{AB} = \frac{(6+6) \times 6}{(6+6)+6} = \frac{12 \times 6}{18} = 4\mu F$
(c) Voltage (d) Impedance (RRB Mumbai SSE 05.10.2008)	$C_{AB} = 4\mu F$
	! !
Basic Concept 1	9 YCT

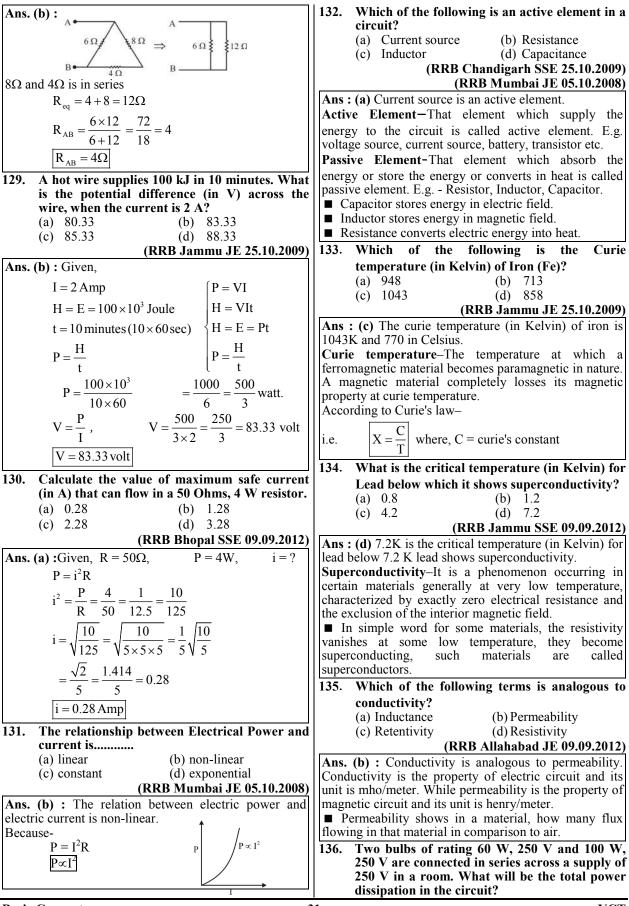


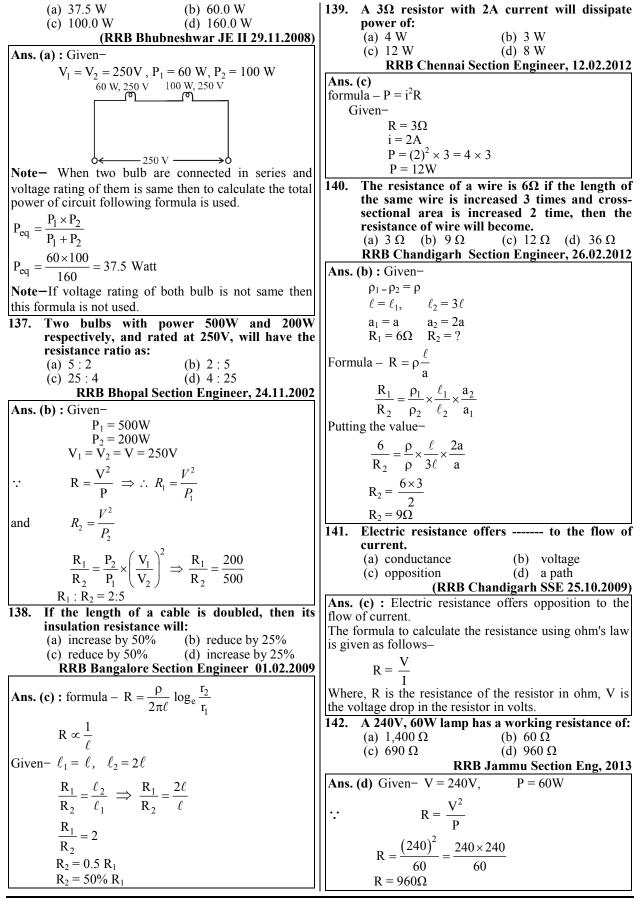


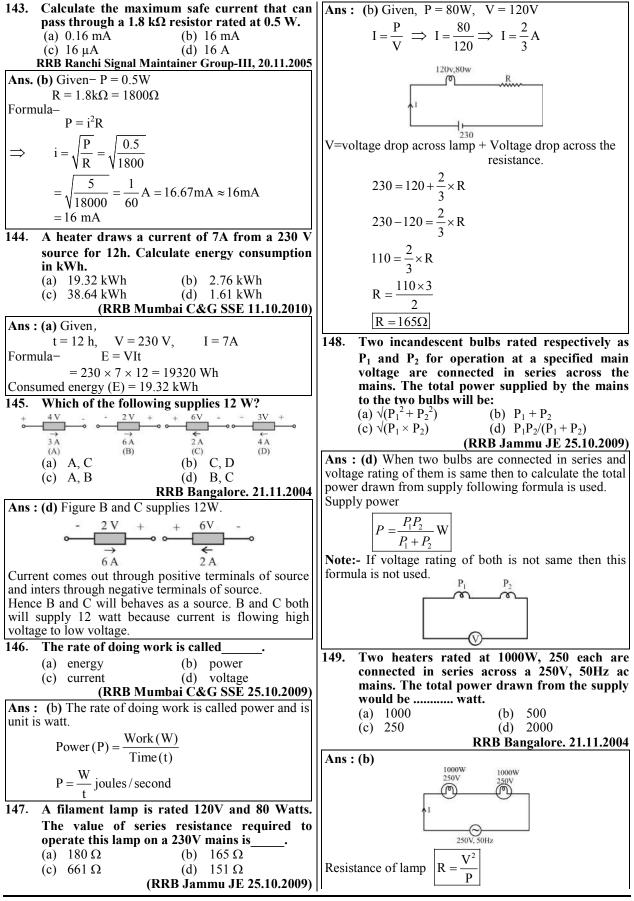


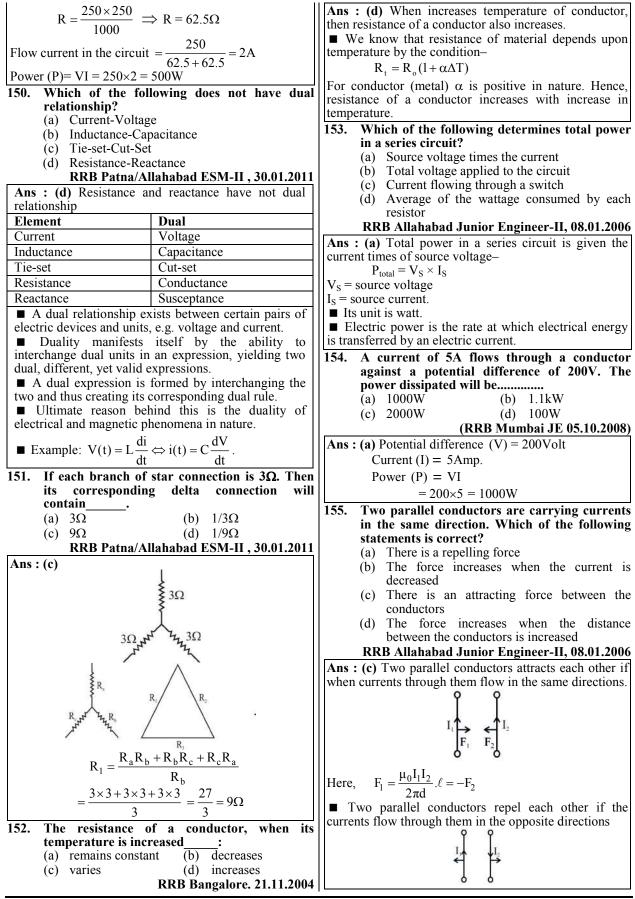


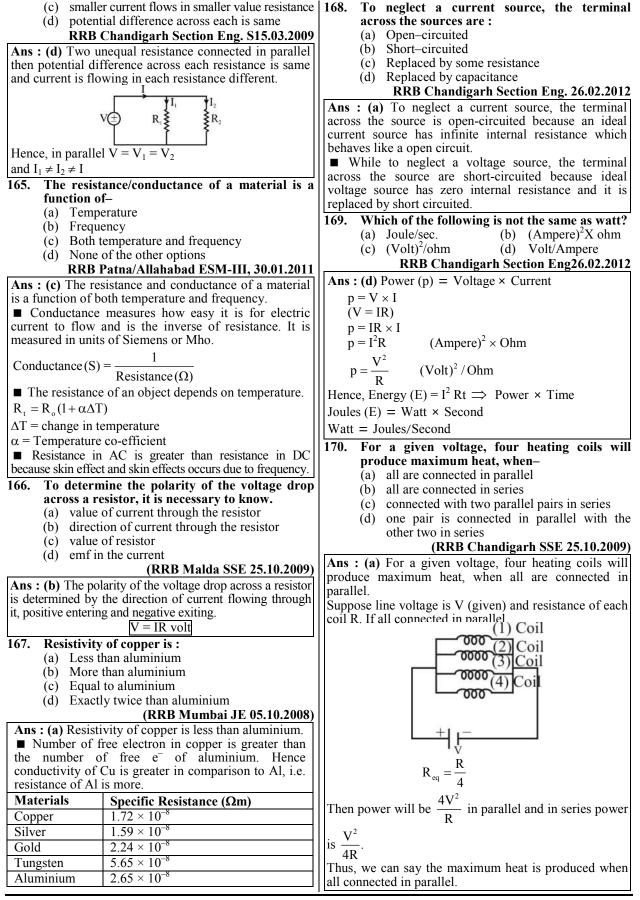
(a) 2.5×10^{19} (b) 1.6×10^{19} (c) 6.4×10^{19} (d) 0.4×10^{19}	$F = \frac{q^2}{r^2} \times 9 \times 10^9$ $F = \frac{1}{9} \times 9 \times 10^9$
(RRB Allahabad SSE 09.09.2012)	r^{-}
Ans : (a) Current (I) = $4A$	$F = \frac{1}{9} \times 9 \times 10^9$
Charge of an electron (e) = 1.6×10^{-19} C	$F = 10^9 N$
time(t) = 1 sec	96. Current always flow in direction :
Formula- $i = \frac{q}{t}$	(a) Opposite to that of Electron
q = ne	(b) Direction same as of electron
-	(c) Independent of electron flow(d) None of these
$\Rightarrow i = \frac{ne}{t}$	(d) None of these (RRB Mumbai JE 05.10.2008)
$n > 1.6 > 10^{-19}$	Ans : (a) Current always flow in direction opposite to
$\Rightarrow 4 = \frac{n \times 1.0 \times 10}{1}$	that of Electron.
	Current is defined as rate of flow of charge
$\Rightarrow 4 = \frac{n \times 1.6 \times 10^{-19}}{1}$ $\Rightarrow n = \frac{4}{1.6 \times 10^{-19}}$ $= 2.5 \times 10^{19}$	i = q / t
$=2.5 \times 10^{19}$	And value of charge is equal to the product of number
92. Joule/Coulomb is the unit of	of electron and present charge on its.
(a) electric field potential	$\boxed{\begin{array}{c} \mathbf{q} = \mathbf{n}\mathbf{e} \\ \mathbf{e} = 1.6 \times 10^{-19} \mathrm{C} \end{array}}$
(b) potential	$e = 1.6 \times 10^{-19} C$
(c) charge	n = No. of Electron
(d) none of these	97. Match List I with List II and select the correct
(RRB Allahabad SSE 09.09.2012)	answer using given lists
Ans : (b) Joule/Coulomb is the unit of potential.	List-I List-II
$V = \frac{W}{q} = \frac{joule}{coulomb} = volt$	A. Ohm's law 1. Capacitors
	B. Fleming's Right Hand Rule 2. Generator C. Alternator 3. Voltage-current
Potential difference of one volt exists between if one	C. Alternator 3. Voltage-current relation
joule of work is done in shifting a charge of one coulomb from one point to the other.	D. Coulomb's Law 4. AC generator
93. One Watt hour contains Joules	(a) A-2, B-3, C-4, D-1
(a) 3.6×10^8 (b) 3.6×10^5	(b) A-1, B-2, C-3, D-4
(a) 3.6×10^8 (b) 3.6×10^5 (c) 3.6×10^3 (d) 3.6×10^{-1}	(c) $A-2, B-4, C-3, D-1$
(RRB Mumbai C&G SSE 25.10.2009)	(d) A-3, B-2, C-4, D-1
Ans : (c) One watt hour contains 3.6×10^3 joules	(RRB Mumbai SSE 05.10.2008) Ans : (d) The correct matching are given following-
one watt hour = $\frac{1 \text{ joules}}{1 \times 60 \times 60 \text{ sec ond}}$	1– Ohm's law is relation between voltage and current.
$\frac{1}{\sec \text{ ond}} \times 60 \times 60 \sec \text{ ond}$	2– Fleming's right hand rule is used in generator.
= 3600 Joule	3-Alternator is an AC generator.
$= 3.6 \times 10^3$ Joule	4– Coulomb's law is for the capacitor.
94. A kilowatt hour is the unit of	*
(a) energy (b) power	98. If ten resistances of 10 ohms each are connected in parallel, the total resistance will be :
(c) electrolyte (d) electric current (RRB Allahabad JE 19.12.2010)	(a) 100 Ohm (b) Less than 100 Ohm
Ans : (a) A kilowatt is the unit of energy.	(c) 1 Ohm (d) None of these
1 kilowatt hour = $1000 \text{ watt} \times 1 \text{ hour}$	(DMRC 2015)
$= 1000 \times 3600 \text{ watt-second}$	Ans : (c) In parallel, when all resistance value same-
$1 \text{ kWh} = 36 \times 10^5 \text{ watt-second}$	Equivalent resistance = $\frac{R(value of resistance)}{n(Number of resistance)}$
95. The force between two point charges of 1C	n(Number of resistance)
each separated by a distance 3m in free space is	$P_{1} = \frac{10}{10}$
(a) 9×10^9 N (b) 9×10^{-9} N	$R_{eq} = \frac{10}{10} = 1\Omega$
(c) 3×10^9 N (d) 10^9 N	99. Unit of resistivity is :
(RRB Chandigarh SSE 25.10.2009)	(a) Ω meter (b) mho metre
Ans : (d) Given, $q_1 = q_2 = q = 1C$	(c) mho (d) Ω
r = 3 meter	(LMRC 2015)
$\mathbf{F} = \frac{1}{\sqrt{q_1 q_2}} \times \frac{q_1 q_2}{\sqrt{q_1 q_2}}$	Ans : (a) Unit of resistivity is Ω meter.
$\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \times \frac{q_1 q_2}{r^2}$	From formula-
1 0	$R = \rho - \ell$
where, $\frac{1}{4\pi\varepsilon_0} = 9 \times 10^9$	a
	$ R = \Omega$
Basic Concept	26 VCT

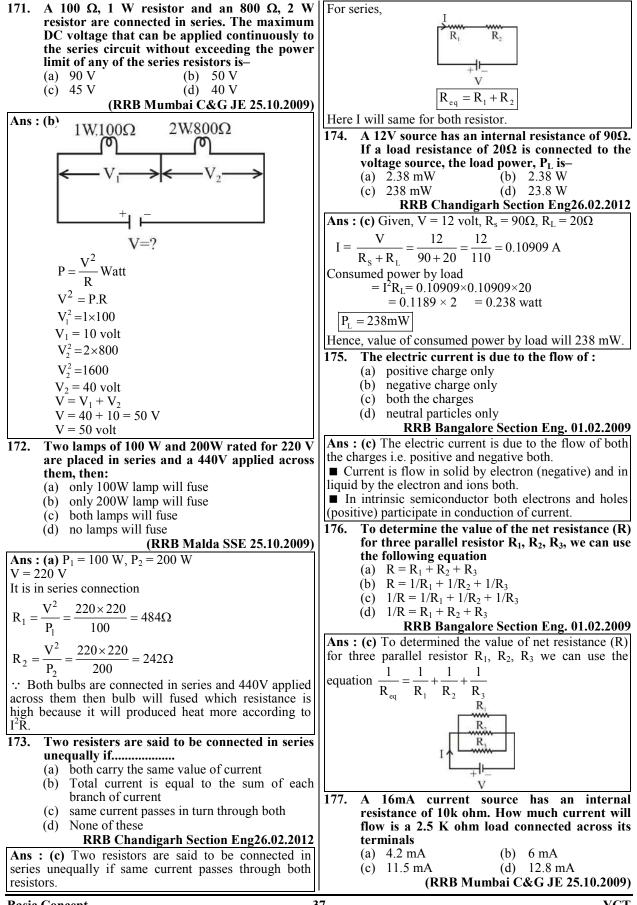

$$\begin{aligned} &\ell = m \\ a = m^{2} \\ \rho = ? \\ r = \frac{2m}{\rho} = \frac{2m}{\rho} \\ \frac{p}{\rho} \\ \frac$$

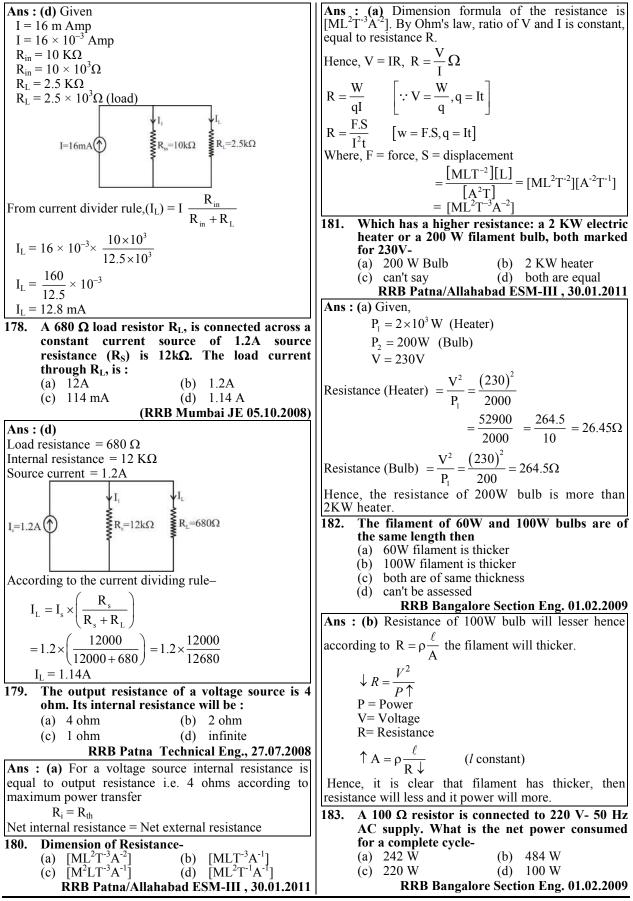




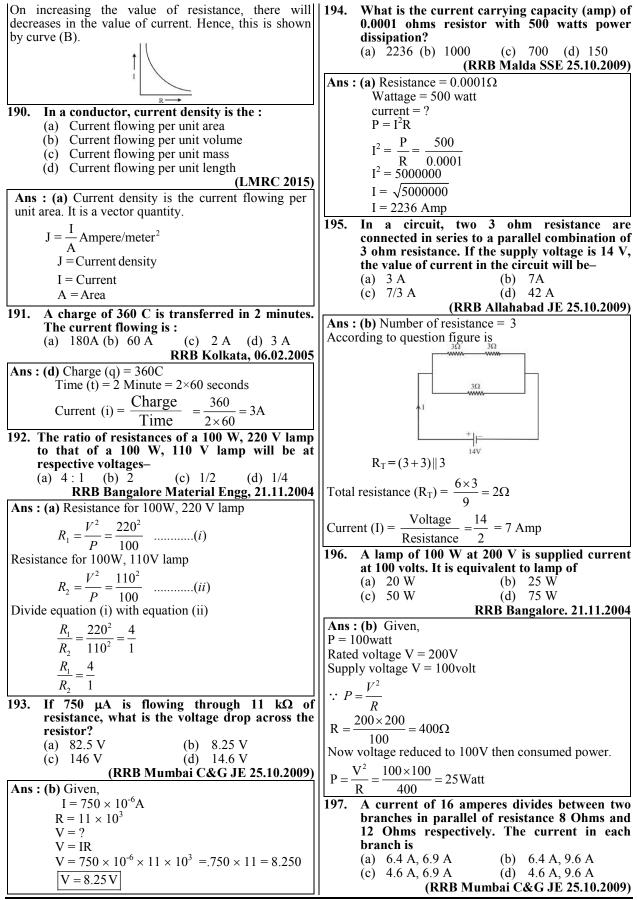

YCT




Basic Concept



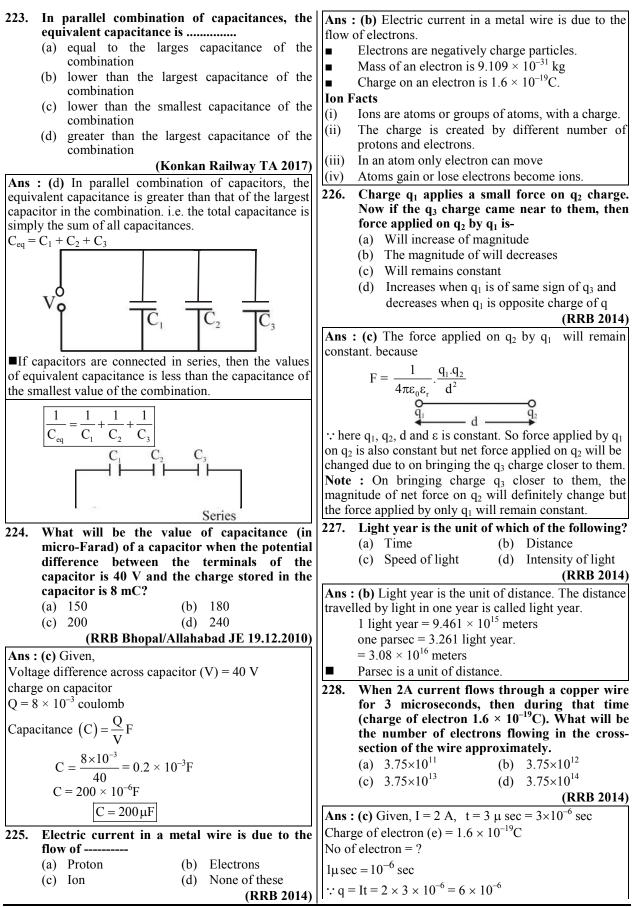
156. A voltage of 100V is applied to a circuit of resistance of 10Q, the power dissipated (in watts) by the resistance will be: (a) 100 (b) 500 (c) 1000 (d) 1500 (RRB Chandigarh SSE 25.10.2009) Ans: (c) Resistance (R) = 10 Ω Voltage (V) = 100 V Current (i) = $\frac{V}{R} = \frac{100}{10} = 10$ Amp Power (P) = $i_1^2 R$	 across 200V supply line. If one bulb gets fused
$= 10^{2} \times 10$ = 100 × 10 = 1000 Watt.	constant and still the current will flow in the remaining three bulbs and bulbs are glow continue.
 157. When an electric current flows through a conductor, its temperature rises. This is because of	 200 V 3 3 3 200 V 3 3 5 Fused 200 V 3 3 3 5 B₄ 161. A 100 watt light bulb burns on a average of 10 hours a day for one week. The weekly
(d) Release of conduction electrons from parent atoms	(a) 7 Unit (b) 70 Unit
RRB Kolkata, 06.02.2005 Ans : (c) The electric current flowing through a	(c) 0.7 Unit (d) 0.07 Unit DMRC Secunderabad Section Eng. 29.06.2008
conductor wire produces heating and increases its temperature because of collisions of the conduction electrons with the atoms of the conductor wire. A conductor has a large number of free e^- in it. When a voltage difference is applied across the ends of a	Ans : (a) A 100 watt light bulb glow in a day at for 10 hour for one week, then weekly consumption of energy will be 7 units. $P = 100$ watt $E = \frac{100 \times 10 \times 7}{1000} = 7$ Unit
conductor wire, the free e ⁻ begin to drift from the low voltag to the high voltage region. These e ⁻ collide with the positive ions. In these collisions energy of the e ⁻ is transferred to the positive ions and they begin to vibrate more violently. As a result, heat is produced and temperature increases.	E = 7Unit 1Unit = 1 killo watt hour Hence, weekly consumption of energy will be 7 units 162. Whenever current is supplied by a source its
158. For a voltage source	terminal voltage:(a) Increases(b) Decreases(c) Remain Constant(d) None of the aboveDMRC Secunderabad Section Eng. 29.06.2008
 emf (c) Terminal voltage is always lower than source emf (d) Terminal voltage is higher than the source emf RRB Chennai Technical (Eng.), 15.04.2007 	Ans : (b) Whenever current is supplied by a source, this current also flows through the internal resistance connected in series in the source because of voltage drop across the internal resistance, the terminal voltage is decreased.
Ans : (b) Terminal voltage cannot exceed the source emf of a voltage source. Voltage source–It is a two-terminal device which can maintain a fixed voltage. An ideal voltage source can maintain the fixed voltage independent of the load resistance or the output current.	163. The current rating of a 5kΩ, 1/2W resistor is: (a) 1A (b) 0.1 (c) 0.001 (d) 0.01 RRB Patna Technical Eng., 27.07.2008 Ans : (d) Given, $R = 5 \times 1000 = 5000\Omega$
 A voltage source is the dual of current source. 159. In gases the flow of current is due to	$P = \frac{1}{2} \text{ watt}$ Formula- I = $\sqrt{\frac{P}{R}}$ I = $\sqrt{\frac{1}{2 \times 5000}}$
 Ans : (d) In gases the flow of current is due to electrons, positive ions and negative ions. ■ Positive ions flow in one direction and negative ions flow in the opposite direction to make up current in gases and liquids. 	I = 0.01 Amp 164. A circuit contains two unequal resistance in parallel, then: (a) large current flows in larger value resistance (b) current is same in both



YCT

Ans : (b) Given, $V = 220V$, $R = 100\Omega$	187. In the circuit shown in Figure The currents I ₁ and I ₂ , respectively are
Formula, $P = \frac{V^2}{R}$	$6 \wedge \begin{bmatrix} I_1 \\ I_1 \end{bmatrix} = I_2 $
	4Ω 2Ω
$=\frac{(220)^2}{100}=\frac{48400}{100}=484$ Watt.	
	(a) $4A$ and $8A$ (b) $2A$ and $4A$
184. A 12 mA current source has an internal resistance, R_s of 1.2K Ω . The equivalent voltage	(c) 4A and 2A (d) 6/5A and 12/5A RRB Patna Technical Eng. , 27.07.2008
source is-	Ans : (b) According to division current rule-
(a) 1.44V (b) 14.4V (c) 7.2V (d) 72 mV	$I_1 = \frac{IR_2}{R_1 + R_2}$
(RRB Mumbai C&G JE 25.10.2009)	$R_1 + R_2$
$R = 1.2 \text{ K}\Omega \text{ or } 1.2 \times 10^{3} \Omega$	$\begin{bmatrix} 2 & R_1 + R_2 \\ R_2 & R_3 + R_2 \end{bmatrix}$
V = IR	$I = 6A, R_1 = 4\Omega, R_2 = 2\Omega$
$V = 12 \times 10^{-3} \times 1.2 \times 10^{3}$ V = 14.4 V	$I_2 = \frac{IR_1}{R_1 + R_2}$ $I = 6A, R_1 = 4\Omega, R_2 = 2\Omega$ $I_1 = \frac{6 \times 2}{4 + 2} \implies I_1 = 2A$
185. A constant current source supplies a electric	
current of 200 mA to a load of 2kΩ. When the load changed to 100Ω, the load current will be	$I_2 = \frac{6 \times 4}{4 + 2} \Rightarrow I_2 = 4A$
(a) 9 mA (b) 4A	188. A circuit component that opposes the change in
(c) 4 mA (d) 400 mA BBB Patra Tashrical Eng. 27.07.2008	the current through it is (a) resistance (b) inductance
RRB Patna Technical Eng. , 27.07.2008 Ans : (b) Given, I = 200mA, $R_{L_1} = 2k\Omega$	(c) capacitance (d) none of these
Voltage across load (V) = I R_{L_1}	RRB Kolkata Jr. Engineer-II 11.06.2006 Ans : (b) The inductor opposes the sudden change in
$V = 200 \times 10^{-3} \times 2 \times 10^{3}$	the current through it.
$V = 200 \times 10^{\circ} \times 2 \times 10^{\circ}$ V = 400 V	 In inductor, also called a coil, choke or reactor. It is a magning two terminal electrical common and
The current when the load is changed to 100Ω , then-	 It is a passive two-terminal electrical component. It stores energy in a magnetic field when electric
$I = \frac{V}{R_{L_2}}$	current flows through it.
-	$U = \frac{1}{2}LI^2$ Joule
$I = \frac{400}{100}$	-
I = 4A	$\blacksquare L = \frac{V_L}{dI} = \frac{N\phi}{I} = \frac{N^2}{S} = \frac{\mu_o \mu_r A N^2}{\ell}$
186. A 220V, 100W Bulb is connected to a 110 V	$\frac{dt}{dt}$ 1 5 t
source. Calculate the power consumed by the bulb?	Unit of inductor is henary.
(a) 20 W (b) 15 W	189. A moving resistance R is connected across a electric source V volt. If the value of resistance
(c) 10 W (d) 25 W RRB Patna Technical Eng., 27.07.2008	R is increased then which curve will show the
Ans : (d) Given,	relationship between I and R.
V = 220 V	
P = 100W	$(a) \begin{array}{c} I \\ I \end{array}$ $(b) \begin{array}{c} I \\ I \end{array}$
Resistance of bulb $R = \frac{v}{p}$	
p 220 × 220	$R \rightarrow R \rightarrow$
$R = \frac{220 \times 220}{100}$	
$R = 484\Omega$	(c) (d)
If voltage is 110V, then power consumed by bulb W^2	$R \longrightarrow R \longrightarrow R$
$P = \frac{V^2}{R}$	(a) B (b) D
к 110×110	(c) A (d) C (LMPC SC/TO 2015)
$\mathbf{P} = \frac{110 \times 110}{484}$	(LMRC SC/TO 2015) Ans : (a) According to Ohm's law
	V = IR
$P = \frac{12100}{484}$	$\downarrow I = \frac{V}{R\uparrow}$
P = 25 watt	R î

Ans : (d) Given, for wire A $R_A = 800\Omega, \rho_A = \rho$ For wire B $R_B = 100\Omega, \rho_B = \rho$ $R = p \frac{l}{A}$ Cross section area is same for both wire- $\frac{R_A}{R_B} = \frac{l_A}{l_B} \Rightarrow \frac{800}{100} = \frac{l_A}{l_B}$ $8 = \frac{l_A}{l_B}$ 204. A 100 Ω resistor is to be used to carry a current of 0.5 A. Its power rating should bewatt (a) 50 (b) 25	Ans : (c) If the current flowing through a conductor in a transmission line is reduced by a factor of 3 (Keeping other parameters constant). Its effective resistance will increase by 9 times. $\boxed{R_{eff} = \frac{Power loss in the conductor}{I^2}}$ where $R_{eff} = effective resistance of conductorR_{eff} \propto \frac{1}{\left(\frac{I}{3}\right)^2}R_{eff} \propto \frac{9}{I^2}\boxed{R_{eff} \propto 9 \text{ times}}208. An ideal current source has zero(a) Internal conductance (b) Internal resistance(c) Voltage on no load (d) RippleRRB Kolkata, 06.02.2005$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(RRB Allahabad JE 19.12.2010)
RRB Kolkata Apprentice Engg., 14.10.2001	Ans : (a) Internal resistance of an ideal current source is
Ans : (b) Given, Resistance $(R) = 100\Omega$	infinite and internal conductance is zero.
Current $(I) = 0.5 \text{ Amp}$	Since, $G = \frac{1}{R} = \frac{1}{\infty} = 0$
Voltage (V) = IR = $100 \times 0.5 = 50$ volt	$R \propto 10^{-10}$
Power rating (P) = $i^2 R = (0.5)^2 \times 100$	Where, $G = $ conductance R = resistance.
$= 0.25 \times 100 = 25 \text{ watt}$	209. Two incandescent light bulbs of 40 W and 60
	W rating are connected in series across the
 205. Six light bulbs are connected in parallel across 110V. Each bulb is rated at 75W. How much current flows through each bulb? (a) 0.682 A (b) 0.7 A (c) 75 A (d) 110 A 	 mains. Then (a) the bulbs together consume 100 W (b) the bulbs together consume 50 W (c) the 60 W bulbs glows brighter (d) the 40 W bulbs glows brighter
RRB Kolkata Engg. 20.02.2000	RRB Kolkata, 06.02.2005
Ans : (a) Given, Voltage (V)=110V	Ans : (d) In series connection, the current is flowing in
	all the bulb is equal, so when 40 W bulb and 60 W bulb are connected in series, the current is flow same in
Power $(P) = 75W$	them. To find out which bulb will be more luminous. It
Current (I) = $\frac{P}{V} = \frac{75}{110} = 0.682$ Amp.	is necessary to know the power dissipation. Power $(P) = I^2 R$ watt
206. In a four-branch parallel circuit, there are 10	In series power dissipation in a bulb of higher
mA of current in each branch. If one of the	resistance will be higher due to this the 40 W bulb (maximum resistance) will glows brighter because its
branches is open, the current in each of the other three branches is :	resistance is more in comparison to 60 W bulb.
(a) 13.3 mA (b) 10 mA	210. The equivalent resistance in ohms in the circuit
(a) 15.5 mA (b) 10 mA (c) 0A (d) 30mA	shown is
RRB Kolkata Engg. 20.02.2000	A 2S 4S B
Ans : (b) The current in each of the other three branches	A 25 45 D
will be flow 10 mA only because the current in parallel	(a) $\frac{1}{6}$ (b) 6
circuit are different while voltage is same in each branch. If one of the branch is opened, then it does not effect the	6
other branches current because the voltage and resistance	(c) $\frac{3}{4}$ (d) $\frac{4}{3}$
across remaining branches will remain same.	т 5
207. If current passing through a conductor in a	(JMRC JE 10.06.2017)
transmission line is decreased by a factor of 3	Ans : (c) Here the conductance is given in Siemens.
(keeping other parameters constant), its effective resistance	Hence $R_1 = \frac{1}{G_1}$ $R_2 = \frac{1}{G_2}$
(a) increases 3 times (b) decreases 3 times	$G_1 \qquad G_2$
(c) increases 9 times (d) decreases 9 times	$R_1 = \frac{1}{2}\Omega, R_2 = \frac{1}{4}\Omega$
RRB Kolkata, 06.02.2005	$ 2^{11}, \frac{12}{2} - 4^{12}$

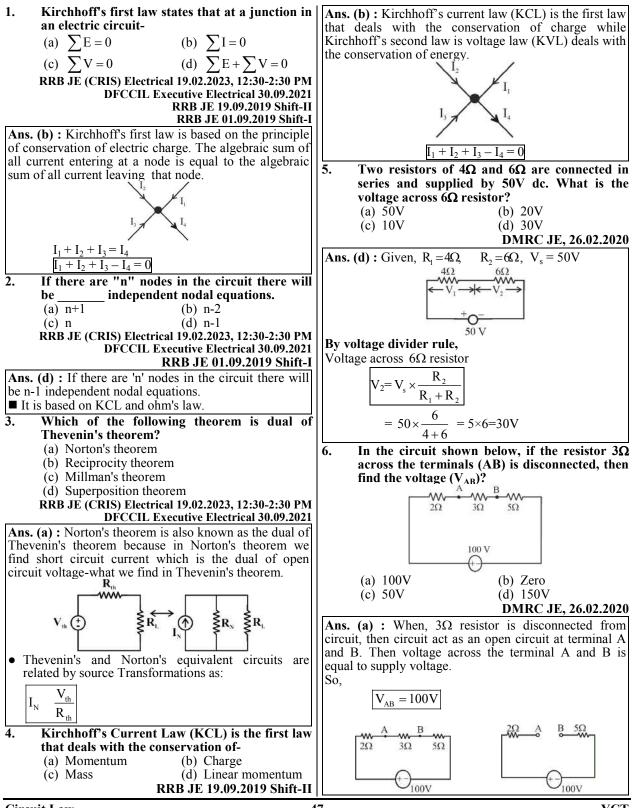

$$\frac{1}{2}\Omega - \frac{1}{4}\Omega$$

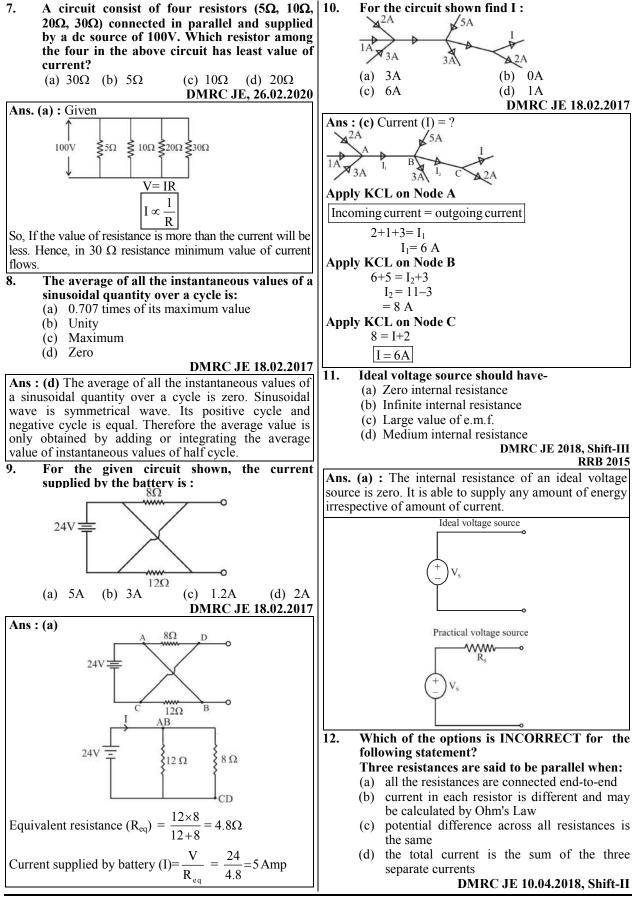
$$\frac{1}{2}\Omega - \frac{1}{4}\Omega$$

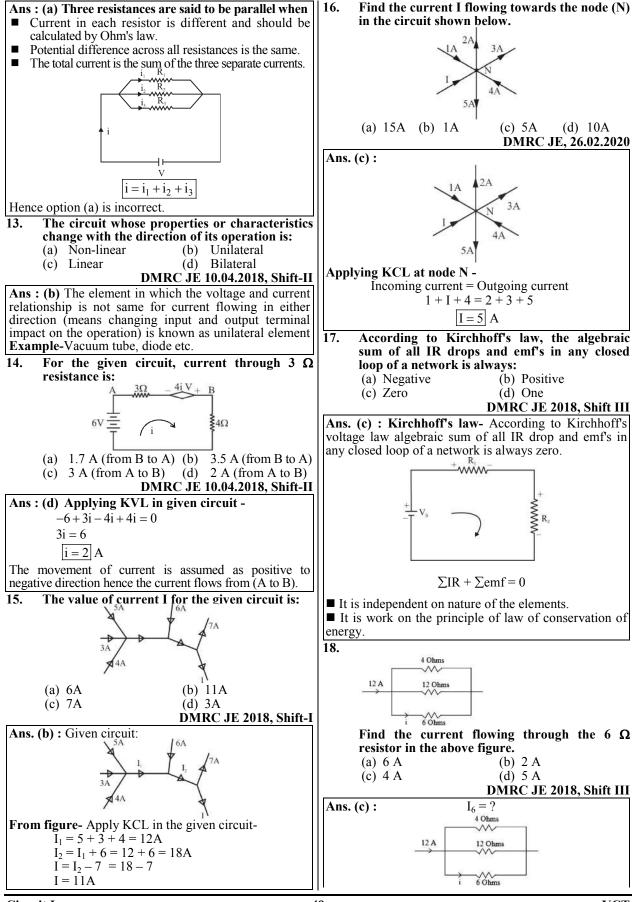
$$\frac{1}{2}\Omega - \frac{1}{2}\Omega - \frac{1}{2}\Omega$$

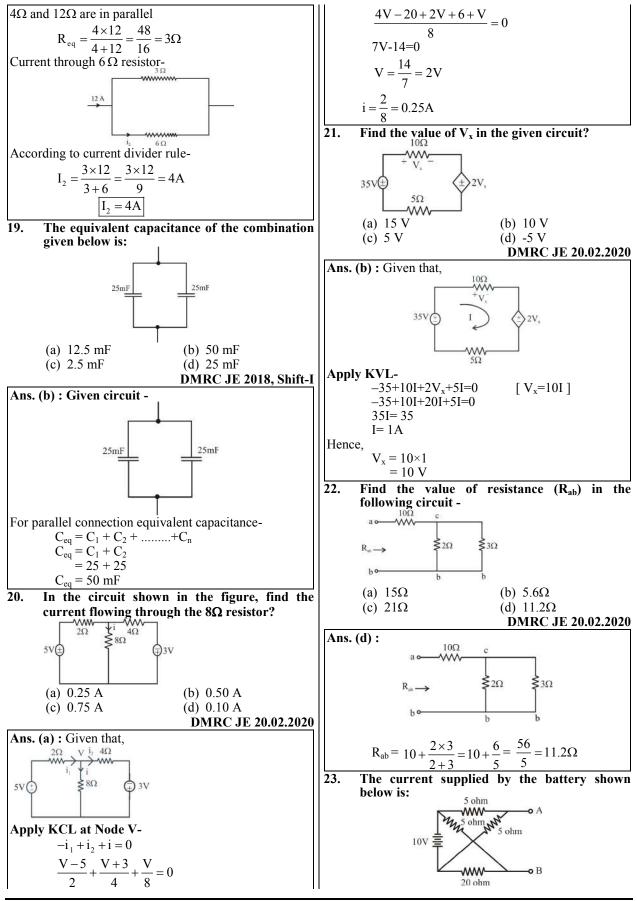
$$\frac{1}{2}\Omega - \frac{1}{2}\Omega - \frac{1}{2}\Omega$$

Ans. (c) : Energy consuption in an electric circuit is the	
product of potential, current and time,	$d_1 = d$ meter
Its SI unit is kilowatt hour.	$ q_1q_2$
Electric Energy $E = VI.t$	$F_1 = \frac{q_1 q_2}{4\pi\epsilon_0 \epsilon_r d_1^2}$ (i)
V.I.t	0 1 1
$E = \frac{V.I.t}{1000} kWh$ [:: P = VI = 100 watt, t 10h]	Now $d_2 = 2d$ meter and other parameter keeping
	constant (given)
$\mathbf{E} = \frac{100 \times 10}{1000}$	0.0
	then, $F_2 = \frac{q_1 q_2}{4\pi \epsilon d_2^2}$ (ii)
E = 1kWh = 1Unit [:: 1 kwh = 1 unit]	$4\pi\epsilon d_2^2$
218. Two bulbs are rated 100 W, each. If these	equation (i) divided by (ii)
bulbs are connected in series to the mains	0.0
supply, 220V, the total power consumed by	$\frac{\frac{F_{1}}{F_{2}}}{F_{2}} = \frac{\frac{q_{1}q_{2}}{4\pi\varepsilon d_{1}^{2}}}{\frac{q_{1}q_{2}}{4\pi\varepsilon d_{2}^{2}}}$
both the bulbs would be-	$\frac{F_1}{F_1} = \frac{4\pi\epsilon d_1^2}{1}$
(a) 25 Watts (b) 50 Watts	$F_2 = q_1 q_2$
(c) 100 Watts (d) 200 Watts	$\frac{2}{4\pi\epsilon d^2}$
(RRB SSE Secunderabad Green paper, 21.12.2014)	
Ans : (b) When two bulb are connected in series and	$\frac{F_1}{F_2} = \frac{q_1 q_2}{4\pi \varepsilon d_1^2} \times \frac{4\pi \varepsilon d_2^2}{q_1 q_2}$
voltage rating of them is same then to calculate the total	$\frac{1}{F_{o}} - \frac{1}{4\pi\epsilon d_{1}^{2}} \wedge \frac{1}{a_{o}a_{o}}$
power drawn from supply following formula is used.	
	$\frac{F_2}{F_2} - \frac{d_1^2}{d_1^2} - \frac{d_2^2}{d_1^2} - \frac{d_2^2}{d_1^2}$
$\mathbf{P} = \frac{\mathbf{P}_1 \times \mathbf{P}_2}{\mathbf{P}_1 + \mathbf{P}_2}$	$\frac{F_2}{F_1} = \frac{d_1^2}{d_2^2} = \frac{d^2}{(2d)^2} = \frac{d^2}{4d^2}$
$P_1 + P_2$	1 2 7
100×100	$F_2 = \frac{F_1}{4} = \frac{80}{4} = 20$ Newton
$P = \frac{100 \times 100}{100 + 100} = 50 \text{ Watt}$	4 4 4 20 100 100
	$F_2 = 20$ Newton
219. Three capacitors of $3\mu F$, $6\mu F$ and $12\mu F$ are	hence the force applied will be one fourth as
connected in parallel across an AC source. The	compared to before.
maximum current will pass through the	221. Determine the value of charge stored (in mC)
$\frac{1}{(2)}$	in a capacitor, when the value of capacitance is
(a) all the capacitors (b) $6 \mu F$ capacitor	
(c) $12 \ \mu F$ capacitor (d) $3 \ \mu F$ capacitor	0.01 mF and the potential difference between the ends of the capacitor is 20 V.
(RRB Mumbai SSE 05.10.2008)	
Ans. (c) : All capacitor connected in parallel, across all	(a) 0.2 (b) 2 (d) 200
capacitor the voltage will be equal, current is different.	(c) 20 (d) 200
x	(RRB Bhopal/Allabahad SSE 19.12.2010)
	Ans: (a) Given,
$(I_c) = \frac{V}{X_c} \underbrace{ \begin{bmatrix} 12 \ \mu F \end{bmatrix}^{-6} \mu F \end{bmatrix}^{-3} \mu F}_{X_c} \underbrace{ \begin{bmatrix} V \\ V \\ W \end{bmatrix}}_{X_c}$	potencial difference $(V) = 20$ volt
$12 \mu\text{F}$ $6 \mu\text{F}$ $3 \mu\text{F}$	capacitance (C) = 0.01 mF = 0.01×10^{-3} Farad
$(L) = \frac{V}{L}$	From, $Q = CV$ charged stores on plate.
X_{c}	Charge (Q) = $0.01 \times 10^{-3} \times 20^{-3}$
	$= 0.2 \times 10^{-3}$ coulomb
Since $X_{\rm C} = \frac{1}{2\pi f \Omega} \Omega$	
$2\pi fC$	Q = 0.2 mC
1 $1 $ $1 $ $1 $ $1 $ $1 $ 1	222. Which of the following is the correct expression
ie, $\downarrow X_C \propto \frac{1}{C\uparrow}$, then $X_{C(12)} < X_{C(6)} < X_{C(3)220.}$	for the capacitance?
hence $I_{12\mu F} > I_{6\mu F}^{~> I}_{~3\mu F}$	(a) $C = \frac{Q}{V}$ (b) $C = Q - V$ (c) $C = QV$ (d) $C = \frac{V}{Q}$
The value of X_C depends upon capacitance (C). so	
which capacitance will be more, X_C will less for that	
and due to this maximum current will flow, in which X_C	(c) $C = QV$ (d) $C = \frac{v}{Q}$
less.	
Hence the maximum current will flow through	(RRB Malda SSE 25.10.2009)
the 12μ F capacitor.	
	Ans : (a) The correct equation for capacitance is $C = \frac{Q}{V}$
220. The force between two charges is 80 Newton.	v
Keeping all other parameters constant, if the distance between the two shares is doubled	■ Its SI unit is coulomb/volt or Farad.
distance between the two charges is doubled	Capacitor stores energy in the form of charge in
then the new force between the two charge will	electric field.
be-	Stores energy in capacitor (U _c)
(a) 20 Newton (b) 320 Newton	$1 - 10^2 - 1$
(c) 40 Newton (d) 160 Newton	$U_{c} = \frac{1}{2}V^{2}C = \frac{1}{2}\frac{Q^{2}}{C} = \frac{1}{2}QV$ Joules
(RRB Mumbai SSE 05.10.2008)	
Basic Concept 4	4 YCT
DANIC CUITCEDE	




$\therefore q = ne \Rightarrow n = \frac{q}{e} = \frac{6 \times 10^{-6}}{1.6 \times 10^{-19}}$				232. At what temperature is the density of water maximum?
				(a) 0^{0} C (b) 100^{0} C (c) 50^{0} C (d) 4^{0} C
$\Rightarrow \frac{6}{1.6} \times 10^{-6} \times 10^{+19} = 3.75 \times 10^{13}$				(c) 50 C (d) 4 C (RRB 2014)
$\Rightarrow n = 3.75 \times 10^{13}$				Ans : (d) The density of water at 4°C is maximum and
229. The temperature at which the volume of a gas			olume of a gas	at this volume is minimum.
is zero, what is it called?(a) Absolute scale temperature				The volume of a certain quantity of water shrinks
(a) Absolute scale temperature (b) Absolute zero temperature				as the temperature drops below 4°C, and the speed of molecular motion slows.
(c) Absolute temperature				233. Which of the following is not an ideal (Noble)
(d) None of these				gas ?
			(RRB 2014)	(a) Helium (b) Bromine
	b) The temperature			(c) Argon (d) Neon
becomes zero is called absolute zero temperature. Its value is 0 K or -273 °C.			emperature. Its	(RRB 2014)
Absolute zero is the lowest possible temperature			le temperature	Ans : (b) He, Ne, Ar are the noble gases but Br is not
and no lower temperature is possible at this				noble gas it is a metal which is accupy in the form of
	mperature, the sp		olecules of the	liquid.
	ibstance becomes z			Noble gases : Noble gases are the chemical elements in the group 18 of the periodic table there are 6 Noble
	harles's law : Vo			gases. They are He, Ne, Ar, Kr, Xe and Rn. They show
1	$\propto T$	crature at cons	unt pressure	no or very low reactivity among other chemical
	T = KT			elements.
230. O	ne meter is equal	to which ?		These elements have completely filled valence shells.
(a	a) 10^{-6} micron	(b) 10^6_{2}	micron	234. What is the term used to describe the ability of
(0	10^{-3} micron	(d) 10^3		a device to store energy in the form of an electrical charge?
Ama of the	b) One meter = 10^6		(RRB 2014)	(a) inductance (b) conductance
Ans : (t			s used are as	(c) reactance (d) capacitance
 Some common metric prefixes used are as follows. 		s used are as	RRB SSE (Shift –III) 02.09.2015	
S.No.	Metra Prefix	Symbol	Power of 10	Ans : (d) The term capacitance is used to determine the
1.	peta	Р	15	ability of a device to store energy in the form of electric
2.	tera	Т	12	charge. The amount of charge required to produce a unit
3.	giga	G	9	potential difference between the plates is called
4.	mega	<u>m</u>	6	capacitance i.e.
5.	kilo	k	3	Q = CV Coulomb
6. 7.	hecto	c da	2	235. The reactance of capacitors increases as :
8.	deca deci	d	-1	(a) applied voltage increases
9.	centi	<u> </u>	-2	(b) AC frequency increases
10.	milli	m	-3	(c) applied voltage decreases(d) AC frequency decreases
11.	micro	μ	-6	
11. 12.	micro nano	μ n		(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014
			-6	
12. 13. 14.	nano angstron pico	n A p	-6 -9 -10 -12	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases.
12. 13. 14. 231. W	nano angstron pico Vhat is the appro	n A p	-6 -9 -10 -12	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC
12. 13. 14. 231. W	nano angstron pico Vhat is the appro ir?	n A p ximate veloci	-6 -9 -10 -12 ty of sound in	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$
12. 13. 14. 231. W ai	$\begin{array}{c c} nano\\ angstron\\ pico\\ \hline \\ \textbf{What is the appro}\\ \textbf{ir?}\\ \textbf{a)} & 3 \times 10^6 \text{m/s} \end{array}$	n A p ximate veloci (b) 330	-6 -9 -10 -12 ty of sound in m/s	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$
12. 13. 14. 231. W ai	nano angstron pico Vhat is the appro ir?	n A p ximate veloci (b) 330	-6 -9 -10 -12 ty of sound in m/s 0 m/s	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$ $X_C = \frac{1}{\omega C}$
12. 13. 14. 231. W ai (c	$\begin{array}{c c} nano\\ angstron\\ pico\\ \hline \\ \textbf{What is the appro}\\ \textbf{ir?}\\ \textbf{a)} & 3 \times 10^6 \text{m/s} \end{array}$	n A p ximate veloci (b) 330 (d) 150	-6 -9 -10 -12 ty of sound in m/s 0 m/s (RRB 2014)	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$ $X_C = \frac{1}{\omega C}$ $\omega = 2\pi f$
12. 13. 14. 231. W ai (a (c Ans : (() per unit	nano angstron pico What is the appro ir? a) 3×10 ⁶ m/s b) The speed of so of time by a soun	n A p ximate veloci (b) 330 (d) 150 ound is the dis d as it propaga	-6 -9 -10 12 ty of sound in m/s 0 m/s (RRB 2014) tance travelled tes through an	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$ $X_C = \frac{1}{\omega C}$
12. 13. 14. 231. wai (a (b) (c) Ans: (c) per unit elastic r	nano angstron pico What is the appro ir? a) 3×10 ⁶ m/s b) The speed of so of time by a soun medium. At 20°C,	n A p ximate veloci (b) 330 (d) 150 ound is the dis d as it propaga the speed of S	-6 -9 -10 -12 ty of sound in m/s 0 m/s (RRB 2014) tance travelled ttes through an Sound in air is	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$ $X_C = \frac{1}{\omega C}$ $\omega = 2\pi f$ Capacitor reactance $(X_C) = \frac{1}{2\pi fC}$
12. 13. 14. 231. wait (a (b) (c) Ans: (f) per unit elastic r about 3	nano angstron pico What is the appro ir? a) 3×10 ⁶ m/s b) The speed of so of time by a soun	n A p ximate veloci (b) 330 (d) 150 ound is the dis d as it propaga the speed of s econd but in	-6 -9 -10 -12 ty of sound in m/s 0 m/s (RRB 2014) tance travelled tes through an Sound in air is given option	(RRB SSE (Shift-II), 03.09.2015), SAIL 29.3.2014 Ans (d) : The reactance of capacitors increases as the AC frequency decreases. i.e. $X_C = \frac{1}{\omega C}$ $X_C = \frac{1}{\omega C}$ $\omega = 2\pi f$


02.


Circuit Law

Circuit Law : Kirchhoff's law, Simple circuit solution using network theorems.

