Graduate Aptitude Test In Engineering

GATE CHEMISTRY UP TO DATE Solved Papers 2007- Till Date

Chief Editor A.K. Mahajan

Compiled by Anand Soni and Gaurav Mishra

Computer Graphics by Balkrishna Tripathi & Vinay Sahu

Editorial Office

12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com/ www.yctfastbook.com © All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Om Sai Offset. In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

विषय-सूची

Graduate Aptitude Test In Engineering (GATE) Chemistry - 2007 5-27
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2008
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2009
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2010 63-78
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2011
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2012
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2013 110-123
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2014 124-134
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2015 135-147
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2016 148-163
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2017 164-176
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2018 177-194
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2019 195-212
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2020 213-231
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2021 232-247
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2022 248-267
Graduate Aptitude Test In Engineering (GATE) Chemistry - 2023 268-288

GATE CY Chemistry Syllabus

Section 1: Physical Chemistry

Structure: Postulates of quantum mechanics. Operators. Time dependent and time independent Schrödinger equations. Born interpretation. Dirac bra-ket notation. Particle in a box: infinite and finite square wells; concept of tunnelling; particle in 1D, 2D and 3D-box; applications. Harmonic oscillator: harmonic and anharmonic potentials; hermite polynomials. Rotational motion: Angular momentum operators, Rigid rotor. Hydrogen and hydrogen-like atoms : atomic orbitals; radial distribution function. Multi-electron atoms: orbital approximation; electron spin; Pauli exclusion principle; slater determinants. Approximation Methods: Variation method and secular determinants; first order perturbation techniques. Atomic units. Molecular structure and Chemical bonding: BornOppenheimer approximation; Valence bond theory and linear combination of atomic orbitals – molecular orbital (LCAO-MO) theory. Hybrid orbitals. Applications of LCAO-MO theory to H2 +, H2; orbital theory (MOT) of homo- and heteronuclear diatomic molecules. Hückel approximation and its application to annular π – electron systems.

Group theory: Symmetry elements and operations; Point groups and character tables; Internal coordinates and vibrational modes; symmetry adapted linear combination of atomic orbitals (LCAOMO); construction of hybrid orbitals using symmetry aspects.

Spectroscopy: Atomic spectroscopy; Russell-Saunders coupling; Term symbols and spectral details; origin of selection rules. Rotational, vibrational, electronic and Raman spectroscopy of diatomic and polyatomic molecules. Line broadening. Einstein's coefficients. Relationship of transition moment integral with molar extinction coefficient and oscillator strength. Basic principles of nuclear magnetic resonance: gyromagnetic ratio; chemical shift, nuclear coupling.

Equilibrium: Laws of thermodynamics. Standard states. Thermochemistry. Thermodynamic functions and their relationships: Gibbs-Helmholtz and Maxwell relations, Gibbs-Duhem equation, van't Hoff equation. Criteria of spontaneity and equilibrium. Absolute entropy. Partial molar quantities. Thermodynamics of mixing. Chemical potential. Fugacity, activity and activity coefficients. Ideal and Non-ideal solutions, Raoult's Law and Henry's Law, Chemical equilibria. Dependence of equilibrium constant on temperature and pressure. Ionic mobility and conductivity. Debye-Hückel limiting law. Debye-Hückel-Onsager equation. Standard electrode potentials and electrochemical cells. Nernst Equation and its application, relationship between Electrode potential and thermodynamic quantities, Potentiometric and conductometric titrations. Phase rule. ClausiusClapeyron equation. Phase diagram of one component systems: CO2, H2O, S; two component systems: liquid- vapour, liquid-liquid and solid-liquid systems. Fractional distillation. Azeotropes and eutectics. Statistical thermodynamics: microcanonical, canonical and grand canonical ensembles, Boltzmann distribution, partition functions and thermodynamic properties.

Kinetics (Topic have been rearranged): Elementary, parallel, opposing and consecutive reactions. Steady state approximation. Mechanisms of complex reactions. Unimolecular reactions. Potential energy surfaces and classical trajectories, Concept of Saddle points, Transition state theory: Eyring equation, thermodynamic aspects. Kinetics of polymerization. Catalysis concepts and enzyme catalysis. Kinetic isotope effects. Fast reaction kinetics: relaxation and flow methods. Diffusion controlled reactions. Kinetics of photochemical and photophysical processes.

Surfaces and Interfaces: Physisorption and chemisorption. Langmuir, Freundlich and Brunauer– Emmett–Teller (BET) isotherms. Surface catalysis: Langmuir-Hinshelwood mechanism. Surface tension, viscosity. Self-assembly. Physical chemistry of colloids, micelles and macromolecules.

Section 2: Inorganic Chemistry

Main Group Elements: Hydrides, halides, oxides, oxoacids, nitrides, sulfides – shapes and reactivity. Structure and bonding of boranes, carboranes, silicones, silicates, boron nitride, borazines and phosphazenes. Allotropes of carbon, phosphorous and sulphur. Industrial synthesis of compounds of main group elements. Chemistry of noble gases, pseudohalogens, and interhalogen compounds. Acid-base concepts and principles (Lewis, Brønsted, HSAB and acid-base catalysis).

Transition Elements: Coordination chemistry – structure and isomerism, theories of bonding (VBT, CFT, and MOT). Energy level diagrams in various crystal fields, CFSE, applications of CFT, JahnTeller distortion. Electronic spectra of transition metal complexes: spectroscopic term symbols, selection rules, Orgel and Tanabe-Sugano diagrams, nephelauxetic effect and Racah parameter, charge-transfer spectra. Magnetic properties of transition metal complexes. Ray-Dutt and Bailar twists, Reaction mechanisms: kinetic and thermodynamic stability, substitution and redox reactions. Metal-metal multiple bond.

Lanthanides and Actinides: Recovery. Periodic properties, spectra and magnetic properties.

Organometallics: 18-Electron rule; metal-alkyl, metal-carbonyl, metal-olefin and metal- carbene complexes and metallocenes. Fluxionality in organometallic complexes. Types of organometallic reactions. Homogeneous catalysis - Hydrogenation, hydroformylation, acetic acid synthesis, metathesis and olefin oxidation. Heterogeneous catalysis - Fischer- Tropsch reaction, Ziegler-Natta polymerization.

Radioactivity: Detection of radioactivity, Decay processes, half-life of radioactive elements, fission and fusion processes.

Bioinorganic Chemistry: Ion (Na+ and K+) transport, oxygen binding, transport and utilization, electron transfer reactions, nitrogen fixation, metalloenzymes containing magnesium, molybdenum, iron, cobalt, copper and zinc.

Solids: Crystal systems and lattices, Miller planes, crystal packing, crystal defects, Bragg's law, ionic crystals, structures of AX, AX2, ABX3 type compounds, spinels, band theory, metals and semiconductors.

Instrumental Methods of Analysis: UV-visible, fluorescence and FTIR spectrophotometry, NMR and ESR spectroscopy, mass spectrometry, atomic absorption spectroscopy, Mössbauer spectroscopy (Fe and Sn) and X-ray crystallography. Chromatography including GC and HPLC. Electroanalytical methods- polarography, cyclic voltammetry, ion-selective electrodes. Thermoanalytical methods.

Section 3: Organic Chemistry

Stereochemistry: Chirality and symmetry of organic molecules with or without chiral centres and determination of their absolute configurations. Relative stereochemistry in compounds having more than one stereogenic centre. Homotopic, enantiotopic and diastereotopic atoms, groups and faces. Stereoselective and stereospecific synthesis. Conformational analysis of acyclic and cyclic compounds. Geometrical isomerism and optical isomerism. Configurational and conformational effects, atropisomerism, and neighbouring group participation on reactivity and selectivity/specificity.

Reaction Mechanisms: Basic mechanistic concepts – kinetic versus thermodynamic control, Hammond's postulate and Curtin-Hammett principle. Methods of determining reaction mechanisms through kinetics, identification of products, intermediates and isotopic labelling. Linear free-energy relationship – Hammett and Taft equations. Nucleophilic and electrophilic substitution reactions (both aromatic and aliphatic). Addition reactions to carbon-carbon and carbon-heteroatom (N and O) multiple bonds. Elimination reactions. Reactive intermediates – carbocations, carbanions, carbenes, nitrenes, arynes and free radicals. Molecular rearrangements.

Organic Synthesis: Synthesis, reactions, mechanisms and selectivity involving the following classes of compounds – alkenes, alkynes, arenes, alcohols, phenols, aldehydes, ketones, carboxylic acids, esters, nitriles, halides, nitro compounds, amines and amides. Uses of Mg, Li, Cu, B, Zn, P, S, Sn and Si based reagents in organic synthesis. Carbon-carbon bond formation through coupling reactions - Heck, Suzuki, Stille, Sonogoshira, Negishi, Kumada, Hiyama, Tsuji-Trost, olefin metathesis and McMurry. Concepts of multistep synthesis - retrosynthetic analysis, strategic disconnections, synthons and synthetic equivalents. Atom economy and Green Chemistry, Umpolung reactivity – formyl and acyl anion equivalents. Selectivity in organic synthesis – chemo-, regio- and stereoselectivity. Protection and deprotection of functional groups. Concepts of asymmetric synthesis – resolution (including enzymatic), desymmetrization and use of chiral auxiliaries, organocatalysis. Carbon-carbon and carbon-heteroatom bond forming reactions through enolates (including boron enolates), enamines and silyl enol ethers. Stereoselective addition to C=O groups (Cram, Prelog and Felkin-Anh models).

Pericyclic Reactions and Photochemistry: Electrocyclic, cycloaddition and sigmatropic reactions. Orbital correlations - FMO and PMO treatments, Woodward-Hoffmann rule. Photochemistry of alkenes, arenes and carbonyl compounds. Photooxidation and photoreduction. Di- π -methane rearrangement, Barton-McCombie reaction, Norrish type-I and II cleavage reaction.

Heterocyclic Compounds: Structure, preparation, properties and reactions of furan, pyrrole, thiophene, pyridine, indole, quinoline and isoquinoline.

Biomolecules: Structure, properties and reactions of mono- and di-saccharides, physicochemical properties of amino acids, chemical synthesis of peptides, chemical structure determination of peptides and proteins, structural features of proteins, nucleic acids, lipids, steroids, terpenoids, carotenoids, and alkaloids.

Experimental techniques in organic chemistry: Optical rotation (polarimetry). Applications of various chromatographic techniques such as thin-layer, column, HPLC and GC. Applications of UV-visible, IR, NMR and Mass spectrometry in the structural determination of organic molecules.

Graduate Aptitude Test In Engineering (GATE) Chemistry - 2007 Solved Paper

Ans. (d) : For reversible redox reaction-16. The selection rules for the appearance of P branch in the rotational-vibrational absorption $Cd^{2+} + 2e^{-} \rightleftharpoons Cd$ spectra of a diatomic molecule within rigid $\Delta E_{\rm P} = \frac{0.0565}{n}$ rotor-hormonic oscillator model are (a) $\Delta v = \pm 1$ and $\Delta J = \pm 1$ $(E_p \text{ anodic} - E_P \text{ cathodic}) = \Delta E_P$ (b) $\Delta v = +1$ and $\Delta J = +1$ $=\frac{-0.0565}{2} \times 1000 \text{ mV}$ (c) $\Delta v = +1$ and $\Delta J = -1$ (d) $\Delta v = -1$ and $\Delta J = -1$ $E_P \text{ Cathode} = - (E_P \text{ anodic} - \Delta E_P) \\ = - 650 \text{mV} + 28.25 \text{ mV}$ Ans. (c) : The transition $\Delta J = 0$, but where $V_0 = 0$ and $\Delta v = +1$, is forbidden and the pure virbrational $= -621.75 \text{ mV} \approx -621 \text{mV}$ transition is not observed in most cases. The rotational selection rule gives rise to an 'R' branch for $\Delta J = +1$ The dimension of Plank's constant is (M, L and 14. and 'P' branch for $\Delta J = -1$. T denote mass, length and time respectively) (a) $ML^{3}T^{-2}$ (b) ML^2T^{-1} 17. The S₂ operation on a molecule with the axis of (c) $M^2 L^{-1} T^{-1}$ (d) $M^{-1}L^2T^{-2}$ rotation as the z axis, moves a nucleus at (x, y, **Ans. (b) :** Form formula, E = hvz) to where E = energy (Force x displacement) = $M^{1}L^{2}T^{-2} \times L$ = $M^{1}L^{2}T^{-2}$ (b) (x, -y, -z)(a) (-x, -y, z)(c) (-x, y, -z)(d) (-x, -y, -z).....(I) Ans. (d) : v = frequency (inverse of time) $(x, y, z) \xrightarrow{i} (-x, -y, -z)$(II) $= T^{-1}$ $\stackrel{(x, y, z)}{\longmapsto} \stackrel{C_2(z)}{\longrightarrow} (-x, -y, -z) \stackrel{\sigma_h}{\longrightarrow} (x, y)$ $h = \frac{E}{v}$ Ŀ. from eq (i) and (ii). (-x, -y, -z)Dimension of frequency $= \frac{M^1 L^2 T^{-2}}{T^{-1}} = [M^1 L^2 T^{-1}]$ The expression which represents the chemical 18. potential of the ith species (μ_i) in a mixture $(i \neq j)$ is 15. For a homonuclear diatomic molecule, the bonding molecule orbital is (a) $(\partial E/\partial n_i)_{s,v,n_i}$ (b) $(\partial H/\partial n_i)_{s v n_i}$ (c) $(\partial A/\partial n_i)_{s, v, n_i}$ (d) $(\partial G/\partial n_i)_{s,v,n_i}$ (a) $\sigma_{u \text{ of lowest energy}}$ Ans. (a) : Consider a thermodynamic system containing (b) σ_u of second lowest energy n constituent species with no of particle n1, n2 (c) π_{g} of lowest energy n_i for each species U, S, and V. (d) $\pi_{\rm u}$ of lowest energy $\dot{U} = U(S, V, n_1 \dots n_n)$ where U = Internal energy (E) Ans. (d) : For a homonuclear diatomic molecule, like 'O₂' Molecular orbital diagram is given following. S = Entropyσ* V = VolumeThe chemical potential of the ith species, μ_i is defined as partial derivative 2p 2p $\mu_{i} = \left(\frac{\partial U}{\partial ni}\right)_{S,V,r}$ Lowest energy bonding where the subscripts simply emphasize that the entropy. molecular orbital σ_{*}^{*} Volume and the other particle numbers are to be kept constant. Which of the following statements is NOT 19. 28 correct for a catalyst? (a) It increases the rate of a reaction (b) It is not consumed in the course of a reaction σ (c) It provides an alternate pathway for the σ_*^* reaction (d) It increase the activation energy of the 1s reaction Ans. (d): A catalyst is a substance that can be added to σ. a reaction to enhance the reaction rate without getting 0 0 consumed in the process. Catalysts typically speed up a 0, reaction by lowering the activation energy or changing

the reaction mechanism. Catalyst does not take part in	(B) LiC_6 Li is intercalated between these layers to
balancing the chemical reaction hence catalysts are not	from $Li-C_6$ - $Li-C_6$ - strings parallel to the C-axis and
required in stoichiometric amounts.	cause 10% increase of the inter larger spacing in
Most common catalysts are Aluminosilicates, Iron	the final stage.
Vanadium, Nickel, Platinum etc.	(C) PtF6- It is an strong oxidising agent. Capable of
20. The value of the rate constant for the gas phase	oxidising xenon and O_2 .
reaction $2NO_2 + F_2 \rightarrow 2NO_2F$ is 38 dm ³ mol ⁻¹ s ⁻	(D) Ni_3S_4 is found in nature to be mineral polydymite
¹ at 300K. The order of the reaction is	and has a cubic spinel structure.
(a) 0 (b) 1	23. $W(CO)_6$ reacts with MeLi to give an
(a) = (b) = (c) = 1 (c) 2 (d) 3	intermediate which upon treatment with
	CH ₂ N ₃ gives a compound X. X is represented as
Ans. (c) : Reaction,	(a) WMe_6
$2NO_2 + F_2 \longrightarrow 2NO_2F$, K = 38 dm ³ mol ⁻¹ s ⁻¹	(b) $(CO)_5W - Me$
Temperature = 300K	(c) $(CO)_5W = C(Me)OMe$
unit of rate constant $k = L^{n-1} mol^{1-n} T^{-1}$	(d) $(CO)_5W = CMe$
Comparing the given unit of 'k' with the above equation	Ans. (c) :
is $mol^{1-n} = mol^{-1}$	$W(CO)6 \equiv (CO)_5 W^{\Theta} - C \equiv O^{\oplus} \leftrightarrow (CO)_5 W = C = O$
comparing both side power in above equation	w(co) = (co) + w = 0 + (co) + w = 0
1 - n = -1	
n = 2	$(CO)_{s}W = C = O \longrightarrow (CO)_{s}W = C \qquad CH_{s} - (N=N)$
21. Boric acid in aqueous solution in presence of	Me (Electrophile)
glycerol behaves as a strong acid due to the	$(CO)_{s}W = C = O \longrightarrow (CO)_{s}W = C \qquad OO CH_{s} - N = N$ $\begin{pmatrix} -\delta & +\delta \\ Me - Li \end{pmatrix} (Electrophile)$
formation of	Me - Li (CO), $W = C$
	$(CO)_{3}W = C$
(a) an anionic metal-chelate	(Fischer Carbene)
(b) borate anion	24. Considereing the quadrupolar nature of M–M
(c) glycerate ion	bond in $[\text{Re}_2\text{Cl}_8]^{2-}$, the M–M bond order in
(d) a charge transfer complex	$[\operatorname{Re}_2\operatorname{Cl}_4 (\operatorname{PMe}_2\operatorname{Ph})_4]^+$ and $[\operatorname{Re}_2\operatorname{Cl}_4(\operatorname{PMe}_2\operatorname{Ph})_4]$
Ans. (a) : When certain organic polyhydrory	respectively are
compounds like glycerol, mannitol, catechol or sugars	(a) 3.0 and 3.0 (b) 3.0 and 3.5
are added to Boric acid [B(OH) ₃] behaves a strong	(c) 3.5 and 3.5 (d) 3.5 and 3.0
monobasic acid.	Ans. (d) : $[\text{Re}_2 \text{ Cl8}]^{2^-}$
Glycerol forms very stable chelte complex with	[Re Cl8] ²⁻ = 2Re^{3+} + 8Cl^{-}
$[B(OH)_4]^-$, removing it from the solution.	$\operatorname{Re}^{3+} \Longrightarrow \operatorname{d}^{4}$
2HO $OH + H_{i}BO_{i} \longrightarrow HO PO OH + H' +3H_{i}O$	$\frac{2\text{Re}^{3+}}{\sigma^2\pi^4\delta^2}(d)^4 \Rightarrow 8e^-$
OH OH OH OH	
Glycerol borane chelate complex	bond order = 4 (quadruple bord)
Thus removal of one of the product shifts the	$\bullet [\operatorname{Re} \operatorname{Cl}_4 (\operatorname{PMe}_2\operatorname{Ph})_4]^+$
equilibrium in the forward direction and pH is	Assuming the oxidation states of two Re atoms are 'x'
increased.	and 'y'
	x + y - 4 = +1
$B(OH) + 2H_2O \Longrightarrow B(OH)_4^- + H_3O^+$	x + y = +5
22. Match the compounds in List-I with the	$x = +2, y = +3Re^{2+} = 4d^5, Re^{3+} = 4d^4$
corresponding structure/property given in List-	$ \text{Re}^{2^+} = 4\text{d}^5, \text{Re}^{3^+} = 4\text{d}^4$
II	Therefore total no of electrons comprising both Re ²⁺
List-I List-II	and Re^{3+} ions = 5 + 4
A. $(Ph_3P)_3RhCl$ (i) Spinel	= 9
B. LiC ₆ (ii) Intercalation	Electronic configuration in this complex ion
C. PtF_6 (iii) Oxidising agent	$\sigma^2 \pi^4 \delta^2 \delta^{*1}$
D. Ni_3S_4 (iv) Catalyst for alkene	
hydrogenation	Bond order = $\frac{1}{2}(8-1)$
A B C D	=3.5
	• [Re Cl ₄ (PMe2 Ph) ₄]
(b) (iv) (ii) (iii) (i) (i) (i) (i) (i) (i) (i)	Assuming oxidation states of two Re atoms are x and y
(c) (iii) (ii) (i) (iv) (i)	$\mathbf{x} + \mathbf{y} - 4 = 0$
(d) (iv) (iii) (ii) (i)	x + y = +4
Ans. (b)	x = 2
(A) (Ph ₃ P) ₃ RhCl is also called as Wilkinson's catalyst	y = 2,
(A) (Ph ₃ P) ₃ RhCl is also called as Wilkinson's catalyst and it is used for hydrogenation of alkanes	y = 2, Re ²⁺ = 4d ⁵

33. In the reaction shown below, X and Y	Ans. (d) : Reaction of $[PtCl_4]^{2-}$ with NH ₂ -
respectively are	
$Mn_2(CO)_{10} \xrightarrow{Na} (X) \xrightarrow{CH_3COCl} (Y)$	$\begin{array}{ c c } \hline Cl & Cl \\ \hline pt & $
(a) $[Mn(CO)_4]^{2-}$, $[CH_3C(O)Mn(CO)_5]^{-}$ (b) $[Mn(CO)_5]^{2-}$, $CH_3C(O)Mn(CO)_5$	\downarrow pt \downarrow + 2NH ₃ \longrightarrow pt + 2Cl + 2Cl
(b) $[Mn(CO)_5]^{2-}$, CH ₃ C(O)Mn(CO) ₅	
(c) $[Mn(CO)_5]^-$, $ClMn(CO)_5$	[CINH,
(d) $[Mn(CO)_4]^{2^-}$, $[ClMn(CO)_5]^-$ Ans. (b) : $Mn_2 (CO)_{10} + 2Na \rightarrow 2Na [Mn (CO)_5]$	$Cis - [PtCl_2(NH_3)_2]$
Ans. (b): $\operatorname{NM}_2(\operatorname{CO})_{10} + 2\operatorname{Na} \to 2\operatorname{Na}[\operatorname{MM}(\operatorname{CO})_5]$ (X)	37. Zeise's salt is represented as
2CH ₃ COCI	(a) H_3PtCl_6 (b) $[PtCl_4]^{2-}$
	(c) $[ZnCl_4]^{2-}$ (d) $[PtCl_3(\eta 2 - C_2H_4)]^{-}$
2CH ₃ C(O)Mn(CO) ₅	Ans. (d) : Zeise's salt is potassium trichloro (ethylene)
(Y)	platinate (II)hydrate, K[PtCl ₃ (C ₂ H ₄)].H ₂ O. The anion of this yellow co-ordination complex contains an η^2 -
34. The Lewis acid character of BF ₃ , BCl ₃ and	
BBr ₃ follows the order	$K[PtCl_3(C_2H_4)].H_2O \implies K^+ + [PtCl_3(C_2H_4)]^-$
(a) $BF_3 < BBr_3 < BCl_3$ (b) $BCl_3 < BBr_3 < BF_3$	Zeise's Salt
(c) $BF_3 < BCl_3 < BBr_3$ (d) $BBr_3 < BCl_3 < BF_3$	38. The catalyst used in the conversion of ethylene
Ans. (c) : $B(5) - 1s^2 2s^2 2p^1$ F(9)- $1s^2 2s^2 2p^5$	to acetaldehyde using Wacker process is
$\Gamma(9) = 18^{-2} 28^{-2} 2p^{-1} 38^{-2} 3p^{-5}$	(a) $HCo(CO)_4$
$Br - 1s^2 2s^2 2p^6 3s^2 3p^6 3d^{10} 4s^2 4p^5$	(b) $[PdCl_4]^{2-}$
BF ₃ BCl ₃ BBr ₃	(c) V_2O_5
2p-2p 2p-3p 2p-4p	(d) TiCl ₄ in the presence of Al(C_2H_5) ₃
Back bonding back bonding back bonding	Ans. (d) : The conversion of ethylene to acetaldehyde
Increasing order of back bonding	using 'Wacker Process'– The Wacker process is the oxidation of olefins using
As the back bonding tendency increase, Lewis acid	using Pd (II) catalysis to produce acetaldehyde from
character decreases. So, order of Lewis acid character–	ethylene and water.
$BF_3 < BCl_3 < BBr_3$	Reaction Mechanism :-
35. The compound which shows $L \leftarrow M$ charge	(i) $[Pd Cl_4]^{2-} + C_2H_4 + H_2O \rightarrow CH_3CHO + Pd + 2HCl +$
transfer is	201
(a) Ni(CO) ₄ (b) $K_2Cr_2O_7$	(ii) $Pd + 2CuCl_2 + 2Cl^- \rightarrow [PdCl_4]^{2-} + 2CuCl_4$
(c) HgO (d) $[Ni(H_2O)_6]^{2+}$	(iii) $2CuCl + \frac{1}{2}O_2 + 2HCl^- \rightarrow 2CuCl_2 + H_2O$
Ans. (a) : $Ni(CO)^4$ is a classic example of a compound that arbitrary MLCT	All catalysts are regenerated and only the alkene and
that exhibits MLCT. Ni(28) – $[Ar] 3d^8 4s^2$	oxygen are consumed. Without copper (II) Chloride and
	HCl as oxidising agents, the palladium would
	precipitate out and the reaction would come to the halt.
co	Air, pure oxygen, or a number of other oxidisers can
\setminus $/$ $/$	then oxidise the resultant CuCl back to CuCl ₂ allowing
$\setminus //$	the cycle to repeat. 30 The temperature of 54 g of water is rejead from
Shape– Tetrahedral, Hybridization– sp ³	39. The temperature of 54 g of water is raised from 15° C to 75° C at constant pressure. The
MLCT in Ni(CO) ₄ occurs when one of these. (d	
electrons) is excited from a d-orbital to a high energy	$C_{p, m}$ of water -75 JK ⁻¹ mol ⁻¹) is
level, which could be a vacant anti bonding orbital of	
the CO ligand. This results in the formation of a Ni-CO bond with a weakened Co bond which makes Ni(CO)4	(c) 9.0 kJ (d) 18.0 kJ
a useful metal carbonyl compound for various	Ans. (b) : Given
applications in organic synthesis, catalysis and material	
science.	no of moles of water = $\frac{54}{18}$ = 3
36. The reaction of $[PtCl_4]^{2-}$ with NH ₃ gives rise to	-
(a) $[PtCl_4(NH_3)_2]^{2+}$ (b) trans- $[PtCl_2(NH_3)_3]$ (c) $[PtCl_2(NH_3)_4]$ (d) cis- $[PtCl_2(NH_3)_2]$	$T_1 = 15^{\circ}C, T_2 = 75^{\circ}C$ $C_P = -75 \text{ JK}^{-1}\text{mol}^{-1}$
$(U) [I (U_2(1)I_3)_4] $ (U) $CIS [I (U_2(1)I_3)_2]$	

Enthalpy change = ΔH = $nC_P\Delta T$ 42	2. For th data
$= 3 \times (-75) \times (75 - 15)$	below
$=$ $-3 \times 75 \times 60$	Expt. I
$= -180 \times 75$ = -13500 Joule	c (1
= 13.500 source = 13.500 × 10 ³ joule	1 0
=-13.5 KJ	$\frac{1}{2}$ 0
40. The specific volume of liquid water is 1.0001	3 0
mL g^{-1} and that of ice is L 0907 mL g^{-1} at 0°C.	4 0
If the heat of fusion of ice at this temperature is 333.88 J g ⁻¹ , the rate of change of melting point	The o
of ice with pressure in deg atm ⁻¹ will be	and R
(a) -0.0075 (b) 0.0075	(a) 2,
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	(c) 2,
Ans. (a) : According to Clapeyron- Clausius equation. Solid \rightleftharpoons Liquid	Ans. (c) : By r = 1
(ice) (water)	aking order
$\frac{\mathrm{d}p}{\mathrm{d}t} = \frac{\Delta H_{\mathrm{f}}}{\overline{T_{\mathrm{f}}}(V_{\mathrm{i}} - V_{\mathrm{s}})}$	orde
dt $\overline{T_{f}}(V_{i} - V_{s})$	orde
$dP = T_f(V_i - V_s)$	From the giv
$\frac{dP}{dT} = \frac{T_{f}(V_{i} - V_{s})}{\Delta H_{f}}$	For experime 8.0×
	For experime
V_1 = volume of the liquid = 1.001 cm ³	3.2×
$V_{\rm S} =$ volume of the solid = 1.0907 cm ³	For
$(V_i - V_s) = (1.0001 - 1.0907) \text{cm}^3$ = - 0.0906 cm ³	1.28
$T_f = 0^{\circ}C = 273 \text{ K}$	For experime
Putting above values in the formula.	4.0 × From exp. (1
dP _ 333.88Jg ⁻¹	
$\frac{dP}{dT} = \frac{333.88Jg^{-1}}{273(0.0906)cm^3g^{-1}K}$	$\frac{3.2}{8.0}$
$= -13.4989 \text{ J cm}^{-3} \text{k}^{-1}$	8.0
$= 13.4989 \times (0.0098 \text{Latm}) \text{ cm}^{-3} \text{K}^{-1}$	$\mathbf{x} = \mathbf{x}$
$= 0.1333 \text{Latm} \times (10^{-3} \text{Lk})^{-1}$	From exp. (1
or $\frac{dP}{dT} = -\frac{1}{133.30} \text{ katm}^{-1}$	1.28
$dT = \frac{133.30}{-0.0075 \text{ k atm}^{-1}}$	3.2
41. Given that $E_{0(Fe3+, Fe)} = -0.04$ V and $E_{0(Fe2+, Fe)} =$	4 =
$-0.44V$, the value of $E_{0(Fe3+, Fe2+)}$ is	y =
	From exp. (1
(c) -0.76 V (d) 0.40 V	8×1
Ans. (d) : Given $E_{0(Fe^{3+}, Fe)} = -0.04V$ and $E_{0}(Fe^{2+}, Fe) = -0.44V$	4×1
From given data,	z = 2
$Fe^{3+} + 3e^{-} \longrightarrow Fe, E^{0} = -0.04V$ (i)	Ience,
$F^{2+} + 2e^{-} \longrightarrow Fe, E^{0} = -0.44V$ (ii)	orde orde
Reversing the equation (II)	orde
$Fe \longrightarrow Fe^{2+} + 2e^{-}, E^{0} = + 0.44V(iii)$	
adding eq (i) and (ii)	and f
$Fe^{3+} + 3e^{-} \longrightarrow Fe$	under
$Fe \longrightarrow Fe^{2+} + 2e^{-}$	half li reduct
$\frac{\text{Fe}^{-} + 2e^{-}}{\text{Fe}^{3+} + e^{-} - \text{Fe}^{2+}}$	mM is
	(a) 56
$E^{\circ}_{(Fe3+, Fe2+)} = +0.40V$	(c) 85

	belo)W			
	Expt.	Initial	Initial	Initial	Initial rate
		conc. P	conc.	conc. R	$(M s^{-1})$
		(M)	Q (M)	(M)	
	1	0.2	0.5	0.4	8.0×10^{-5}
	2	0.4	0.5	0.4	3.2×10 ⁻⁴
	3	0.4	2.0	0.4	1.28×10^{-3}
	4	0.1	0.25	1.6	4.0×10^{-5}
				on with r	espect to P, Q
		R respect	ively is		
		2, 2, 1		(b) 2, 1, 2	
		2, 1, 1		(d) 1, 1, 2	2
A	. ,	By rate lav			
	r	$= k[P]^{x}[Q]$	$^{y}[R]^{z}$		
ta	king ord	er w.r.t. P	= x		
	01	rder w.r.t. (Q = y		
	01	rder w.r.t. I	R = Z		
F	rom the	given data,			
F	or experi	iment (1)			
	8.	$0 \times 10^{-5} = 1$	$(0.2)^{x}(0.5)$	$(0.4)^{z}$	
F	or experi	iment (2)			
	3.	$2 \times 10^{-4} = 1$	$(0.4)^{x}(0.5)$	$(0.4)^{z}$	
	F	or experim	ent (3)		
	1.	$.28 \times 10^{-3} =$	$= k (0.4)^{x} ($	$(0.4)^{y}$	
F		iment (4)		, , ,	
	4.	$0 \times 10^{-5} =$	$k(0.1)^{x}(0$	$(0.6)^{y}$	
F	rom exp.	(1) and (2)		
		$\frac{1.2 \times 10^{-4}}{1.0 \times 10^{-5}} =$	$(2)^{x}$		
	8	$= (2)^{x}$			
		= (2) = 2			
E.			\ \		
г.		(1) and (3			
	1	$\frac{.28 \times 10^{-3}}{3.2 \times 10^{-4}} =$	$(4)^{y}$		
	3	3.2×10^{-4}	(1)		
	4	$= (4)^{y}$			
	У	= 1			
F	rom exp.	(1) and (4)		
	8	×10 ⁻⁵	$(1)^{2}$	K	$(1)^{z}$
		$\frac{8 \times 10^{-5}}{10^{-5}} = (2$	$(2)^{x}(2)^{y}\left[\frac{1}{4}\right]$	=(4)(2)	$\left(\frac{1}{4}\right)$
	-		(4)		(+)
T T		= 1			
Н	ence,	udan) –)		
		rder w.r.t. I			
		rder w.r.t. (rder w.r.t. I			
	01	raerwrt F	$\epsilon = 1$		

43. Sucrose is converted to a mixture of glucose and fructose in a pseudo first order process under alkaline conditions. The reaction has a half life of 28.4 min. The time required for the reduction of a 8.0 mM sample of sucrose to 1.0 mM is
(a) 56.8 min

(a)	56.8 min.	(b)	1'/0.4 mm.
(c)	85.2 min.	(d)	227.2 min

Ans. (a): Given.
$$l_{12} = 28.4 \text{ min}$$

 $l_{12} = 28.4 \text{ min}$
 $l_{12} = \frac{0.693}{k}$
 $l_{13} = -0.0244 \text{ min}^4$ Ans. (a): Given, pH = 5.30
 $k_{13} = -1.08 \text{ tas}$
 $l_{13} = -0.0244 \text{ min}^4$
Equation for first order kinetics
 $t = \frac{2.303}{k} \log \left[\frac{\Lambda_3}{1}\right]$
 $t = 94.38 \times 3 \log (2)$
 $l_{14} = 3.23 \text{ mol}$
 $l_{14} = 1.2 \text{ M}$
 $N_2 = 3.33 \times 3 \times 03.010$
 $l_{23} = 83.2 \times 33 \times 03.010$
 $l_{23} = 23.16 \times 0.04 \text{ mol}$
 $l_{14} = 1.2 \text{ M}$
 $N_1 \text{ Po N} = N_2 \text{ Po N} \text{ NO}$
 $N_1 \text{ Po N} = N_2 \text{ Po N} \text{ NO}$
 $N_1 \text{ Po N} = N_2 \text{ Po N} \text{ NO}$
 $N_2 \text{ O}_2 = \frac{k_1}{k_1} \text{ NO}^2 \text{ NO} + NO$
 $N_2 \text{ O}_2 = \frac{k_1}{k_1} \text{ NO}^2 \text{ (c) } 21.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{NO}^2 | \text{ (c) } 21.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1 + k_6 | 02|)$
 $(c) $22k_4 | \text{ NO}^2 | \text{ Col} | 1.0 (k_1$$$$$$$$$$$$$$$

nutting the volues of n n V and V in	(iii) The process of fluorescence involves
putting the values of n_{He} , n_{O_2} , X_{He} and X_{O_2} in	transition from a singlet electronic state to
equation $-$	another singlet electronic state by absorption
$S = -8.314 [10 \ln 0.5 + 10 \ln 0.5]$ S = -8.314 [10 ×(-0.69) + 10 × (-0.69)	of light.
= -8.314 [-6.9 + (6.9)]	(iv) When a constant P is added to each of the
$= -8.314 \times (-13.8)$	possible energies of a system, its entropy remains unchanged.
$= 114.7332 \text{ JK}^{-1}$	(a) only i (b) only ii
$\approx 115.3 \text{ JK}^{-1}$	(c) both i and iii (d) both ii and iv
47. The ionisation potential of hydrogen atom is	Ans. (b) : Those transitions which involve the return of
13.6 eV. The first ionization potential of a	the activated molecule from the singlet excited state S_L
sodium atom, assuming that the energy of its	and triplet excitet state T_1 to the ground state So, called
outer electron can be represented by a H-atom like model with an effective nuclear charge of	radiactive transitions. There emission of radiation takes
1.84, is	place.
(a) 46.0 eV (b) 11.5 eV	$S_1 \longrightarrow S_0$, Allowed Transition
(c) 5.1 eV (d) 2.9 eV	↓ ,
Ans. (c) : Given	Fluorescence (10^{-8}sec)
I_E of hydrogen atom is 13.6 ev	$T_1 \longrightarrow S_0$, Forbidden transition
Effective nuclear charge = 1.84 for H-like atom	\downarrow
Ionisation energy = $\frac{13.6z^2}{n^2}$ [z = 1.84]	Phosphorescence, $(10^{-3}S)$
n ²	• According to the thermodynamics,
$=\frac{13.6\times(1.84)^2}{3^2}$	$\Delta G = -ve$, for an spontaneous reaction or process
$-\frac{3^{2}}{3^{2}}$	$\Delta G = \Delta H - T\Delta S$
$=\frac{13.6 \times 1.04 \times 1.84}{9}$	$\Delta G = 18830 - (500) \times (41.84)$ $\Delta G = -2090 \text{ J/mole}$
9	
= 5.1eV	Hence, Reaction A \longrightarrow B is spontaneous.
48. The quantum state of a particle moving in a	• In an anharmonic oscillator vibrational levels are no more equally spaced but becomes closer to each other
circular path in a plane is given by $(1 + \sqrt{2})^{1}$ int	with increasing value of V unlike a harmonic oscillator.
	with increasing value of v unifice a narmonic oscillator.
$\Psi_{\rm m}(\phi(=(1/\sqrt{2\pi})e^{{\rm i}m\phi},{\rm m}=0,\pm1,\pm2$	50. Assuming H_2 and HD molecules having equal
When a perturbation $H_1 P = \cos \phi$ is applied (P	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational
When a perturbation $H_1 P = \cos \phi$ is applied (P is constant), what will be the first order	50. Assuming H_2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at
When a perturbation $H_1 P = \cos \phi$ is applied (P is constant), what will be the first order correction to the energy of the m th state	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is
When a perturbation $H_1 P = \cos \phi$ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) $P/(2\pi)$	 50. Assuming H₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4
When a perturbation $H_1 P = \cos \phi$ is applied (P is constant), what will be the first order correction to the energy of the m th state	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8(a) 3/8(b) 3/4(c) 1/2(d) 2/3
When a perturbation $H_1 P = \cos \phi$ is applied (Pis constant), what will be the first ordercorrection to the energy of the m th state(a) 0(b) P/(2\pi)(c) P/(4\pi)(d) Pm²/(4π²)Ans. (a) : Given,Quantum state of a particle moving in a circular path in	 50. Assuming H₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function T
When a perturbation $H_1 P = \cos \phi$ is applied (Pis constant), what will be the first ordercorrection to the energy of the mth state(a) 0(b) $P/(2\pi)$ (c) $P/(4\pi)$ (d) $Pm^2/(4\pi^2)$ Ans. (a) : Given,Quantum state of a particle moving in a circular path in a plane is given by	 50. Assuming H₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function (a) = T (b) = characteristic rotational
When a perturbation $H_1 P = \cos \phi$ is applied (Pis constant), what will be the first ordercorrection to the energy of the m th state(a) 0(b) P/(2\pi)(c) P/(4\pi)(d) Pm²/(4π²)Ans. (a) : Given,Quantum state of a particle moving in a circular path in	 50. Assuming H₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function T
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2,	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) $3/8$ (b) $3/4$ (c) $1/2$ (d) $2/3$ Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$, (θr = characteristic rotational temperature (i))
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) $3/8$ (b) $3/4$ (c) $1/2$ (d) $2/3$ Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$, (θr = characteristic rotational temperature (i))
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) $3/8$ (b) $3/4$ (c) $1/2$ (d) $2/3$ Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$, (θr = characteristic rotational temperature (i))
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} \cdot e^{-im\phi} d\phi$	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) $3/8$ (b) $3/4$ (c) $1/2$ (d) $2/3$ Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$, (θr = characteristic rotational temperature (i))
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} \cdot e^{-im\phi} d\phi$	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma\theta r}, \qquad (\theta r = \text{characteristic rotational}$ temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}, \qquad q_{HD} = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}} \qquad \left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma\theta r}, \qquad (\theta r = \text{characteristic rotational}$ temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}, \qquad q_{HD} = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}} \qquad \left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}, M = 0, \pm 1, \pm 2, \dots$ Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot d\phi$	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function qr = $\frac{T}{\sigma \theta r}$, ($\theta r$ = characteristic rotational temperature(i)) q_{H2} = $\frac{T}{2(\theta r)_{H2}}$, q_{HD} = $\frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}}$ $\left(\theta r \approx \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}, M = 0, \pm 1, \pm 2, \dots$ Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$	50. Assuming H ₂ and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function qr = $\frac{T}{\sigma \theta r}$, ($\theta r$ = characteristic rotational temperature(i)) q_{H2} = $\frac{T}{2(\theta r)_{H2}}$, q_{HD} = $\frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}}$ $\left(\theta r \approx \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot d\phi$ $= \frac{1}{2\pi} (\sin 2\pi - \sin 0)$ = 0	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma\theta r}, \qquad (\theta r = \text{characteristic rotational}$ temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}, \qquad q_{HD} = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}} \qquad \left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P\cos\phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P\cos\phi \cdot d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$,(θr = characteristic rotational temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}$, $(\theta r = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}}$ $\left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$ $I_{H2} = \frac{1 \times 1}{1 + 1} = \frac{1}{2}$ $I_{HD} = \frac{1 \times 2}{1 + 2} = \frac{2}{3}$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P\cos\phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P\cos\phi \cdot d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following is/are	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma \theta r}$,(θr = characteristic rotational temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}$, $(\theta r = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}}$ $\left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$ $I_{H2} = \frac{1 \times 1}{1 + 1} = \frac{1}{2}$ $I_{HD} = \frac{1 \times 2}{1 + 2} = \frac{2}{3}$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following is/are (i) The vibrational energy levels of a real	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3(a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function $qr = \frac{T}{\sigma\theta r}$, $(\theta r = characteristic rotationaltemperature (i))$ $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}$, $q_{HD} = \frac{T}{(\theta r)_{HD}}$ $\frac{\theta_{H2}}{\theta_{HD}} = \frac{I_{HD}}{I_{H2}}$ $\left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$ $I_{H2} = \frac{1 \times 1}{1 + 1} = \frac{1}{2}$ $I_{HD} = \frac{1 \times 2}{1 + 2} = \frac{2}{3}$ So, $\frac{\theta H_2}{\theta_{HD}} = \frac{4}{3}$ $\left(\theta r = \frac{1}{8\pi^2 KI}\right)$
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} \cdot e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following is/are (i) The vibrational energy levels of a real diatomic molecule are equally spaced.	50. Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function qr = $\frac{T}{\sigma\theta r}$, (θr = characteristic rotational temperature(i)) q_{H2} = $\frac{T}{2(\theta r)_{H2}}$, q_{HD} = $\frac{T}{(\theta r)_{HD}}$ $\left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$ I _{H2} = $\frac{1 \times 1}{1 + 1} = \frac{1}{2}$ I _{HD} = $\frac{1 \times 2}{1 + 2} = \frac{2}{3}$ So, $\frac{\theta H_2}{\theta_{HD}} = \frac{4}{3}$ From eg. (i) θ
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following is/are (i) The vibrational energy levels of a real diatomic molecule are equally spaced. (ii) At 500K, then reaction A \rightarrow B is spontaneous	50. Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3 Ans. (a) : Rotational Partition function qr = $\frac{T}{\sigma\theta r}$, (θr = characteristic rotational temperature(i)) q_{H2} = $\frac{T}{2(\theta r)_{H2}}$, q_{HD} = $\frac{T}{(\theta r)_{HD}}$ $\left(\theta r = \frac{h^2}{8\pi^2 KI}\right)$ $\left(\theta r \propto \frac{1}{I}\right)$ I _{H2} = $\frac{1 \times 1}{1 + 1} = \frac{1}{2}$ I _{HD} = $\frac{1 \times 2}{1 + 2} = \frac{2}{3}$ So, $\frac{\theta H_2}{\theta_{HD}} = \frac{4}{3}$ From eg. (i) θ
When a perturbation H ₁ P = cos ϕ is applied (P is constant), what will be the first order correction to the energy of the m th state (a) 0 (b) P/(2\pi) (c) P/(4\pi) (d) Pm ² /(4\pi ²) Ans. (a) : Given, Quantum state of a particle moving in a circular path in a plane is given by $\psi_{m(\phi)} = (1/\sqrt{2\pi})e^{im(\phi)}$, M = 0, ±1, ±2, Perturbation, H ₁ P = cos ϕ $\int_{0}^{2\pi} \frac{1}{2\pi} e^{im\phi} P \cos \phi \cdot \frac{1}{2\pi} e^{-im\phi} d\phi$ $= \frac{1}{2\pi} \int_{0}^{2\pi} P \cos \phi \cdot d\phi$ $= \frac{P}{2\pi} (\sin 2\pi - \sin 0)$ = 0 49. The correct statement(s) among the following is/are (i) The vibrational energy levels of a real diatomic molecule are equally spaced.	50.Assuming H2 and HD molecules having equal bond lengths, the ratio of the rotational partition functions of these molecules, at temperatures above 100 K is (a) 3/8 (b) 3/4 (c) 1/2 (d) 2/3(a) 3/8 (c) 1/2 (d) 2/3(b) 3/4 (c) 1/2 (d) 2/3Ans. (a) : Rotational Partition function qr = $\frac{T}{\sigma\theta r}$, $T_{\sigma\theta r}$, (θr = characteristic rotational temperature (i)) $q_{H_2} = \frac{T}{2(\theta r)_{H_2}}$, $\theta_{HD} = \frac{T}{(\theta r)_{HD}}$ $(\theta r = \frac{h^2}{8\pi^2 KI})$ $(\theta r \propto \frac{1}{I})$ $(\theta r \propto \frac{1}{I})$ $I_{H2} = \frac{1 \times 1}{1 + 1} = \frac{1}{2}$ $I_{HD} = \frac{1 \times 2}{1 + 2} = \frac{2}{3}$ So, $\frac{\theta H_2}{\theta_{HD}} = \frac{4}{3}$

- 51. N non interacting molecules are distributed 53. among three non degenerate energy levels ε_0 = $\epsilon_1 = 1.38 \times 10^{-21}$ J and $\epsilon_2 = 2.76 \times 10^{-21}$ J at 100 K. If the average total energy of the system at this temperature is 1.38×10^{-18} J, the number of molecules in the system is (a) 1000 (b) 1503 (c) 2354 (d) 2987 Ans. (a) : Given Total energy of the system, $v = 1.38 \times$ 10^{-18}] $U = \sum niEi$ (Ei = number of particles in ith energy level with Eienergy value) ni = $\frac{N}{m}$ gie^{-(BEi)} (Boltgmann expression) calculation, $U = \frac{N}{a} e^{(-BE_{0})} \cdot E_{0} + \frac{N}{a} \cdot e^{(-BE_{1})} + \frac{N}{a} e^{(-BE_{2})} \cdot E_{2}$ respectively, $K_1(T_1) = e^{\left(\frac{Ea_1}{RT}\right)}$ $U = \frac{N}{\alpha} e^{(-BE_{0})} \times 0 + \frac{N}{\alpha} \cdot e^{(-BE_{1})} \cdot E_{1} + \frac{N}{\alpha} \cdot e^{[B(2E_{1})]} \cdot (2E1)$ $K_1(T_2) = e^{\frac{-En_1}{RT_2}}$ $U = \frac{N}{a} E_1 \left(e^{-BE_1} + 2e^{-B2E_1} \right)$ respectively, $\left(q = \sum gie^{-BE_{1}}\right)$ $\mathbf{U} = \frac{\mathbf{N}}{\mathbf{q}} \cdot \mathbf{E}_1 \times \mathbf{q}$ $K_2(T_1) = e^{\left(\frac{-Ea_2}{RT_1}\right)}$ U = NE $K_2(T_2) = e^{\left(\frac{-Ea_2}{RT_2}\right)}$ $N = \frac{U}{E_1}$ $=\frac{1.38\times10^{-18}}{1.38\times10^{-21}}$ $=10^{3}$ = 1000The J = 0 \rightarrow 1 rotational transition for ¹H,⁷⁹Br 52. occurs at 500.72 GHz. Assuming the molecule to be a rigid rotor, the $J = 3 \rightarrow 4$ transition occurs at (a) 50.1 cm^{-1} (b) 66.8 cm^{-1} (c) 16.7 cm^{-1} (d) 83.5 cm^{-1} Ans. (b) : Energy required for transition. $J \longrightarrow J+1$ (rotational energy level) $\Delta E = 2B(J+1)$ $\Delta E_{0 \rightarrow 1} = 2B (J + 1)$ = 2B $2B = \frac{500.72 \times 10^9 5^{-1}}{C}$ same for both. $=\frac{500.72\times10^{9}5^{-1}}{3\times10^{10}}$ $= 16.69 \text{ cm}^{-1}$ or B = $\frac{16.69}{2}$ cm⁻¹ $= 8.345 \text{ cm}^{-1}$ $\Delta E_{3\to 4} = 2B(3+1)$ = 8B $= 8 \times 8.345$ (a) 2 $= 66.76 \text{ cm}^{-1}$ (c) 4

16

The rate constants of two reactions at temperature T are $k_1(T)$ and $k_2(T)$ and the corresponding activation energies are E_1 and E_2 with $E_2 > E_1$. When temperature is raised from T_1 to T_2 , which one of the following relations is correct?

(a)
$$\frac{k_1(T_2)}{k_1(T_1)} = \frac{k_2(T_2)}{k_2(T_1)}$$
 (b) $\frac{k_1(T_2)}{k_1(T_1)} > \frac{k_2(T_2)}{k_2(T_1)}$
(c) $\frac{k_1(T_2)}{k_1(T_1)} \ge \frac{k_2(T_2)}{k_2(T_1)}$ (d) $\frac{k_1(T_2)}{k_1(T_1)} < \frac{k_2(T_2)}{k_2(T_1)}$

Ans. (d) : Arrhenius equation $- K = Ae^{(-Ea/RT)}$ Ignoring the pre exponential factor 'A' to make simple • Activation energy 'E', rate constant K_1 at T_1 and T_2 (i)(ii) • Activation energy E_2 , rate constant K_2 at T_1 and T_2 (iii)(iv) • According to problem given that, $E_2 > E_1$ and $T_2 > T_1$ Taking ratio of (i) and (ii) $\frac{K_{1}(T_{1})}{K_{2}(T_{2})} = \frac{e^{\left(\frac{-Ea_{1}}{RT_{1}}\right)}}{e^{\left(\frac{-Ea_{2}}{RT_{1}}\right)}} = e^{-\left(\frac{Ea_{1}}{RT_{1}} - \frac{-Ea_{2}}{RT_{1}}\right)}$ $= e^{\frac{1}{RT_1}(Ea_2 - Ea_1)}$(v) Taking ratio of (ii) and (iv) $\frac{K_1(T_2)}{K_2(T_2)} = \frac{e^{\frac{-Ea_1}{RT_2}}}{\frac{-Ea_2}{RT}} = e^{\frac{-Ea_2}{RT_2} RT_2}$ $= e^{\frac{1}{RT_2}(E_2 - E_1)}$(vi) Given that $T_2 > T_1$, hence, $\frac{1}{RT_1} > \frac{1}{RT_2}$ and $(E_2 - E_1)$ is $e^{\frac{1}{RT_{1}}(E_{2}-E_{1})} > e^{\frac{1}{RT_{2}}(E_{2}-E_{1})} \qquad(vii)$ or $\frac{K_1(T_1)}{K_2(T_1)} > \frac{K_1(T_2)}{K_2(T_1)}$, or $\frac{K_2(T_2)}{K_2(T_1)} > \frac{K_1(T_2)}{K_1(T_1)}$ The number of degrees of freedom for a system consisting of NaCl(s), Na⁺(aq) and Cl⁻(aq) at equilibrium is (b) 3

(d) 5

- 69. Treatment of the pentapeptide Gly-Arg-Phe-Ala-Ala, in separate experiments, with the enzymes Trypsin, Chymotrypsin and Carboxypeptidase A respectively, gives
 - (a) Gly-Arg+Phe-Ala-Ala ; Gly-Arg -Phe+Ala-Ala ; Gly-Arg-Phe-Ala+Ala
 - (b) Gly-Arg-Phe+Ala-Ala ; Gly-Arg -Phe+Ala-Ala ; Gly-Arg-Phe-Ala+Ala
 - (c) Gly-Arg+Phe-Ala-Ala ; Gly-Arg -Phe+Ala-Ala ; Gly-Arg-Phe+Ala-Ala
 - (d) Gly-Arg+Phe-Ala-Ala ; Gly-Arg -Phe+Ala-Ala ; Gly+Arg-Phe-Ala+Ala

Ans. (a) : The highly specific protease trypsin is used to hydrolyse a protein completely. Proteolysis is carried out with high level of trypsin to ensure total proteolysis. It cleaves the peptide bond between –COOH group of Arginine or carbonylic group of lysine and the amino group of adjacent amino acid. Cleavage does not occur when lysine or arginine is followed by proline.

Chymotrypsin is an anzyme of family called serine protease. It cleaves on the C-terminal phemyl alanine, tryptophan and tyrosine on peptide chain. It shows specificity towards aromatic amino acids because of its hydrophobic pocket.

70. Hordenine (X), an alkaloid, undergoes Hoffman degradation to give compound (Y).

Gly-Arg-Phe-Ala+Ala

(Y) on treatment with alkaline permanganate gives (Z). Y and Z respectively are

(ii) One molecule of borazine adds 3 molecules of HCl or HBr in the cold without a catalyst. These molecules gets attached with all the three B atoms of borazine, since B atom is more electronegative than N is B - N or B = N bond.

$$B_3N_3H_6+3HCl \longrightarrow B_3N_3H_9Cl_3$$

(iii) Borazine is more reactive than benzene towards electrophilie aromatic substitution reactions because in borazine molecule nitrogen is more electronegative than boron. Nitrogen aquires partial negative charge and boron aquires partial positive charge and boron bonding takes place between boron and nitrogen, and it is more as compared with benzene because borazine is less soluble and more reactive towards electrophilic aromatic substitution reaction.

(iv) Borazine is polymerised into polyborazylene by heating it at 70°C. The polymer is formed when borazine loses some hydrogen atoms from its sides.

$$nB_3N_3H_6 \rightarrow \frac{1}{n}[B_3N_3H_6]$$

Linked Answer Questions 82 & 83 :

82. Consider a particle of mass of moving in a onedimensional box under the potential V = 0 for $0 \le x \le a$ and $V = \infty$ outside the box. When the particle is in its lowest energy state the average momentum ($\langle P_x \rangle$) of the particle is

(a)
$$< p_x > = 0$$

(b) $< p_x > = \frac{h}{a}$
(c) $< p_x > = \frac{h}{2a}$
(d) $< p_x > = \frac{h}{2\pi a}$

 $< P_{X} > = 0$

A particle in one dimensional box in ground state, n = 1 From, $\Psi_1 = \sqrt{\frac{2}{a}} \sin\left(\frac{\pi x}{a}\right)$

For a normalized wave function

$$= \int_{0}^{a} \Psi_{1} \left| \frac{h}{2\pi i} \cdot f \frac{d}{dx} \right| \Psi_{x}$$
$$= \frac{h}{2\pi i} \int_{0}^{a} \left(\frac{2}{a} \right) \sin \left(\frac{\pi x}{a} \right) \left| \frac{a}{ax} \right| \sin \left(\frac{\pi x}{a} \right) dx$$
$$= \frac{h}{2\pi i} \left(\frac{\pi}{a} \right) \int_{0}^{a} \left(\frac{2}{a} \right) \sin \left(\frac{\pi x}{a} \right) \cos \left(\frac{\pi x}{a} \right) dx$$
$$= 0$$

83. The uncertainty in the momentum (Δp_x) of the particle in its lowest energy state is

(a) $\Delta \pi_x = 0$ (b) $\Delta p_x = \frac{h}{a}$

(c) $\Delta p_x = \frac{h}{2a}$ (d) $\Delta p_x = \frac{h}{2\pi a}$

Ans. (c) : We know that either inside a box, hydrogen like atom or for S.H.O, the average value of momentum,

$$\langle px \rangle = 0$$
$$\langle px^{2} \rangle = \frac{n^{2}h^{2}}{4a^{2}}$$

The uncertainty in the momentum of the particle,

$$\Delta px = \sqrt{\langle px^2 \rangle - \langle px \rangle^2}$$
$$= \sqrt{\frac{n^2 h^2}{4a^2}} = \frac{nh}{2a}$$

Linked Answer Questions 84 & 85 :

84. In the mixture obtained by mixing 25.0 mL 1.2 $\times 10^{-3}$ M MnCl₂ and 35.0 mL of 6.0 $\times 10^{-4}$ M KCl solution the concentrations (M) of Mn²⁺, K² and Cl⁻ ions respectively are

(a)
$$6.0 \times 10^{-4}$$
, 3.0×10^{-4} , 1.5×10^{-3}
(b) 6.0×10^{-4} , 3.0×10^{-4} , 9.0×10^{-4}
(c) 5.0×10^{-4} , 3.5×10^{-4} , 1.35×10^{-3}
(d) 5.0×10^{-4} , 3.5×10^{-4} , 8.5×10^{-4}

Ans. (c) : Given,

25 mL of
$$1.2 \times 10^{-3}$$
, MnCl₂
35 mL 6.0×10^{-4} M, KCl
 $\equiv 0.6 \times 10^{-3}$ M KCl

After mixing-

Total Volume =
$$25 \text{ ml} + 35 \text{ ml}$$

Now concentration of Mn²⁺ = $\frac{1.2 \times 10^{-3} \times 25}{60}$ = 5.0 × 10⁻⁴ M

Concentration of K⁺ =
$$\frac{6 \times 10^{-4} \times 35}{60}$$

= 3.5×10^{-4} M

MnCl₂ on ionization will give 2Cl⁻ ions and KCl will give one Cl⁻ ion per molecule, so the counteraction to Cl⁻ ions = $(2 \times 5 \times 10-4 + 3.5 \times 10^{-4})$

 $= 1.35 \times 10^{-3} M$

85. The activity (M) of Mn^{2+} ions in the above solution is (a) 1.0×10^{-4}

(b)
$$2.0 \times 10^{-4}$$

(c) 3.0×10^{-4}

(d) 4.0×10^{-4}

Ans. (d) : For a dilute solution activity of an ion = γ m γ = activity coefficient (For dilute solution, γ = 1) activity = Molality = Molarity = 5×10^{-4} (closer value)

Graduate Aptitude Test In Engineering (GATE) Chemistry - 2008 Solved Paper

