SSC JE **Junior Engineer** Mechanical ENGINEERING (Pre. & Mains) **PAPERWISE SOLVED PAPERS** (Based on New TCS Pattern)

Chief Editor Anand Kumar Mahajan

Compiled and Edited by Er. Brijesh Maurya

Computer Graphics Balkrishna, Ashish Giri

Editorial Office 12, Church Lane Prayagraj-211002 S Mob. : 9415650134

Email : yctap12@gmail.com website : www.yctbooks.com/www.yctbook.com © All rights reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publication Pvt. Ltd. and printed by Laxmi Narayan Printing Press, Prayagraj. In order to publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the Judicial area will be Prayagraj.

SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 10 am, Exam : 01.03.2017]5-19
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 2.45 pm, Exam : 01.03.2017] 20-32
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 10 am, Exam : 02.03.2017] 33-49
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 2.45 pm, Exam : 02.03.2017] 50-65
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 10 am, Exam : 03.03.2017]66-79
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 2.45 pm, Exam : 03.03.2017] 80-95
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 10 am, Exam : 04.03.2017]96-112
SSC Junior Engineer Mechanical Online Exam 2017 (CPWD/CWC/MES) [Time : 2.45 pm, Exam : 04.03.2017] 113-130
2018
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 22.01.2018] 131-147
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 22.01.2018] 148-162
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 23.01.2018] 163-177
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 23.01.2018] 178-191
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 24.01.2018] 192-206
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 24.01.2018] 207-221
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 25.01.2018] 222-235
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 25.01.2018] 236-251
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 27.01.2018] 252-267
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 27.01.2018] 268-284
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 29.01.2018] 285-301
SSC Junior Engineer Mechanical Online Exam 2018 (CPWD/CWC/MES) [Time : 3.15 pm, Exam : 29. 01.2018] 302-317
2019
SSC Junior Engineer Mechanical Online Exam 2019 (CPWD/CWC/MES) [Time : 3-5 pm, Exam : 25.09.2019] 318-335
SSC Junior Engineer Mechanical Online Exam 2019 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 27.09.2019] 336-347
SSC Junior Engineer Mechanical Online Exam 2019 (CPWD/CWC/MES) [Time : 3-5 pm, Exam : 27.09.2019] 348-363
2020
SSC Junior Engineer Mechanical Online Exam 2020 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 11.12.2020] 364-378
SSC Junior Engineer Mechanical Online Exam 2020 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 27.10.2020] 379-393
SSC Junior Engineer Mechanical Online Exam 2020 (CPWD/CWC/MES) [Time : 3-5 pm, Exam : 27.10.2020] 394-407
■ SSC Junior Engineer Mechanical Online Exam 2020 (CPWD/CWC/MES) [11me : 3-5 pm, Exam : 28.10.2020] 408-422
2021
 SSC Junior Engineer Mechanical Online Exam 2021 (CPWD/CWC/MES) [Time : 10.15 am, Exam : 22.03.2021] 425-437 SSC Junior Engineer Mechanical Online Exam 2021 (CPWD/CWC/MES) [Time : 3-5 nm, Exam : 22.03.2021] 438-448
2022
 SSC Junior Engineer Mechanical Online Exam 2022 (CPWD/CWC/MES) [Exam : 14.11.2022 Shift-II] 449-469
■ SSC Junior Engineer Mechanical Online Exam 2022 (CPWD/CWC/MES) [Exam : 16.11.2022 Shift-II] 470-489
2023
SSC Junior Engineer Mechanical Online Exam 2023 (CPWD/CWC/MES) [Time : 1-3 pm, Exam : 09.10.2023] 490-508
SSC Junior Engineer Mechanical Online Exam 2023 (CPWD/CWC/MES) [Time : 1-3 pm, Exam : 11.10.2023 509-525
2023 (Mains)
SSC Junior Engineer Mechanical Online (Mains) Exam. 2023 (CPWD/CWC/MES) [Time: 9-11 am, Exam : 04.12.2023] 526-544

SSC Junior Engineer Paper Syllabus : MECHANICAL ENGINEERING

The Examination will be conducted in two stages:

A. Paper-I (Pre) (200 marks)

Written Test :

B. Paper-II (Mains) (300 marks)	Total Written Test (500 marks)
--	--------------------------------

Paper	Subject	Max. Mark	Duration & Timing
Paper-I Objective type	 (i) General Intelligence & Reasoning (ii) General Awareness (iii) General Engineering (Mechanical) 	50 50 100	2 Hours
Paper-II Objective type	General Engineering (Mechanical)	300	2 Hours

There will be negative marking equal to one-fourth (1/4) of Thermal Engineering the marks allotted to the question for each wrong answer in Paper-I & negative marking of one mark for each wrong answer in Paper-II.

Syllabus of Examination

The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Mechanical Engineering from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below.

Paper-I

- **General Intelligence & Reasoning:** The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgment, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate's abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.
- <u>General Awareness:</u> Questions will be aimed at testing the candidate's general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.
- General Engineering : Civil and Structural, Electrical & Mechanical **Mechanical Engineering**

Theory of Machines and Machine Design, Engineering Mechanics and Strength of Materials, Properties of Pure Substances, 1st Law of Thermodynamics, 2nd Law of Thermodynamics, Air standard Cycles for IC Engine Performance, IC Engines Combustion, IC Engine Cooling & Lubrication, Rankine cycle of System, Boilers, Classification, Classification, Specification, Fitting & Accessories, Air Compressors & their cycles, Refrigeration cycles, Principle of Refrigeration Plant, Nozzles & Steam Turbines. Properties & Classification of Fluids, Fluid Statics, Measurement of Fluid Pressure, Fluid kinematics, Dynamics of Ideal fluids, Measurement of Flow rate, basic principles, Hydraulic Turbines, Centrifugal Pumps, Classification of steels.

Detailed Syllabus JE Mechanical Engineering Theory of Machines and Machine Design

Concept of simple machine, Four bar linkage and link motion, Flywheels and fluctuation of energy, Power transmission by belts – V-belts and Flat belts, Clutches – Plate and Conical clutch, Gears - Type of gears, gear profile and gear ratio calculation, Governors – Principles and classification, Riveted joint, Cams, Bearings, Friction in collars and pivots.

Engineering Mechanics and Strength of Material

Equilibrium of Forces, Law of motion, Friction, Concepts of stress and strain, Elastic limit and elastic constants, Bending moments and shear force diagram, Stress in composite bars, Torsion of circular shafts, Bucking of columns - Euler's and Rankin's theories, Thin walled pressure vessels.

Properties of Pure Substances:

P-V & P-T diagrams of pure substance like H_2O , Introduction of steam table with respect to steam generation process; definition of saturation, wet & superheated status. Definition of dryness fraction of steam, degree of superheat of steam. H-S chart of steam (Mollier's Chart).

1st Law of Thermodynamics :

Definition of stored energy & internal energy, 1st law of Thermodynamics of cyclic process, Non-Flow Energy Equation, Flow Energy & Definition of Enthalpy, Conditions for Steady State and Steady Flow; Steady State Steady Flow Energy Equation.

nd Law of Thermodynamics :

Definition of Sink, Source Reservoir of Heat, Heat Engine, Heat Pump & Refrigerator; Thermal Efficiency of Heat Engines & co-efficient of performance of Refrigerators, Kelvin – Planck & Clausius Statements of 2nd Law of Thermodynamics, Absolute or Thermodynamic Scale of temperature, Clausius Integral, Entropy change calculation of ideal gas processes. Carnot Cycle & Carnot Efficiency, PMM-2; definition & its impossibility.

Air standard Cycles for IC engines :

Otto cycle; plot on P-V, T-S Planes; Thermal Efficiency, Diesel Cycle; Plot on P-V, T-S planes; Thermal efficiency. IC Engine Performance, IC Engine Combustion, IC Engine Cooling & Lubrication.

Rankine cycle of steam :

Simple Rankine cycle plot on P-V, T-S, h-s planes, Rankine cycle efficiency with & without pump work. Boilers; Classification; Specification; Fittings & Accessories : Fire Tube & Water Tube Boilers. Air Compressors & their cycles; Refrigeration cycles; Principle of a Refrigeration Plant; Nozzles & Steam Turbines

Fluid Mechanics & Machinery

Properties & Classification of Fluid :

■ Ideal & real fluids, Newton's law of viscosity, Newtonian and Non-Newtonian fluids, compressible and incompressible fluids.

Fluid Statics : Pressure at a point. Measurement of Fluid Pressure : Manometers; U-tube, Inclined tube.

Fluid Kinematics : Stream line, laminar & turbulent flow, external & internal flow, continuity equation.

Dynamics of ideal fluids : Bernoulli's equation, Total head; Velocity head: Pressure head; Application of Bernoulli's equation.

Measurement of Flow rate Basic Principles : Venturimeter, Pilot tube, Orifice meter

Hydraulic Turbines : Classifications, principles

Centrifugal Pumps : Classifications, Principles, Performance. Production Engineering Classification of Steels :

Mild steal & alloy steel, Heat treatment of steel, Welding - Arc Welding, Gas Welding, Resistance Welding, Special Welding Techniques i.e. TIG, MIG, etc. (Brazing & Soldering), Welding Defects & Testing; Foundry & Casting - methods, defects, different casting processes, Forging, Extrusion, etc, Metal cutting principles, cutting tools, Basic Principles of machining with (i) Lathe (ii) Milling (iii) Drilling (iv) Shaping (v) Grinding, Machines, tools & manufacturing processes.

<u>Chart</u>
vsis
Anal
wise
<u>opic</u>
H
JE
SSC
nical
<u>ha</u> l
ec

ЯA	Æ	Mechanics	MOS	TOM	DOM	FM	HM	TD	PP	HT	RAC	IC Engine	WT	PT	EM	MMED	Miscellaneous	TOTAL
rch (M)	SSC 2017 1st Ma	1	17	7	9	28	1	6	-	19	1	1	3	7	1	1	1	100
rch (E)	88C 2017 1st Ma	12	5	2	12	14	13	13	2	7	15	1	I	2	10	I	I	100
лер(М)	³ W pu7 2107 OSS	4	6	16	1	20	S	10	10	9	9	1	2	8	2	I	I	100
иср (Е)	3W pu7 2107 38S	14	2	3	10	17	12	8	4	3	Ξ	9	I	2	8	1	I	100
иср (M)	3W 314 314 314	-	15	2	-	20	10	12	٢	4	S	S	9	10	7	1	I	100
n.cy (E)	3W p. E 2107 DSS	4	14	5	6	14	7	13	7	14	4	3	2	4	S	I	I	100
rch (M)	SSC 5017 4 له Ma	4	13	4	3	26	3	20	1	7	2	3	4	6	1	I	I	100
rch (E)	8SC 5017 4th Ma	2	6	4	7	26	2	21	1	S	3	2	5	6	4	I	I	100
(W) 8102	SSC 1E 55 Jan.	3	Ξ	14	2	29	I	11	6	I	-	10	1	I	8	I	1	100
(E) 8107	SSC 1E 55 Jan.	I	15	16	2	21	8	16	8	I	0	9	I	4	3	-	I	100
(W) 8102	SSC JE 23 Jan.	3	13	13	-	22	10	18	S	I	2	3	3	3	3	-		100
(E) 8107	SSC 1E 53 Jan.	3	7	16	9	29	1	10	7	I	-	12	I	1	7	I	I	100
(W) 8102	SSC JE 54 Jan.	7	13	14	2	18	11	16	10	I	0	9	1	3	3	-	I	100
(E) 8107	SSC 1E 54 Jan.	I	14	15	I	29	I	6	10	I	I	14	I	1	8	I	I	100
(W) 8102	SSC 1E 52 Jan.	5	12	15	2	25	-	10	11	I	-	8	1	1	9	I	I	100
(E) 8107	SSC JE 25 Jan.	S	10	14	1	18	11	21	9	I	I	4	3	4	3	I	4	100
(W) 8102	SSC JE 77 Jan.	4	4	14	2	30	1	11	11	I	3	11	I	4	9	I	I	100
(E) 8107	SSC 1E 77 Jan.	3	12	13	4	21	8	15	8	I	-	5	9	2	1	1	I	100
(W) 8102	SSC JE 59 Jan.	4	11	13	2	18	`12	16	3	I	-	6	1	7	3	I	I	100
(E) 8102	SSC JE 29 Jan.	4	12	15	2	19	11	18	7	I	I	5	2	3	1	1	I	100
(E) 6107	SSC 1E 25 Sep.	-	3	2	2	19	12	11	20	I	12	13	I	I	S	I	I	100
(W) 6107	SSC JE 77 Sep.	2	3	3	1	27	7	10	20	I	10	12	I	I	5	I	I	100
(E) 6107	SSC JE 57 Sep.	7	2	1	3	23	11	9	24	I	8	11	I	I	6	I	I	100
(W) 0202	SSC 1E 11 Dec	3	3	3	I	22	8	11	24	I	9	10	1	1	3	I	5	100
(W) 0202	SSC 1E 77 Oct.	4	2	2	3	24	10	11	20	1	10	7	I	I	9	I	I	100
5050 (E)	SSC JE 77 Oct	5	4	I	2	25	7	7	23	-	10	10	I	1	9	7	I	100
5050 (E)	SSC 1E 58 Oct.	1	S	2	S	23	13	8	20	I	6	11	1	2	2	I	1	1 00 1
(W) 1202 4	SSC 1E 55 Marc	-	4	3	1	28	7	7	20	1	Ξ	12	2	1	3	1	1	100
P 5051 (E)	SSC 1E 55 Marc	7	2	3	2	25	5	13	17	1	13	8	3	1	S	1	1	100
mper 2022 (E)	SSC 1E 14 Nove	3	-	4	1	25	8	10	18	2	12	11	2	1	1	-	I	100
mper 2022 (E)	SSC 1E 19 Nove	5	3	4	2	24	7	10	17	1	12	13	1	2	1	I	1	100
oer 2023 (E)	SSC JE 19 Octo	7	3	2	1	12	21	13	20	1	13	7	I	5	1	1	I	00
Der 2023 (E)	SSC 1E 11 Octo		4	3	-	22 2	10	13 1	20 2	1	12	8 1	2	5	1	1	-	00 1
Dec 2023	4 suisM JL OSS	5	3	1	I	27	7	10	26	I	6	10	I	4	-	I	I	00

Machines, TD – Thermodynamics, PP – Power Plant Engineering, HT – Heat Transfer, RAC – Refrigeration and Air Conditioning, IC Engine – Internal Combustion Engine, WT- Workshop Technology, PT – Production Technology, MMED- Mechanical Measurement and Engineering Drawing, EM – Engineering Materials

SSC Junior Engineer Mechanical Online Exam 2017 CPWD/CWC/MES Mechanical Engineering

Time: 10 am]

[Exam Date : 1 March, 2017

1.	The ratio	surface con internal con	nvectio nducti	on resistance is	3.	In a prov	shell and vided on th	l tube heat e ne shell side to	xchanger bafles are
	known as					(a)	Prevent the	e stagnation o	f shell side fluid
	(a) Grash	off number	(b)	Biot number		(b)	Improve h	eat transfer	
	(c) Stanto	on number	(d)	Prandtl number		(c)	Provide su	pport for tube	S
Ans	: (*) Biot	number is	the ra	tio of the internal		(d)	All options	s are correct	
resist	ance of a t	body to heat	condu	ction to its external	Ans	: (d)) Shell ar	nd tube type	heat exchanger is
105150					recup	perator	rs type hea	at exchanger i	n which the flowing
	$\frac{L_c}{VA}$	hL			fluids	s excl	hanging he	eat are on eit	her side of dividing
i.e. E	$B_{i} = \frac{KA}{1}$	$=\frac{K}{K}$			wall ((in the	e form of p	ipes or tubes)	
	¹ /hA	ĸ			-In sł	hell a	nd tube he	at exchanger	baffles are provided
whe	ere L. = -	Volume of	body		on the	e shal	l side to		
vv IIV		urface area of	conta	act	(i) Pr	event	the stagnat	tion of shell si	de fluid
Bi <0	$.1 \Rightarrow \text{for lu}$	mped heat ca	pacity	model	(ii) In	nprov	er heat trar	nsfer	
Grach	off No. (C	$r = \frac{Buoyanc}{a}$	ey Forc	e	(iii) P	Provid	le support f	for tubes	
Grash	1011 110. (0	Viscous	s Force		4.	The	ratio of th	ne thickness o	of thermal boundary
Drond	$\mathbf{H} \mathbf{N}_{\mathbf{a}} = (\mathbf{D})_{\mathbf{a}}$	_ Hydraulic E	Bounda	ry Layer Thickness		laye	r to the	e thickness	of hydrodynamic
Pranc	III INO. (P_r)	Thermal B	oundar	y Layer Thickness		bouy	yndary lay	er is equal to	o (Prandtl number) ⁿ ,
Note	:- Official a	nswer is corr	ect (b)			whe	re n is	••	a /a
2.	An ideal a	air compress	son cy	cle (with clearance)		(a)	-1/3	(b)	-2/3
	on p–v d	iagram can	be rej	presented by		(c)	l	(d)	-1
	processes.	diabatia two	isobar	ic and one constant	Ans :	: (a)			
	volun	ne	1500ai	ic, and one constant	Pran	dtl N	umber -		
	(b) two a	diabatic and t	two iso	baric	$(\mathbf{P}_{\mathbf{r}}) =$	hydr	odynamic I	Boundary Lay	er Thickness
	(c) two a	diabatic, one	isoba	ric and one constant	(-1)	Tl	hermal Bou	undary Layer	Thickness
	volun		:1					Or	
	(a) one a volun	diabatic, one	isobar	ic, and two constant				$(s)^3$	
Ans ·	(h) An ide	al air compres	ssion c	vcle (with clearance)				$\Pr = \left \frac{0}{2} \right $	
on P-	V diagram	can be repres	ented b	by two adiabatic and				(o_t)	
two is	sobaric. Thi	s cycle is als	o calle	d reverse brayton or			($\left(\delta_{t} \right) \left(\mathbf{p}_{t} \right)^{-\frac{1}{2}}$	
Joule	bellcalemar	gas refrigerat	tion cy	cle.				$\left(\frac{1}{\delta}\right) = (P_{r})^{3}$	
$\frac{\text{Proce}}{(1-2)}$	esses:- - Reversit	le adiabatic	or Iser	tropic compression				$(\mathbf{p})^{n}$ $(\mathbf{p})^{1/3}$	
(1-2)	of Air in	Compression	n	teople compression			($\left(\mathbf{P}_{\mathrm{r}}\right) = \left(\mathbf{P}_{\mathrm{r}}\right)$	
(2-3):	- Reversib HTHX	le Isobaric	heat r	ejection process in			th	em, $n = -1/3$	3
(3-4):	- Reversit	ole Adiabatic	or Iser	ntropic expansion of	5.	In re	egarding n	ucleate boili	1g
	Air in T	urbine.	1 .	11.		(a)	The tempe	erature of the s	surface is greater than
(4-1):	- Reversit	ole Isobaric	heat	addition (or heat			the saturat	ion temperatu	re of the liquid
	CALLACTIC		A .			(b)	Bubbles	are created	by expansion of
		P, OPEC	2,				entrapped the surface	gas or vapou e	r at small cavities in
		P peter	T-S-C			(c)	The tempe	erature is grea	ater than that of film
			8/				boiling		
			1-C.			(d)	All options	s are correct	
	-								

SSC JE Mechanical Online Exam 2017 dt. 1.3., 2017 10 am

Ans : (c) Fourier's Law of heat transfer is applicable for conduction mode.	Ans : (a) Liquid sodium has highest thermal conductivity in all given options. Its melting point is 97^{0}
According to this law-	794 [°] C.
Δt	Sodium = 140 w/mk
$Q = -KA \frac{1}{\Delta x}$	Potassium = 100 w/mk
Assumption mode in the Fourier's law of heat	Lead = 36 w/mk
transfer-	Murcury = 8.34 w/mk
1- Heat flow is in steady state	(Internal) (Internal conductivity)
2- Heat flow through a solid medium in one dimension	(1) Diamond = 2300 W/m-k
3- Temperature gradient is constant and temperature	(2) Silver -405 w/m-k
profile is linear	(3) Potassium -102 w/m-k
4- The material most be homogeneous & isotropic	(4) Sodium $- 142 \text{ w/m-k}$
5- There is no internal heat generation is the material	(5) Mercury $- 8 \text{ w/m-k}$
14 If thermal conductivity of a material of wall	(6) Glass -1.2 w/m-k
varies as K_{c} (1 + βt), then the temperature at	17. Minimum thermal diffusivity is of
the centre of the wall as compared to that in	(a) Aluminium (b) Rubber
case of constant thermal conductivity, will	(c) Iron (d) Lead
be	Ans : (b) Thermal diffusivity is the physical property of
(a) More (b) Less	substance, which is the ratio of "thermal conductivity"
(c) Same (d) Depend on other factors	to thermal storage capacity.
Ans: (a) $K_m = K_0 (1 + \beta t)$	$K_{\rm m}^2/c$
If $\beta = \pm \mu$ (or $\beta > 0$) then the temperature at the centre	So, $\alpha = \frac{1}{\rho C_{a}}$ m /s
of the wall as compared to that in case of constant	, p Thermal diffusivity
thermal conductivity ($\beta = 0$), will be more.	where, $\alpha =$ inermal diffusivity
Ţ	$\rho C_{\rm p}$ = Heat copacity
	K = Heat conducted
$k(T) = k_n (1 + \beta T)$ $\beta > 0$	• Thermal diffusivity of material in decreasing
T	order-
	Metals> Gases> liquids & Non- Metals so, minimum
$\langle \cdot \cdot \cdot \rangle$	$\Lambda 1 = 8.7 \times 10^{-5} \text{ m}^2/\text{sec}$
	$A1 = 3.7 \times 10^{-5} \text{ m}^{-3}/\text{cos}$
	$1001 - 2.05 \times 10^{-10} \text{ m/sec}$
0 L	$L ead = 2.3 \times 10^{-5} m^2/sec$
15. With increase in temperature, thermal	$\frac{12}{10} = \frac{12}{10} = \frac{10}{10} = 10$
conductivity of air	16. Critical facility of a nonlow cylinder is defined
(a) Increases (b) Decreases	(a) Outer radius which gives maximum heat flow
(c) Remains the same (d) None of these	(b) Outer radius which gives minimum heat flow
Ans : (a) with increase in temperature, thermal	(c) Inner radius which gives minimum heat flow
conductivity of air increases as we know that-	(d) Inner radius which gives maximum heat flow
$ \sqrt{T}$	Ans : (a) Critical radius of a hallow cylinder is defined
-Forgaes, $K \propto \frac{1}{\sqrt{M}}$	as outer radius which gives maximum heat flow, thus
	heat resistance is minimum at this point.
$\begin{array}{cccc} 1 & 1 & \Rightarrow K \\ 1 & K & T \\ 1 & K & T \\ 1 & 1 & 1 \\ 1 & K & C & K \\ 1 & K & T \\ 1 & 1 & 1 \\ 1 & K \\ $	• Adding insulation to a cylindrical pipe or a spherical
where, K= Thermal conductivity of material	shell, increases the conduction resistance of the
I = Absolute I emperature	insulation layer but decreases the convection resistance
M= Molecular mass	of the sufface because of the increases in outer sufface
Note:- For liquid- $K \propto \frac{1}{2} & \& K \propto \frac{1}{2}$	K
T, M	For, Hollow cylinder, $(r_{cr}) = \frac{R}{L}$
For Mateley V = 1	
FOr wietais:- $K \propto \frac{T}{T}$	17. Heat exchangers are used in :
16. Liquid metal having highest thermal	B Radiators
conductivity is of	C. Intercollers and preheaters
(a) Sodium (b) Potassium	D. Condensers and evaporators in refrigerators
(c) Lead (d) Mercury	and air conditioners

SSC JE Mechanical Online Exam 2017 dt. 1.3., 2017 10 am

- (c) Votex flow
- (d) Flow of fluids

Ans : (d) A rotameter is a device used to measure the flow rate of fluid in a pipe It consists of a transparent, vertical, tapering tube with a float in it.

other flow rate or- discharge measuring device:-

Device/Equipment	Used to measure		
Pitot tube	Flow velocity		
Venturimeter	Discharge		
Orifice meter	Discharge		
Hot - wire anemometer	Wind velocity		
Barometer	Atmospheric pressure		
Bendmeter	Discharge		
Mouth piece	Discharge		
Flow nozzle	Flow rate		

33. Steady flow occurs when

- (a) Pressure does not change along the flow
- (b) Velocity does not change
- (c) Conditions change gradually with time
- (d) Conditions do not change with time at any point

Ans : (d) Steady flow occurs when conditions or- fluid properties do not change with time at any given section or- point. $\underline{dp}=0$

dt

•If the fluid and flow variables at a point may change with time, the flow will be unsteady.

$$\frac{\mathrm{dv}}{\mathrm{dt}} \neq 0$$

Note:- Stream line, path line & streak line becomes identical (same) when the flow is steady.

- If the particles of a fluid attain such velocities 34. that vary from point to point to point in magnitude and direction as well as from instant, the flow is
 - (a) Uniform flow (b) Steady flow (c) Turbulent flow (d) Laminar flow

Ans : (c) When fluid particles move in highly disorganised manner, leading to rapid mixing of fluid particles, then that flow is known as turbulent flow.

-In turbulent flow, the particles of a fluid attain such velocities that vary from point to point in magnitude and direction as well as instant. -Turbulent flow is also known as inertia flow.

Flow occurring in a pipeline when a valve is 35. being opened is (a) Steady (b) Unsteady (c) Laminar (d) Vortex

Ans : (b) Flow occurring in a pipeline when a valve is being opened is unsteady because at that instant properties of fluid (like velocity) are varied with respect to time.

For measuring flow by a Venturimeter, it 36. should be installed in

- (a) Vertical line
- (b) Horizontal line
- (c) Inclined line with upward flow
- (d) In any direction and in any location

Ans : (d) Venturimeter is a gradually converging and diverging device which is used to measure discharge or flow rate It is an interruption meter because while measuring the discharge it interrupt the flow of fluid. - For measuring flow by a venturimeter, it should be installed in any direction and in any location.

Discharge of Venturimeter-

- (c) Prevent occurrence of hydraulic jump
- (d) Relieve pressure due to water hammer

SSC JE Mechanical Online Exam 2017 dt. 1.3., 2017 10 am

Ans : (d) Surge tank is a reservoir fitted at same	43. A Piezometer cannot be used for pressure					
openning made on a long penstock to receive the	measurement in pipes when					
rejected flow when the penstock is suddenly closed by a	(a) Pressure difference is low					
valve filled at its end.	(b) velocity is night					
produced due to closing of the perstock thus	(d) Eluid in highly vigeous					
eliminating positive Water hammer effect by admitting	(d) Fluid is highly viscous					
in it a large mass of water which would have flown out	and is connected to the point where the pressure is to be					
of the pipe line.	found and other end open to the atmosphere					
Note:- ' No correct answer' is given by "Commission"	• It cannot be used for pressure measurement in					
39. The resultant upward pressure of a fluid on a	pipes when fluid in the pipe is a gas because the					
floating body is equal to the weight of fluid	end of the piezometer is open at atmosphere.					
displaced by the body. This definition is	H					
according to						
(a) Buoyancy (b) Equilibrium of a floating hady						
(b) Equilibrium of a floating body (c) Archimodos' principle						
(d) Bernoulli's theorem	A					
(d) Demount's theorem						
completely in a fluid the net vertical unward force	• As one end is open to the atmosphere so it can't be					
exerted by the fluid is known as " buoyant force" and	used for measuring the gas pressure.					
this force is equal to the weight of the fluid displaced by	• Gas pressure can't be measured by means of					
the body and this is known as "Archimedes' principal".	piezometers because a gas forms no free					
40. A balloon lifting in air follows the	atmosphere surface and it can't be used when large					
(a) Law of gravitation	44 Existion drag is generally larger than the					
(b) Archimedes principle	144. Friction drag is generally larger than the					
(c) Principle of buoyancy	(a) Flow past a sphere					
(d) All options are correct	(b) Flow past a cylinder					
Ans : (d) A balloon lifting in air follows the-	(c) Flow past an airfoil					
i) Law of gravitation	(d) Flow past a thin sheet					
11) Archimedes principle and	Ans : (c) Friction drag is generally larger than the					
11) Principle of buoyancy.	pressure drag in Flow past an airfoil.					
41. Hydraulic grade line as compared to the centre line of conduct	S and the second					
(a) Should be always above	±();					
(b) Should be always below						
(c) Should always be parallel	D << D.					
(d) May be above or below	Flow Past an airfoil					
Ans : (a) Hydraulic gradient line is the graphical	45 If one of the wall moves in the direction of flow					
representation of the longitudinal variation in the	with uniform velocity while the other wall is					
piezometric head at alicent points of a pipe line.	stationary, then the resulting flow between					
$\frac{P+z}{z}$ \Rightarrow Piezometric head	parallel walls is called					
γ	(a) Plug flow (b) Stoke's flow					
$HGL \Rightarrow$ It shows the variation of piezometric head in	(c) Couette flow (d) Euler's flow					
the flow direction.	Ans: (c) It one of the wall moves in the direction of					
- HGL as compared to the centre line of conduct should	stationary then the resulting flow between parallel walls					
12 A Hat Wine Assessment in and for the	called "couettle flow" In same condition,					
42. A Hot Wire Anemometer is used for the	- if bath the plates or-wall are fixed then flow between					
(a) Pressure of gases (b) Velocity of gases	parallel wall is called "Plance poiseulle flow'					
(c) Viscosity of gases (d) Viscosity of liquids	Moving					
Ans : (b) A Hot wire an emometer is used for the	V, Fune er wan					
measurement of velocity of gas It is basically two types	. ↓ ======					
1- Constant temperature type \Rightarrow used where velocity						
fluctuation are small.						
2- Constant Current Type \Rightarrow Used where velocity	111111111111111111111111111111111111111					
fluctuation are large.	• or wall					

46. In a flow field, at the stagnation point	Ans : (a) The fluid forces considered in the Navier -
(a) Pressure is zero	stoke's equation are gravity, pressure and viscous.
(b) velocity of fluid is zero	If $F=F_g+F_p+F_v$
(c) Pressure head is equal to velocity	\Rightarrow It is used for the study of viscous fluid or- real fluid.
(d) All the velocity head is converted into	-when $F=F_g+F_p \Rightarrow$ Euler' Equation.
pressure head	51. Hydraulic grade line for any flow system as
Ans : (b) Stagnation point:- In a flow field, when a	compared to energy line is
fluid particle is brought to rest isentropically, then that	(a) Above (b) Below
point is known as "stagnation point" At this point	(c) At same level (d) Uncertain
	Ans : (b) Hydraulic grade line for any flow system as
$V_{\text{th}=} \sqrt{2g(\text{stagnation head} - \text{static head})}$	campared to energy line (or- EGL) is below.
$V_{1} = \left(P_2 - P_1 \right)$	Parameter had
$\sqrt{2g}\left(\frac{r}{r}\right)$	$\dot{\mathbf{p}}$ \mathbf{V}^2
& Stagnation pressure = static pressure + Dynamic Pressure.	$\frac{1}{2}$ + Z + $\frac{1}{2}$
47. The ratio of the energy absorbed by the body	Y 2g
to total energy falling on it is called	The first
(a) absorptive power (b) emissive power	TGL/EGL \Rightarrow It shows the variation of total head in the
(c) emissivity (d) None of these	flow direction.
Ans : (a) The ratio of the energy absorbed by the body	HGL \Rightarrow It shows the variation of piezometric head in
to total energy falling on it is called absorptive power.	the flow direction.
48. Viscosity is the most important property in	Hydraulic Gradient line :-
the	It is defined as the line which given the sum of pressure (D/ag) and detum (7)
(a) I ravel of a bullet through air (b) Weten ist issuing from a first sin	nead (P/pg) and datum (Z)
(b) Water Jet Issuing from a file and	H.G.L. \xrightarrow{P} + Z
(c) Formation of soap bubbles (d) Flow of castor oil through a tube	ρg
(d) Thow of easier on through a tube	H.G.L. line lies below T.E.L. with a difference of
of which the fluid offers resistance against shear force	$1 \cdot (1 \cdot 1) \cdot (V^2)$
-Viscosity is the most important property for lubricant	velocity head $\left(\frac{1}{2g}\right)$
oil or- lubrication of machine parts.	52 To avoid vanaviation in the nine line the nine
Note:- All given option are not exact true, so by the	52. To avoid vaporisation in the pipe line, the pipe line over the ridge is laid such that it is not
"Commission," "No correct answer" is given.	more than
49. If pressure at any point in the liquid approaches	(a) 2.4 m above the huydraulic gradient
the vapour pressure, liquid starts vaporising and	(b) 6.4m above the hydraulic gradient
creates pockets or bubbles of dissolved gases and vanours. This phenomenon is	(c) 10.0 m above the hydraulic gradient
(a) Surface tension (b) Adhesion	(d) 5.0 m above the hydraulic gradient
(c) Vaporisation (d) Cavitation	Ans : (b) In order to avoid vaporization in the pipeline
Ans : (d) It pressure at any point in the liquid	the pipe line over the ridge in laid in such a way that it
approaches the vapour pressure, liquid starts vaporising	is not more than 6.4 m above the hydraulic gradient.
and creates pockets or bubbles of dissolved gases and	HGL \Rightarrow It is represented by the line connecting the
vapour. This phenomenon cavitation.	nining system
\Rightarrow Vapouriation \rightarrow Bubble \rightarrow Bubble growth \rightarrow Collaping	53 The locus of elevations that water will rise in a
of bubble and their consequent.	series of pitot tube is called
(Cavitation)	(a) Hydraulic grade line (b) Pressure head
Effect of cavitation:-	(c) Energy grade line (d) Head loss
i) Eitosioli ii) Ditting	Ans : (c) The locus of elevations that water will rise in a
iii) Vibrations	series of pitot tube is called.
iv) Noise	Energy grade (or-gradient) line, where as the locus of
v) Loss of efficiency	elevations that water will rise or- depress in a series of
50. The fluid forces considered in the Navier-	piezometric tube is called hydraulic grade line.
Stoke's equation are	$FGI \rightarrow z + \frac{P}{P} + \frac{V^2}{V}$
(a) Gravity, pressure and viscous	$\gamma^2 2g$
(b) Gravity, pressure and turbulent	р
(c) Pressure, viscous and turbulent	- HGL $z + \frac{1}{z}$
(d) Gravity, viscous and turbulent	γ

54. Pressure in Pascals at a depth of 1 m below the free surface of a body of water will be equal to

(a) 1 Pa	(b)	98.1 Pa
(c) 981 Pa	(d)	9810 Pa
Ans : (d) Given,		
h = 1 m		
$P = \rho g h$		
$P = 1000 \times 9.81 \times 1$		
$P = 9810 \text{ N/m}^2$		
P = 9810 Pa		

55. Water flows up a tapered pipe as shown in the figure. What is the magnitude of the deflection h of the differential mercury manometer corresponding to a discharge of 126 L/s?

- (a) 16.28 cm/16.28 से.मी.
- (b) 17.28 cm/17.28 से.मी.
- (c) 19.28 cm/19.28 से.मी.

As we know,
$$Q_{th} = \frac{A_1 A_2}{\sqrt{A_1^2 - A_2^2}} \times \sqrt{2gx}$$

$$126x10^3 = \frac{\left(\frac{\pi}{4} \times 30^2\right) \times \left(\frac{\pi}{4} \times 15^2\right) \times \sqrt{2 \times 9.81 \times \chi}}{\sqrt{\left(\frac{\pi}{4} \times 30^2\right)^2 - \left(\frac{\pi}{4} \times 15^2\right)^2}}$$

by solving x = 242.9229 cm since, x = x = h $\left(\frac{\text{sm}}{1000} - 1\right)$

$$242.229 = h\left(\frac{13.6}{1} - 1\right)$$

h= 19.2796 cm

∴h≈ 19.28cm
 56. if a pump is handling water and is discharging a certain flow Q at a constant total dynamic head requiring B.H.P., the same pump when handling a liquid of specific gravity 0.75 and viscosity nearly same as of water would discharge.

$$Q = \frac{ALN}{60}$$
 m³/s (For reciprocating pump)

Q is not depend on the specific gravity of liquid so, we can say that pump will discharge same amount of liquid of 7.5 specific gravity.

57. Surge wave is an example of

- (a) Steady uniform flow
- (b) Steady non–uniform flow
- (c) Unsteady uniform flow
- (d) Unsteady non-uniform flow

Ans : (d) The sudden changes of flow in open channel result in the increase or decrease of flow depth is called the "surge wave" in open chanel.

- Surge is a rising or derasing of water level due to low pressure and high winds, Hence it is an unsteady and non- uniform flow.
- This could takes place when there is a breaking of dams due to earth quake ar regulating the hydrpower sluice gates.
- A surge is a moving wave front which result in an abrupt change of the depth of flow. It is a rapidly varied unsteady flow condition.
- It is produced by a rapid change in the rate of flow, for example, by the rapid opening or closure of a control gate in a channel.

58. A 20 cm diameter pipe 5000 metres long conveys 0.05 cumec of water which is to be pumped through a height of 6 metres. What is the horse power required by the pump, if its efficiency is 75%? (take 4f = 0.006)
(a) 74 2 HP
(b) 74 HP

(a)
$$74.2 \text{ III}$$
 (b) 74 III
(c) 75 HP (d) 50 HP

Ans : (*)

Power (actully required) = $\frac{\rho.Q.gH}{\eta}$ H = head actually to be lifted = H + h_f Given, Q= 0.05 m³/sec. D_s = D_a = 20cm 0.20m h_{static} = 6m L_{total} = 5000m 4f= 0.006 So, friction factor f¹ = 4f= 0.006 Velocity of water in pipe (V) = $\frac{\text{Discharge}}{\text{Area}}$

$$\begin{bmatrix} = \frac{0.05}{\frac{\pi}{4}(0.20)^2} = 1.6 \text{ m/sec.} \\ \frac{\pi}{4}(0.20)^2 = 0.006 \times 5000 \times 1.6^2 \\ 2 \times 9.81 \times 0.2 \\ = 19.57 \text{ m} \\ \text{H} = 6 + 19.57 \\ \text{H} = 6 + 19.57 \\ \text{H} = \frac{p.Q.gH}{\eta} \\ \frac{\pi}{\eta} = \frac{p.Q.gH}{0.75} \\ \frac{m}{10.05 \times 0.5 \times 9.81 \times 25.57} \\ \frac{m}{10.72} = \frac{10.07 \times 0.51 \times 0.5$$

Ans : (b) The speed at which the shaft runs so that the 70. Which of the following key is under additional deflection of the shaft from the axis of compression rather than in being shear when rotation becomes infinite, is known as critical or under load ? whirling speed. It is equal to the natural frequency of (a) Saddle (b) Barth transverse vibrations but its unit will be revolution per (c) Feather (d) Kennedy seconds (rps). Ans : (b) Barth key is under compression rather than in $m\omega^2(h+e) = sh$ being shear when under load. Barth key is a modification of rectangular key which has two beveled surfaces. The beveled surface ensures that the key will fit tightly. This key is usually under compression rather than shear. Generally it is used for heavy duty. Barth Kev Defle *G shaft mw (h+e) Since whirling speed of a shaft coincide with the natural 71. Shaft is subjected to which of the following frequency of the transverse vibration. stresses ? (a) Bending 67. A mass of 1 kg is attached to the end of a spring with stiffness 0.7 N/mm. The critical (b) Torsional damping coefficient of this system is (c) Both bending and torsional (a) 1.40 Ns/m(b) 18.522 Ns/m (d) None of these (c) 52.92 Ns/m (d) 529.20 Ns/m Ans : (c) Shaft is a part of machine elements which Ans: (c) Given, s =0.7 N/mm= 700N/m shape is generally circular and it is two typesm = 1 Kg1) Machine shaft As we know, 2) Transmission shaft Critical Damping - Shaft is subjected to both bending (due to its own weight or- other machine elements like pulley, gears $(C_a) = 2\sqrt{s \times m}$ etc.) and torsional stresses (due to Resisting torque in $= 2 \times \sqrt{700 \times 1}$ rotational motion). = 52.29 N - s/m72. Which of the following is self-aligning bearing? (b) Spherical (a) Conical The shock absorbing capacity of a bolt can be 68. (c) Rectangular (d) None of these increased by (a) Tightening it properly Ans : (b) Spherical Roller bearing is a type of (b) Increasing shank diameter antifriction bearing. (c) Grinding the shank Spherical Roller Bearing:-(d) Using washer - High load carrying capacity **Ans : (c)** The shock absorbing capacity of a bolt can be -Self alined increased by Grinding the shank. - High friction due to sliding of rollers The shock absorbing capacity of a bolt can be increased Application: (1) Papermills, (2) Marines, (3) Railway by two ways-Axle bores. i) By reducing the shank dia (upto core dia) Which of the followng is Trapezoidal thread ? 73. ii) By increasing the length of the bolt. (a) Acme (b) Square 69. Rankine's theory of failure is applicable for (c) Buttress (d) All options are correct which of the following type of materials? Ans : (a) Acme thread is a special type of trapezoidal (a) Brittle (b) Ductile thread. It is identical thread with respect to trapezoidal (c) Elastic (d) Plastic thread in all respect but thread angle is 29° instead of 30° Ans : (a) Rankine's theory of failure is also called 'Maximum principal stress theory" -According to this theory, for no failure, maximum principal stress developed in a strained body should be 74. The efficiency of self-locking screw is less than are equal to yield distress in uniaxial loading (a) More than 50% (b) Less than 50% $\sigma_1 \leq \sigma g$ (c) Equal to 50%(d) None of these Ans : (b) The efficiency of self- locking screw is less - This theory is applicable for brittle materials. than 50% where as efficiency of over- hauling screw is - It's graphical representation is always square (orgreater than 50%. Rectangular)

 80. When two mutually perpendicular principal stresses are unequal but alike, the maximum shear stress is represented by (a) The diameter of the Mohr's circle (b) Half the diameter of the Mohr's circle (c) One-third the diameter of the Mohr's circle (d) One-fourth the diameter of the Mohr's circle 	 Ans : (d) Applicable theory of failure for ductile materials i) Maximum shear stress theory (Guest & Tresca's Theory) ii) Maximum principal strain theory (ST. Venant's theory) iii) Maximum shear strain energy/ Distortion energy theory/mises- Hanky theory.
Ans : (b) When two mutually perpendicular principal	83. For ductile materials, the most appropriate
stress are unequal but alike, the maximum shear stress is	failure theory is
represented by nan the diameter of the moni s circle	(a) Maximum shear stress theory
$\tau_{\max} = \frac{\sigma_1 - \sigma_2}{2}$	(b) Maximum principal stress theory (c) Maxmum principal strain theory
$\left(\right)$	(d) Shear strain energy theory
$\tau_{\text{max}} = -\left(\frac{\sigma_1 - \sigma_2}{2}\right)$	Ans : (a) For ductile materials, the most appropriate
	failure theory is maximum shear stress theory or- guest
TV,	& tresca failure theory.
	stress developed in a strained body should be less than or equal to maximum shear stress in uniaxial loading at
g Gi	viold point $\begin{bmatrix} \sigma_y \end{bmatrix}$
81 The plane of maximum shear stress has normal	yield point. $t_{max} \leq \frac{1}{2}$
stress that is	Graphical representation of this theory is a hexagon.
(a) Maximum (b) Minimum	84. All the failure theories give nearly the same
(c) Zero (d) None of these	result
Ans : (d)	(a) When one of the principal stresses at a point is larger in comparison to the other
Case I $[\pi_{abc}, \sigma_{c} = 0]$	(b) When shear stresses act
$Case II \qquad \sigma = \sigma.$	(c) When both the principal stresses are
	numerically equal
\top $_{\sigma,()}$	(d) For all situations of stress
	Ans: (a) All the failure theories give nearly the same
	larger in comparison to the other.
$\sigma_r = Avg.$ of Principle stress	85. From the hypothesis given by Rankine, the
For the plane of maximum shear stress, there is same	criteria for failure of brittle materials is
normal stress the shear stress is zero	(a) Maximum principal stress
Plane of maximum shear stress	(b) Maximum strain energy
$(\sigma, -\sigma)$	(c) Maximum shear stress (d) Maximum shear strain energy
$\tan(2\theta_p) = -\left \frac{\sigma_x - \sigma_y}{2\pi}\right $	Ans : (a) From the hypothesis given by Rankine the
(21)	criteria for failure of brittle materials is maximum
normal stress at the maximum shear stress,	principal stress.
$(\sigma_{x}) = \left(\frac{\sigma_{x} - \sigma_{y}}{\sigma_{y}}\right)$	-According to this theory for no failure maximum
$\left(\begin{array}{c} 0_{n} \right)_{s} = \left(\begin{array}{c} 2 \end{array} \right)$	principal stress developed in a strained body should be less than or equal to yield stress in uniayial loading
Note:- "No correct answer" is given by the"	$\Gamma_{-} = -7$
commission"	$\begin{bmatrix} O_i \ge O_y \end{bmatrix}$
82. Consider the following theories of failure :	For brittle material which do not fail by yielding but fail
A. Maximum stress theory	86 In a closed balical spring subject to an axial
B. Maximum strain theory	load, other quantities remaining the same. if
C. Maximum shear stress theory	the wire diameter is doubled an mean radius of
D. Maximum energy or distortion theory	the coil is also doubled, then stiffness of spring
The most suitable for ductile material is :	when compared to oringinal one will become
(a) A and B (b) A and C (c) A and D (c) $(d) = C + (d) D$	(a) I wice (b) Four times
(c) A and D (d) C and D	(c) Eight times (d) Sixteen times

Ans : (a) Stiffness of the spring is given by	$\sigma_x + \sigma_y (\sigma_x - \sigma_y)$
$_{1}$ w Gd ⁴	Ans : (c) $\sigma_n = \frac{1}{2} + \frac{1}{2} \cos 2\theta$
$\mathbf{K} = \frac{1}{\delta} = \frac{1}{\delta \mathbf{D}^3 \mathbf{n}}$	(Bi- axial loading condition)
where D is mean diameter of the spring coil d is	$\sigma + \sigma (\sigma - \sigma)$
diameter of the spring wire h is number of active coils	$=\frac{-\frac{1}{2}}{2} + \frac{-\frac{1}{2}}{2} \cos 90^{\circ}$
and G is modulus of figurity for the spring material.	
Here $d = 2d D = 2D$	$\sigma_x + \sigma_y$
$k' = \frac{Gd^4}{2} = \frac{16}{Gd^4} = 2\frac{Gd^4}{2} = 2k$	$\cdots = \frac{1}{2}$
8D ³ n 8 8D ³ n 8D ³ n	90 For a thin spherical shell subjected to internal
87. The Poisson's ratio for most of the materials is	pressure, the ratio of volumetric strain to
close to	diameterical strain is
(a) 1:2 (b) 1:3	(a) 5:4 (b) 3:2
(c) 1:4 (d) 1:5	(c) 2:1 (d) 3:1
Ans : (b) The ratio of lateral strain to the longitudinal	Ans : (d) For a thin spherical shell:-
strain is called "Poission's ratio"	3nd(1)
$\mu = -lateral Strain$	Volumetric strain $(e_v) = \frac{5pa}{4tE} \left[1 - \frac{1}{m} \right]$ (i)
μ^{μ} Langitudinal Strain	
- The Poission's ratio for most of the materials is close	Diametrical strain $(e_D) = \frac{pd}{4tE} \left(1 - \frac{1}{m}\right)$ (ii)
Materials Poissions Ratio	from equation (i) & (ii)
Alluminium alloy 0.33	3pd (1)
Brass Bronze 0.34	$Ev_{4tE}^{(1-\mu)}_{3}$
Steel 0.27 to 0.30	$\overline{\text{Ev}} = \frac{\text{pd}}{1} (1 - \mu)^2 = \frac{1}{1}$
Bubber 0.5	$4tE^{(1-\mu)}$
Cork 0	$\therefore \boxed{\mathbf{E}_{\mathbf{v}=3:1}=3:1}$
88. True stress represents the ratio of	91. Stud and projection welding belong to the
(a) Average load and average area	following category of welding
(b) Average load and maximum area	(a) gas welding (b) arc welding
(c) Maximum load and maximum area	(c) resistance welding (d) pressure welding
(d) Instantaneous load and instantaneous area	Ans : (c) Stud and projection welding belong to the
Ans : (d) True stress represents the ratio of	resistance welding spot welding, seam welding, upset
instantaneous load (or- internal resistive force) and	butt welding percussion welding are also the belong to
instantaneous area.	this category.
$\mathbf{E} = \mathbf{P} = \mathbf{P} \begin{bmatrix} \mathbf{A} \mathbf{L} \end{bmatrix}$	In Resistance welding:-
$\sigma_{\tau} = \frac{\Gamma_{\text{iff}}}{A_{\tau}} = \frac{\Gamma_{\tau}}{A_{\tau}} = \frac{\Gamma_{\tau}}{A_{\tau}} \left[1 + \frac{\Gamma_{\text{iff}}}{L_{\tau}} \right]$	-Both heat and pressure are use.
	- Heat is generated by the electrical resistance of the
$\sigma_{z} = -\frac{P}{(1+E)}$ or $\sigma_{z} = \sigma(1+E)$	work pieces and the interface between them.
	- Pressure is supplied externally and is varied through
Where, σ_{τ} = True stress, E = Engineering Strain	- due to pressure, a lower temperature needed them oxy-
σ = Engineering Stress	fuel are welding.
89. For an element under the effect of biaxial state	- No filler metal, no flux, no shielding gases.
of normal stress, the normal stresses are on a	-Very high current (up o 100,000A) and very low
45 ⁰ plane is equal to	voltage (0.5to 10v) are used.
(a) Difference of normal stresses	92. Electrode gets consumed in the following
(b) Sum of normal stresses	welding process
(c) Half of the sum of normal stresses	(a) gas (b) resistance
(d) Half of the difference of normal stresses	(c) thermit (d) arc

Ans : (d) Generally in arc welding process like MIG,	97. Slick in a foundry shop is used to
MAG welding process, electrode gets consumed. But in	(a) make and repair corners in a mould
TIG are welding electrodes does not consumed.	(b) throughly mix up moulding sand
- Metal transfer across the arc	(c) make venting holes in the mould
1- Gravity force	(d) prepare gates
2- Gas expansion Force	(a) prepare guess $A_{\rm res}$ (b) A click is a dauble and ad tool having a flat an
3- Surface tension	Ans: (a) A slick is a double ended tool having a flat on
4- Electromagnetic force	one end and a spoon and the other. It is used for
93. The strength of a properly welded joint as	repairing and finishing the mould surfaces after the
compared to base metal would be	pattern is withdrawn.
(a) same (b) more	98. Which of the following processes would
(c) less (d) unpredictable	produce strongest components ?
Ans : (b) The strength of a properly welded joint as	(a) die casting
compared to base metal would be more.	(b) hot rolling
94. Oxygen to acetylene ratio in case of carburising	(c) extrusion
flame is	(d) forging
(a) 0.5 : 1 (b) 0.9 : 1	Ans: (d) Cold rolling produces strongest components
(c) 1:1 (d) 1:1.2	If we compare cold forging and cold rolling then cold
Ans : (b) Oxygen to acetylene ratio-	fareing produces stronger components
1- In case of carburising flame $\rightarrow 0.9$:1	lorging produces stronger components.
2- In case of oxidizing flame \rightarrow 1.5:1	99. A sprue hole is
3- In case of Neutral flame \rightarrow 1:1	(a) a casting defect
- Carburizing flame is used generally in flame	(b) a hold made for riveting
hardening	(c) a blind hole in jigs
95. For steel castings, the following type of sand is	(d) an opening in mould for pouring molten metal
better	Ans : (d) A sprue hole is an opening in mould for
(a) fine-grain	pouring molten metal It connects gate
(b) coarse–grain	or- runner to nowering cun or- basin
(c) medium grain	or runner to powering cup or ousin.
(d) fine-grain, coarser-grain and medium grain	Spring
	Sprice \
Ans: (b) For steel casting, coarse grain type sand is	/ Runner
property is too high	
06 Hot toon nofous to	Mould
(a) casting defect	100 Coining is the operation of
(a) custing delect	(a) cold forging
(c) process of heat treatment	(a) cold lorging (b) hot foreing
(d) weathering of non-ferrous materials	
Ans : (a) Hot tear refers to casting defect	(c) cold extrusion
• A Hot tear is defect that accurs during solidification	(d) piercing
of the casting	Ans : (a) Coning is essentially a cold- forging operation
• Hot tears are internal or external ragged	except for the fact that the flow of the metal occurs
discontinuities or crack on the casting surface, caused	only at the top layers and hot the entire volume.
by rapid contraction occurring immediately after the	Punch
metal solidified.	
	Die
	work
	PHIIIII
Casting	wwwww
	- Coining is used for making coins, medals and similar
Hattear	articles.
SSC JE Mechanical Online Exam 2017 dt 1 3 2017 10 am	19 VCT

SSC Junior Engineer Mechanical Online Exam 2017 CPWD/CWC/MES Mechanical Engineering

Time : 2.45 pm]

[Exam Date : 1 March, 2017

 If 'L' is the span of a light suspension bridge, whose, each cable carries total weight (w) and the central dip is 'y', the horizontal pull at each support is (a) wL/4y (b) wL/8y 	$\begin{vmatrix} \Rightarrow & T \propto \sqrt{\ell} \\ \Rightarrow & T \propto \frac{l}{\sqrt{g}} \\ \Rightarrow & \text{The time period is proportional to square root of its} \end{vmatrix}$
(c) wL/2y (d) wL/y	length and inversely proportional to square root of its
Ans : (b) If 'L' is the span of a light suspension bridge whose each cable carries total weight (w) and the central dip is 'y' the horizontal pull at each support is wL/ 8y Assuming the horizontal pull at support = H Taking moment about the central dip point: $H \times y = \frac{W}{2} \times \frac{L}{4}$	 acceleration due to gravity. 4. The sum of kinetic and potential energy of a falling body (a) is constant at all points (b) varies from point to point (c) is maximum at starting and goes on increasing (d) is maximum at starting and goes on decreasing Ans : (a) The sum of kinetic and potential energy of a falling body is constant at all points. The sum of kinetic
Z 4 WI	and potential energy is called mechanical energy. When
$H = \frac{WL}{8v}$	kinetic energy increases. The decrease in potential
The vehicle moving on a level circular path will	energy is exactly equal to the increase in kinetic energy.
exert pressure such that	5. In order to double the period of a simple
(a) the reaction on the outer wheels will be more	(a) the mass of its bob should be doubled
(b) the reaction on the inner wheels will be more	(b) the mass of its bob should be quadrupled
(c) the reaction on the inner wheels as well as on the outer wheels will be equal	(c) its length should be doubled
(d) it depends on the speed	(d) its length should be quadrupted
Ans : (a) The vehicle moving on a level circular path will exert pressure such that the reaction on the outer wheels will be more. As outer wheels covers larger distance than the inner wheels due to which outer wheel will have more centrifugal force and a reaction force opposite to that centrifugal force will be used to balance the wheel inward. So the value of this reaction will be	Time period will be two times when length of string (ℓ) will be four time because the time period is proportional to the square root of string length
more on outer wheel than on inner wheel.	6. A body is vibrating at 10 vibrations/second in
3. Which one of the following laws is not applicable	Simple Harmonic Motion of 10 cm amplitude.
for a simple pendulum?	I he maximum velocity in cm/sec can be (a) 100π (b) 50π
(a) the time period does not depend on its magnitude (b) the time period is proportional to its length	(c) 200π (d) 100
(c) the time period is proportional to square root of its length	Ans : (c) Equation of simple harmonic motion are as followed
(d) the time period is inversely proportional to	$\mathbf{x} = \mathbf{A} \sin \omega t$
Ans : (b) The time period is not proportional to its length	$\dot{x} = A\omega \cos \omega t$ Maximum speed will be when $\cos \omega t$ is maximum i.e 1
$T = 2\pi \sqrt{\frac{\ell}{g}}$ T = Time period ℓ = Length of string	$\Rightarrow Maximum velocity = A\omega$ Where A is the Amplitude $\omega = natural frequency$ f = Frequency = 10 vib/sec $\omega = \frac{2\pi}{T} = 2\pi f = 20\pi$
g = Acceleration due to gravity	Maximum velocity = $10 \times 20\pi = 200\pi$

7. If two bodies, one light and other heavy, have equal kinetic energy, which one has a greater	(a) translation (b) rotational (c) gyroscopic (d) simple harmonic
momentum?	Ans : (d)
(a) the heavy body	The type of motion when the acceleration is
(b) the light body	proportional to displacement is called simple harmonic
(c) both have equal momentum	motion.
(d) unpredictable	Simple harmonic motion is a special type of
Ans : (a) K.E = $\frac{1}{2}$ mv ²	periodic motion where the restoring force on the moving object is directly proportional to the object's displacement magnitude and acts towards the objects
$P^2 = K.E \times 2m$	equilibrium position
$P = \sqrt{2 \times K F \times m}$	$x = A \sin \omega t$
$\mathbf{D} = \sqrt{2} \times \mathbf{R} \cdot \mathbf{E} \times \mathbf{m}$	·
$P \propto \sqrt{m}$	$x = a \omega \cos \omega t$
so, the body whose mass (m) is higher (heavy) body will have greater momentum.	$\ddot{\mathbf{x}} = \mathbf{A}\omega^2 \sin\omega t$
8. A bucket of water weighing 10 kg is pulled up	$x = -x \omega^2$
from a 20 m deep well by a rope weighing 1 kg/m	Acceleration ∞ displacement
length, then the work done is	12. The escape velocity of a body on earth .
(a) 200 kg-m (b) 400 kg-m	(a) increases with the increase of its mass
(c) 500 kg-III (d) 600 kg-III	(b) decreases with the increase of its mass
Ans: (D) Weight of the region $1/20 = 20\log$	(c) remains unchanged with variation of mass
Weight of the bucket 10 kg	(d) varies as the square of the change in mass
Weight of the rope is acting at the centre of rope	Ans : (c) The escape velocity of a body on earth
So total work done	remains unchanged with variation of the body mass.
$W = 20 \times 10 + 10 \times 20 = 400 \text{ kg}\text{-m}$	$-mR^2$
W=(Rone weighty Distance)+(Bucket weighty Distance)]	$I = \frac{1}{2}$, for circular disc
Which of the following is an example of a body	
undergoing translational equilibrium?	or $V_e = \sqrt{2gR_e}$
(a) a body at rest on a table	where, $V_e = Escape$ velocity
(b) a boy travelling in a circular path at a constant	g = acceleration due to gravity
speed	$R_e = Radius of earth$
(c) a body folding with constant angular speed	$M_e = Mass of earth$
(d) a body sliding down a frictionless inclined plane	- The escape velocity from earth surface is about 11.2
(a) if oddy sharing do with a freedomess menticular object add	K.m/sec.
up to zero and have no resultant force then it's in	13. The velocity of the satellite in an orbit close to
translational equilibrium. Example- A body at rest on	(a) radius of the orbit only
table.	(a) factors of the official only (b) acceleration due to gravity only
10. A boy is swinging on a swing. If another boy sits	(c) square root of product of radius of the orbit and
along with him without disturbing his motion,	acceleration due to gravity
then the time period of swing will	(d) product of radius of the orbit and gravitational
(a) increase (b) decrease	constant
(c) be doubled (d) remain the same	Ans : (c) The velocity of the satellite in an orbit close
Ans : (d) A boy is swinging on a swing. If another boy	to earths surface depends on square root of product of
sits along with him without disturbing his motion, then	radius of the orbit and acceleration due to gravity.
neriod depends upon only length of the string &	$\int GM = \int \sigma P^2$
acceleration due to gravity.	$V_0 = \sqrt{\frac{GN_e}{D}} = \sqrt{\frac{gR_e}{D}}$
	$\bigvee \kappa_e + n \qquad \bigvee \kappa_e + n$
$T = 2\pi \sqrt{\frac{\ell}{2}}$	Since satellite is close to the earth surface therefore
Vg	neglecting the height of satellite from the earth surface
$T \propto \sqrt{\ell}$	(h=0)
1	$\sqrt{gR^2}$
$T \propto \frac{1}{\sqrt{g}}$	$v_0 = \sqrt{\frac{e^{-e}}{Re}} = \sqrt{gR_e}$
11. The type of motion when the acceleration is	$v = \sqrt{\alpha R}$
proportional to displacement is called	v ₀ - V ^{gi} v _e

proportional to displacement is called ____. |L| SSC JE Mechanical Online Exam 2017 dt. 1.3.2017 2.45pm 21

Ans : (b)	(a) d (b) $\frac{d}{d}$
F, (90°-0) = (5000	
Pixed plate	(c) $\frac{d}{d}$ (d) $\frac{d}{d}$
	$\frac{2}{4}$
	Ans : (a) Cross- sectional area of circular pipe π
$v = v \sin \theta v_0 = 0$ where $m = o \Omega = o \Delta v$	$A = \frac{\pi}{4} d^2$
$v_i = v \sin(v_f - 0)$ where $m = pQ - pAv$: $F = m(v_f - v_f) = m(v \sin(\theta_f - 0))$	4
$= oAv(v \sin \theta)$	
$= \rho A v^2 \sin \theta$	
22. A weir system in which the downstream water	
level of the weir nappe is higher than the crest is	
called	Perimeter (p) = πd
(a) submerged (b) overflowing	hydraulic mean denth (m) = $\frac{A}{m}$
(c) broad-crested (d) cipoletti	P
Ans : (a) A weir system in which the downstream water level of the weir nappe is higher than the crest is called	$m = \frac{\pi}{d^2} d^2$
submerged weir. If the width of the crest of the weir is	$4^{\prime}/\pi d$
less than half the height of water above the weir crest is	d
called narrow crested weir.	$m = \frac{1}{4}$
-In spillway of a dam is used ogee weir.	27. In a centrifugal nump, the liquid enters the
23. Equation of continuity results from the principal	pump from
(a) energy (b) flow	(a) the top (b) the bottom
(c) mass (d) momentum	(c) the centre (d) from sides
Ans : (c) Equation of continuity results from the	Ans : (c) In a centrifugal pump, the liquid enters the
principle of conservation of mass. It state that net rate of	pump from the centre of impeller, centrifugal pump
flow in small volume must be zero.	energy
i.e	- flow of water inside the impeller of centrifugal nump
$\dot{(m_{in})}_{cv} = (\dot{m}_{out})_{cv}$	is forced vortex flow.
(oAV) = (oAV)	- flow of water leaving the impeller is free vortex
$\sum_{v \in V_{in}} (r - v_{vout})$	- Before starting the centrifugal pump, the delivery
For incompressible fluid, $(p = c)$ $A \cdot V_{c} = A \cdot V_{c}$	valve should be fully closed.
74 For starting an axial flow nump its delivery	28. High specific speed of turbine implies that it is
valve should be .	(a) propeller turbine
(a) closed	(b) Francis turbine
(b) open	(c) Impulse turbine
(c) depends on starting condition and flow desired	(d) Francis turbine or impulse turbine
(d) could be either open or closed	Ans : (a) Propeller turbine is a high specific speed
Ans : (b) To start an axial flow pump its transfer valve	turbine.
also called axial flow numps	High specific speed turbine- kaplan turbine, propeller
25 When a piping system is made up primarily of	turbine
friction head and very little of vertical, then pipe	Medium specific speed turbine- Francis turbine
characteristics should be	Low specific speed turbine- pelton wheel
(a) horizontal	specific speed in decreasing order-
(b) nearly horizontal	Kapian> properter> Francis> petion wheet
(c) very steep (d) first rise and then fall	29. Head loss in a flowing fluid is experienced due to
(u) IIIst fise and then fall	A friction at surface
friction head and very little of vertical then nine	B change of direction
characteristics should be nearly horizontal	C change of section of passage
26. The hydraulic mean depth for a circular pipe of	D obstruction in passage
diameter 'd' running full is equal to	(a) only A (b) only B
	(c) only B and C (d) A, B, C and D

Ans : (d) Head loss in a flowing fluid is experienced Head loss	Ans : (d) When a fluid flows in con known as free cylindrical vortex flow is made to rotate by means of some en	centric circle, it is v. When fluid mass external agency it is
V V	called forced vortex flow	
(1) Enintianal law	Example of free vortex flow:-	againg ofter it has
(1) Entrance loss (1) Frictional loss (2) Sudden Contraction	left the impeller	casing after it has
or Expansion of pipe loss	(2) Flow of fluid in turbine casing	before it enter the
(3) Exit loss	guide vanes	
(4) Obstruction loss	(3) Flow through a small hole in wash	basin or bath tub
(5) Pipe bending loss	Example of forced vortex flow:-	
30. One dimensional flow is	(1) Flow of liquid inside the impeller of	centrifugal pump
(a) restricted to flow in a straight line	(2) Flow of liquid inside the runner of	turbine.
(b) uniform flow	34. Maximum impulse will b	e developed in
(c) one which neglects changes in a transverse	hydraulic ram when	
direction (d) the most general flow	(a) when valve closes suddenly (b) supply pipe is long	
(d) the most general flow	(c) supply pipe is forg	
Ans: (c) One dimensional flow is one which neglects	(d) ram chamber is large	
streamlines of its moving particle are represented by	Ans : (a) Maximum impulse will	be developed in
straight line is known as one dimensional flow.	hydraulic ram when valve closes su	ddenly. Hydraulic
• Two dimensional flow is represented by a curve.	ram uses the water hammer effect to	develop pressure
• Three dimensional flow is represented as flow in	that allow a portion of input water to	be lifted to a point
the River, Pipe, etc.	higher than where the water originally	v started
31. Specific speed of a turbine depends upon .	35. Critical-depth meter is used to	measure
(a) speed, power and discharge	(a) discharge in an open channel	
(b) discharge and power	(b) hydraulic jump	
(c) speed and head	(c) depth of flow in channel	
(d) speed, power and head	(d) depth of channel	
Ans : (d) Specific speed of a turbine depends upon	Ans: (a) Critical doubth motor is used to may	aura dicabarga in
speed, power and head	open channel	isure discharge m
Specific speed of turbine,	Nozzle \rightarrow flow rate or disch	arge
$(N_{\rm N})$ N \sqrt{P}	Pitot tube \rightarrow Velocity	iui 50
$(\mathrm{IN}_{\mathrm{S}}) = \frac{1}{\mathrm{H}^{5/4}}$	orifice meter \rightarrow flow rate or disch	arge
Where,	Bend meter \rightarrow flow rate or disch	arge
$N \rightarrow r.p.m$	Hot wire an emometer \rightarrow Velocity of	air or gas
$P \rightarrow power$	Venturimeter \rightarrow flow rate or disch	arge
$H \rightarrow Net head$	Rotameter \rightarrow flow rate or disch	arge
- Specific speed relates the shape of the turbine rather	36. Medium specific speed of a pu	mp implies that it
than the size of turbine. It means all turbine of the same	is .	rr
shape have same specific speed.	(a) centrifugal pump	
- Specific speed provides a basis on which different	(b) mixed flow pump	
22 If a monthnices is supping full at the outlet, the	(c) axial flow pump	
vacuum at vena-contract:	(d) axial flow pump or centrifug	al pump
(a) increases velocity of iet	Ans : (b) mixed flow pump is a	medium specific
(b) decreases velocity of jet	speed pump	
(c) decreases the discharge	Turbine	Specific speed
(d) decreases the value of coefficient of contraction		(MKS unit)
Ans : (a) If a mouthpiece is running full at the outlet,	Tangential flow (e.g. Pelton Wheel)	10-35
the vacuum at vena contract increase velocity of jet.	Radial Flow	60-300
33. When a fluid flows in concentric circle, it is	(e.g. Francis Turbine)	200.000
known as	Axial flow (1) Propeller	300-600
(a) free circular motion	(2) Kaplan	600-1000
(b) free rotational motion	Medium specific speed of a pump	implies that it is
(c) free spiral vortex flow	mixed flow pump.	10 1
	II Note-Modern Francis Turbine is a mix	ted flow turbine.

37. The hydraulic grade line is	Ans : (a) The flow at critical depth in an open channel
(a) always moving up	is maximum. The depth of water in a channel
(b) always moving down	corresponding to the minimum specific energy is called
(c) always above the energy grade line	critical depth.
(d) the velocity head below the energy grade line	V^2
Ans: (d)	critical depth (h_c) = $\frac{v_c}{c}$
	g
$V_1/2g \prod T T_1 V_2/2w$	$(2)^{\frac{1}{3}}$
	or $h_c = \left(\frac{q}{1}\right)$
$\mathbf{P}_{\mathbf{y}}\omega$ $(\mathcal{A}, [\mathbf{P}], \omega)$	(g)
	where,
	$V_c = critical velocity$
$Z_1 = Z_2$	q = unit discharge
	41 In Kaplan turbine runner, the number of blades
Hydraulic grade line joins piezometric head (sum of	is generally of the order
pressure head & potential head or datum head) at	(a) 2 4 (b) 4 8
various points. Total energy line (TEL) joins total	$(a) 2 - 4 \qquad (b) 4 - 8$
velocity head) at various points	$\begin{array}{c} (c) 8 - 16 \\ \hline \end{array} \qquad (d) 16 - 24 \\ \hline \end{array}$
• Hydraulic grade line (HGL) is always parallel and	Ans : (b) In Kaplan turbine runner, the number of
lower than total energy line	blades is generally of the order 4-8 Kaplan turbine is an
• The total energy lies over the hydraulic grade line	axial flow reaction turbine
by an amount equal to the velocity heads	• High efficiency can be obtained in Kaplan turbine at
38 The ratio of death of hugket for a Polton wheel	part load
to the diameter of jet is of the order of	Runner blades of Kaplan turbine are adjustable
(a) 1 (b) 1.2	• Runner blade of propeller turbine are fixed.
(a) 1 (b) 1.2	42. Air vessels in reciprocating pump are used to
(\mathbf{c}) 1.5 (\mathbf{d}) 1.6 $($	· · · · · · · · · · · · · · · · · · ·
wheel to the diameter of jet is of the order of 1.2 The	$\overline{(a)}$ smoothen flow
number of bucket on the periphery of a pelton	(b) reduce acceleration to minimum
D	(c) increase nump efficiency
wheel = $\frac{D}{2d}$ + 15	(d) save nump from cavitation
20 Where	(d) sure pump nom curnation
D = Diameter of the wheel	iron closed chamber having an opening at its base
d= Diameter of let	through which the water flows into the vessel or
- Ratio of D/d is called jet ratio	from the vessel. The vessel is filled up with
- Let ratio is normally taken 1.2	compressed air. The air vessel are fitted to the
30 The contraction of area for through orifice in	suction pipe and delivery pipe close to the cylinder
57. The contraction of area for through office in tank depends on	of the pump.
A shape of orifice	Use of air vessel:-
B size of orifice	(1) To get continuous supply at a uniform rate
C head in tank	(2) To save the power required to drive the pump
(a) only A (b) only A and B	(2) To save the power required to drive the pump
(a) only A and C (b) only A and C	(4) To source acceleration
(c) only T and C (d) T , D and C	(4) To save a considerable amount of work
depends on-	43. A hydraulic intensifier normally consists of
(1) Shape of orifice	(a) two cylinders, two rams and a storage device
(2) Size of orifice	(b) a cylinder and a ram
(3) Head in tank	(c) two co-axial rams and two cylinders
The maximum contraction takes place at a section	(d) a cylinder, a piston, storage tank and control valve
slightly on the downstream side of the orifice, where the	Ans : (c) A hydraulic intensifier normally consists of
jet is more or less horizontal	two co-axial rams and two cylinders. Hydraulic
- vena contracta is at a distance of about d/2 from the	intensifier is used to increase the intensity of pressure of
orifice	water by available energy from a large quantity of water
40. The flow at critical depth in an open channel is	at low pressure.
•	44. Cavitation is caused by
(a) maximum (b) minimum	(a) high velocity (b) high pressure
(c) zero (d) half of normal flow	(c) weak material (d) low pressure

Ans : (d) Cavitations is caused by low pressure. The	49. Percentage of carbon in steel is
formation, growth and collapse of vapour filled cavities or	(a) 0.1% to 0.8% (b) 0.35% to 0.45%
bubbles in a flowing fluid due to very low pressure (below the answer $\int_{\Omega} \Omega$ is the second due to	(c) 1.85 to 4.2% (d) 0.1% to 1.5%
The factors contribute towards start of a cavitation in	Ans: (d) Percentage of carbon in steel is 0.1% to 1.5%
nump is	50. Hardness of steel depends on
(1) High runner speed	(a) amount of cementite it contains
(2) High temperature	(b) amount of carbon it contains
(3) Less available net positive suction head- (NPSH)	(c) contains of anoying elements (d) method of manufacture of steel
45. Which of the following pumps is used for	(u) method of manufacture of steel
pumping viscous fluids?	carbon it contains depending on the temperature and
(a) centrifugal pump (b) screw pump	composition of the steel it can be hardened or softened
(c) reciprocating pump (d) jet pump	To make steel harder, it must be heated to very high
Ans : (b) Screw pump is used for pumping viscous	temperatures. The final result of exactly how hard the steel
fluids. Screw pump is a positive displacement pump.	depends on the amount of carbon present in the steel.
Example of positive displacement pump-	51 is added to raise the yeild point of low
(1) Reciprocating pump	carbon steel.
(2) Gear pump	(a) Sincon (b) Carbon (c) Phosphorous (d) Sulphur
(3)Screw pump	Ans: (a) Bhosphorous is added to reise the yield point of
(4) Vane pump	low carbon steel Sulphur is added to improve
(5) Diaphram pump	machinability. Silicon is added to improve hardenability
46. Steel whose elements are used for the purpose of	and act as deoxidizer.
modifying the mechanical properties of plain	52. An alloy steel contains
(a) Allow steel (b) Inver	(a) more than 0.5% Mn and 0.5% Si
(a) Stainlass steel (b) filval (c) Stainlass steel (d) High speed steel	(b) less than 0.5% Mn and 0.5% Si
(c) Stanless steel (d) High speed steel	(c) more than 0.35% Mn and 0.5% Si
Ans: (a) Steel whose elements are used for the purpose of modifying the mechanical properties of plain carbon	(d) less than 0.35% Mn and 0.5% Si
steel is called allow steel	Ans : (a) An alloy steel contains more than 0.5% Mn
Effect of alloving element in steel:-	and 0.5% Si. Manganese is added to steel in order to
(1) Chromium - Corrosion resistance, increase hardness	magnetic nermeability and increase resistance to high
(2) Nickel - corrosion resistance, increase hardness &	temperature oxidation.
toughness, high tensile strength	53. Alloy steel as compared to carbon steel is more
(3) Cobalt - Improve red hardness at high temperature	·
47. Alloy steel containing 36% nickel is called	A. tough B. strong C. fatigue resistance
(a) Invar (b) Stainless steel	(a) only A (b) only B
(c) High speed steel (d) None of these	(c) only C (d) None of these
Ans : (a) Alloy steel containing 36% nickel is called	Ans : (d) Carbon steel as compared to alloy steel is
invar. It has nearly zero coefficient of expansion. It is	more tough, strong and fatigue resistance. An alloy
widely used for making pendulum of clocks, precision	steel is defined as a steel to which element other than
measuring instruments.	important properties
48. Carbon steel is	Alloy steel Application
(a) produced by adding carbon in steel	Invar Prevent thermal expansion
(b) an alloy of fron and carbon with varying quantities of phosphorus and sulphur	Tool steel Making die hall bearing and
(c) numer than the cast iron	machine tool
(d) None of these	Silicon Steel Transformer lamination
Ans : (b) Carbon steel is an alloy of iron and carbon	Spring steel Non sparking character
with varying quantities of phosphorus and sulphur.	Stainless steel Surgical tools culinergy uses
Types of carbon steel:-	54 Steel which destroys by huming is called
(1) Dead mild steel - up to 0.15 % carbon	(a) Allow steel (b) Carbon steel
(2) Low carbon steel - 0.15% - 0.45% carbon	(a) Alloy steel (b) Calbon steel (c) Silicon steel (d) Killed steel
(3) Medium carbon steel - 0.45% - 0.8% carbon	(c) Shicon sizer (u) Kilicu sizer
(4) High carbon steel - 0.8% - 1.5% carbon	steel Killed steel is deoxidised to such an extent that there
By addition of silicon, if the removal of oxygen is	is no gas evolution during solidificatin. Killed steels are
complete called killed steel	used when a homogeneous structure is required.

64. Antifriction bearings are :	Ans \cdot (d) Allen bolts are provided with hexagonal
A. Sleeve bearings	depression in head A hexagonal key also known as
B. Hydrodynamic bearings	allen holts. Allen holt is a small headed tool used for
C. Thin lubricated bearings	driving bolts and screw with havagonal socket
D. Ball and roller bearings	diving boits and screw with nexagonal socket.
(a) only A (b) only B and C	69. If the tearing efficiency of a riveted joint is 60%,
(c) only C (d) None of these	then ratio of rivet hole diameter to the pitch of
Ans : (d) Sliding contact bearing:-	rivets is
(a) Sleeve bearing	(a) 0.2 (b) 0.33
(b) Hydrodynamic Bearing	(c) 0.4 (d) 0.5
(c) Thin Lubricated Bearing	Ans : (c) tearing efficiency of riveted joint
Antifrication Bearing-Ball and Roller Bearings	$\eta = 60\% = 0.6$
65. In V-belt drive, belt touches	Strength of solid plate = $p \times t \times \sigma_t$
(a) at bottom	Tearing strength = $(n-d) \times t \times \sigma$
(b) at sides only	tearing strength $(p, q) \times t \times 0_t$
(c) both at bottom and sides	$\eta = \frac{\text{tearing strength}}{2}$
(d) could touch anywhere	Strength of solid plate
Ans : (b) V-belts make contact at the sides of the	$(p-d) \times t \times \sigma_{t}$
groove of the pulley.	$0.6 \frac{1}{n \times t \times \sigma}$
• Mostly used in industries	
• The angle of V groove is 30°-40°	$p \in \frac{p-d}{d}$
• The power transmission is high.	p
66. In standard taper roller bearings, the angle of	
taper of outer raceway is	$\frac{u}{r} = 1.0.6 = 0.4$
(a) 5° (b) 8°	p
(c) 15° (d) 25°	d o d
Ans: (d) In Standard taper roller bearing, the angel of	$ _{p}^{-=0.4}$
taper of outer raceway is 25°. Taper roller bearing can	
carry both radial and thrust loads. The follers and race	70. A riveted joint may fail due to :
elements intersect at a common point	A. Shearing of the rivet
67 Basic shaft is one	B. Shearing off the plate at an edge
(a) whose upper deviation is zero	C. Crushing of the rivet
(b) whose lower deviation is zero	(a) only A (b) only B
(c) whose lower as well as upper deviations are	(c) only C (d) Any of A or B or C
zero	Ans : (d) A riveted joint may fail in the following
(d) does not exist	ways-
Ans: (a)	(1) Searing of the rivet
	(2) Shearing of the plate at an edge
\pm 10 let ance \pm Basic size	(2) Shearing of the plate at an edge
	(4) Tearing of the plate series a row of rivets
	(4) Tearing of the plate at an adda can be avoided by
λ ←Sha0.	- rearing of the plate at an edge can be avoided by
	keeping the margin from the edge of plate to the centre
Shafi Basis System	line of rivers in the hearest row, m= 1.5 d
Basic shaft is one whose upper deviation is zero. When	d= diameter of rivet hole
shaft is kept as a constant member and different fits are	71. The same volume of all gases would represent
obtained by varying the hole size, then the limit	their
systsem is said to be on the a shaft basis.	(a) densities
• Hole basis system is one whose lower deviation is	(b) specific weights
zero.	(c) molecular weights
68. Allen bolts are .	(d) gas characteristics constants
(a) self-locking bolts	Ans : (c) The same volume of all gases would represent
(b) designed for shock load	their molecular weights.
(c) used in aircraft application	According to Avagadro law- "Under ideal conditions of
(d) provided with beyagonal depression in head	temperature and pressure, equal volume of all gases have
(a) provided with hexagonal depression in head	I restance of an Based have

Ans: (c) In a carnot cycle, heat is transferred at	82. A system will be thermodynamic equilibrium
	Only If it is in
$T \uparrow A Q_1$ adiabatic	A. Inermal equilibrium
	C. Chemical equilibrium
	(a) only A (b) only D
T ₁ 3 02	(a) only A (b) only B
Jisothermal	(c) only C (d) A, B and C
s →v	Ans: (d) A system will be thermodynamic equilibrium
$1-2 \rightarrow$ Reversible isothermal expansion or heat	(1) Thermal equilibrium: Equality of temperature
addition.	(1) Thermal equilibrium: Equality of temperature
$2-3 \rightarrow$ Reversible adiabatic or isentropic expansion.	potential
3-4→ Reversible isothermal compression or heat rejection.	(3) Mechanical equilibrium: Equality of forces and couples
$4-1 \rightarrow$ Isentropic compression.	83 Two gases A and B with their molecular weights
79. Change of entropy depends upon .	28 and 44 respectively, expand at constant
(a) change of mass	pressures through the same temperature range.
(b) change of temperature	The ratio of quantity of work done by the two
(c) change of specific heats	gases (A:B) is
(d) change of heat	(a) 7:11 (b) 11:7
Ans : (d) Change of entropy depends upon change of heat	(c) 4:11 (d) 7:4
$S_{a} - S_{b} = \frac{\partial q}{\partial q}$	Ans : (b) According to ideal gas equation.
	$PV = n\overline{R}T$
When heat is added, randomness increases & when heat	m –
added entropy increases and vice versa	$=\frac{m}{M}RT$
- Entropy is thermodynamic property	1
- Entropy is a extensive property	$\therefore PV \propto \frac{1}{M}$
80. The ratio of actual cycle efficiency to that of	M
ideal cycle efficiency is called .	$dw \propto \frac{1}{2}$
(a) effectiveness (b) work ratio	M
(c) efficiency ratio (d) isentropic efficiency	$(dw)_A = M_B$ (Given M = 28, M = 44)
Ans: (c) The ratio of actual cycle efficiency to that of	$\frac{1}{(\mathrm{dw})_{\mathrm{B}}} = \frac{1}{\mathrm{M}_{\mathrm{A}}} = \frac{(\mathrm{Given M_{\mathrm{A}}} - 20, \mathrm{M_{\mathrm{B}}} - 44)}{\mathrm{M}_{\mathrm{A}}}$
ideal cycle efficiency is called efficiency ratio.	44 11
$Efficiency ratio = \frac{Efficiency of actual cycle}{1}$	$=\frac{11}{25}=\frac{11}{7}$
Efficiency of ideal cycle	84 Davis stooring goar consists of
Efficiency ratio shows that how close the cycle is to the	(a) Sliding pairs (b) Turning pairs
Ideal cycle.	(c) Rolling pairs (d) Higher pairs
81. Which of the following cycles is not a reversible cycle?	$Ans \cdot (a)$ A Davis steering gear has sliding pairs which
A Carnot B Ericsson C Stirling D Joule	means more friction and easy wearing The gear full
(a) only A (b) only A and B	fills the fundamental equation of gearing in all the
(c) only C (d) None of these	position but it becomes inaccurate after some time.
Ans : (d) Reversible process is one which can be	85. Properties of substances like pressure,
reversed along the same path, restoring the system and	temperature and density, in thermodynamic co-
surrounding to its original state.	ordinates are
Condition for a process to be reversible:-	(a) path functions (b) point functions
(1) Process must be quasi- static	(c) cyclic functions (d) real functions
(2) No friction	Ans : (b) Properties of substance like pressure, temperature,
(3) Heat transfer, if any should be only through	and density in thermodynamic co-ordinates are point functions.
infinitely small temperature difference.	Thermodynamic property is used to describe the state of the
Reversible cycle:-	system. Point functions has following characteristics:
(1) Carnot cycle	(1) Exact differential or perfect differential
(2) Ericsson cycle	(2) Measurable characteristic
(3) Stirling cycle	(3) Point function or state variable

86. The refrigeration plants are charged by refrigerants from the cylinder at the .	90. Fittings in ammonia absorption refrigeration system are made of .	
(a) suction of compressor	(a) Cast steel or forgings (b) Copper	
(b) crank case of compressor	(c) Brass (d) Aluminium	
(c) evaporator	Ans : (a) Fitting in ammonia absorption refrigerant	
(d) receiver	system are made of cast steel or forgings.	
Ans : (d) The refrigeration plants are charged by	91. Lithium bromide in vapour absorption	
refrigerants from the cylinder at the receiver.	refrigeration system is used as	
Condenser	(a) refrigerant (b) cooling substance	
Record - Free -	(c) auxillary refrigerant (d) absorbent	
Ų	Ans : (d) Lithium bromide in vapour absorption	
x	refrigeration system is used as absorbent and water as a	
typenin Ly WWH	refrigerant	
Device Q [*] Trapontor	(1) Aqua ammonia system-	
Compressor: - Isentropic compression of refrigerant	Refrigerant - Amnonia	
vapour	Absorber - Water	
Condenser:- Isobaric heat rejection by refrigerant	(2) In Amnonia, water, hydrogen system-	
Expansion :- Isenthalpic expansion of liquid refrigerant	Refrigerant - Ammonia	
Evaporator:- Isobaric heat addition to refrigerant vapour.	Absorber - Water	
87. Which of the following refrigerant	Liquid pump replacement - Hydrogen	
characteristics change constantly during the	92. Vertical lines on pressure-enthalpy chart show constant	
(a) pressure and phase	(a) pressure lines (b) temperature lines	
(a) pressure and phase (b) temperature and pressure	(c) total heat lines (d) entropy lines	
(c) phase and flow	Ans : (c) Vertical lines on pressure - enthalpy chart	
(d) flow and pressure	show constant total heat or constant enthalpy lines	
Ans : (b) Temperature and pressure change constantly	P1	
during the cooling cycle	1 3 5 7 P	
Property of a refrigerant		
(1) Low boiling point		
(2) High critical temperature		
(3) High latent heat of vaporisation		
(4) Low specific heat of liquid.		
88. Moisture in a refrigerant system is removed by	In this figure 1-2.3-4.5-6.7-8, are canstant enthalpy line	
	and P_{h} , P_{l} are respectively constant higher pressure and	
A. Driers B. Filter driers C. Desiccants	lower pressure.	
(a) only A (b) only B	- In constant enthalpy or isenthalpic process, dryness	
(c) only C (d) A, B and C	fraction improves.	
Ans : (d) Moisture in a refrigerant system is removed by	93. The condenser and evaporator tubes in a Freen	
arriving medium which during evels in the refrigeration	refrigeration plant are made of .	
system absorb heat from a low temperature system and	(a) steel (b) copper	
discard the heat to a higher temperature system.	(c) brass (d) aluminium	
89 The most suitable refrigerant for a commercial	Ans : (b) Freen's react with Aluminium hence	
ice plant is	whenever Freon's are used as refrigerant Aluminium is	
(a) Brine (b) NH_3	not used instead copper is used as material of	
(c) Freon (d) Air	construction.	
Ans : (b) The most suitable refrigerant for a commercial	NH ₃ is use as a refrigerant copper is not used as	
ice plant is ammonia (NH_2)	material of construct because NH ₃ reacts with copper so	
Refrigerant Application	wrough Iron or steel is used as material of construct.	
(1) NH ₃ Ice plant cold storage refrigerator	94. The coefficient of performance is the ratio of the	
(2) R-12 Domestic refrigerator	refrigerant effect to the	
(3) R-22 Window type air conditioner	A. Heat compression	
(4) R-11 Central type air conditioner	B. Work done by compressor	
(5) CO_2 used as dry ice in transport	C. Enthalpy increase in compressor	
(6) H ₂ O Water lithium bromide absorption	(a) only A (b) only B	
system	(c) only C (d) A, B and C	

Ans : (d) Coefficient of performance is ratio of heat	Ans : (a) During the sensible cooling process specific
extracted in the refrigerator to the workdone on the	humidity remains constant
refrigerant.	
Refrigeration Effect	
$COP = \frac{U}{Work \text{ done by compressor}}$	1 1 5
work done by compressor	
R.E	$2 1 \frac{3}{3} 1 \xrightarrow{3} \text{Sensible}$
$=\frac{1}{h_{\perp}-h_{\perp}}$	coaling process
95. Moisture in freon refrigeration system causes	
(a) ineffective refrigeration	During sensible cooling dry bulb temperature decreases,
(b) high power consumption	relative humidity increases and specific humidity
(c) freezing automatic regulating valve	remains constant.
(d) corrosion of whole system	98. On psychrometric chart, wet bulb temperature
Ans : (c) Moisture in freon refrigeration system causes	lines are
freezing automatic regulating valve.	(a) horizontal
Advantage of freon refrigeration systgem:-	(b) vertical
(1) Easy to run and maintain	(c) straight inclined sloping downward to the right
(2) Easier repair in case of failure	(d) curved
(3) Relatively low investment cost	Ans : (c) On psychrometric chart, wet bulb
Disadvantage of freon refrigeration system:-	temperature lines are straight inclined sloping
(1) From refrigerant has the negative effect on the	downward to the right.
(1) Fredit feingerant has the negative effect on the	
(2) Lower performance of coefficient then other	
(2) Lower performance of coefficient than other	
96. Efficient of the Carnot engine is given as 80%. If	Wet hulh temperatures
the cycle direction be reversed, what will be the	line
value of coefficient of performance of reversed	
	At the second of the second se
Carnot cycle?	- At any point on saturation curve, the wet bulb
Carnot cycle? (a) 1.25 (b) 0.8	- At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal.
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans : (d) $\eta_{carrot} = 80\% = 0.8$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) more distribute (c) more dist
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_c}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_L} = 1 - 0.8 = 0.2$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ Try 1	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_H} = \frac{1}{0.2} = 5$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COD) T_L	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ $(COP)_{RC} = \frac{T_L}{T_H - T_H}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{T_H} = \frac{1}{T_H} = \frac{1}{T_H} = \frac{1}{T_H} = 0.25$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb temparature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{T_H - 1} = \frac{1}{5-1} = \frac{1}{4} = 0.25$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb temparature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$ Note: $\overline{(COP)} = (COP) + 1 = \frac{1}{1}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$ Note: $(COP)_{H.P.} = (COP)_{ref} + 1 = \frac{1}{\eta_{H.F.}}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$ Note: $\overline{\left(\text{COP}\right)_{H.P.}} = (\text{COP})_{ref} + 1 = \frac{1}{\eta_{H.E.}}}$	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam (c) heating (d) cooling
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ $(COP)_{RC} = \frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$ Note: $(COP)_{H.P.} = (COP)_{ref} + 1 = \frac{1}{\eta_{H.E.}}$ 97. During the sensible cooling process	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam (c) heating (d) cooling
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ $(COP)_{RC} = \frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5-1} = \frac{1}{4} = 0.25$ Note: $(COP)_{H.P.} = (COP)_{ref} + 1 = \frac{1}{\eta_{H.E.}}$ 97. During the sensible cooling process (a) specific humidity remains constant	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam (c) heating (d) cooling Ans : (d) Air is normally dehumidified by cooling. The removal of moisture from the air, without change in its better and the same in the same i
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans: (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ $(COP)_{RC} = \frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5-1} = \frac{1}{4} = 0.25$ Note: $(COP)_{H.P.} = (COP)_{ref} + 1 = \frac{1}{\eta_{H.E.}}$ 97. During the sensible cooling process (a) specific humidity remains constant (b) specific humidity increases	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam (c) heating (d) cooling Ans : (d) Air is normally dehumidified by cooling. The removal of moisture from the air, without change in its dry bulb temperature is called dehumidification In
Carnot cycle? (a) 1.25 (b) 0.8 (c) 0.5 (d) 0.25 Ans : (d) $\eta_{carnot} = 80\% = 0.8$ $\eta_{carnot} = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $0.8 = 1 - \frac{T_L}{T_H}$ $\frac{T_L}{T_H} = 1 - 0.8 = 0.2$ $\frac{T_H}{T_L} = \frac{1}{0.2} = 5$ (COP) _{RC} = $\frac{T_L}{T_H - T_L}$ $= \frac{1}{\frac{T_H}{T_L} - 1} = \frac{1}{5 - 1} = \frac{1}{4} = 0.25$ Note: $(COP)_{H.P.} = (COP)_{ref} + 1 = \frac{1}{\eta_{H.E.}}$ 97. During the sensible cooling process (a) specific humidity remains constant (b) specific humidity increases (c) specific humidity decreases	 At any point on saturation curve, the wet bulb temperature and dry bulb temperature are equal. 99. If air is heated without changing its moisture content, the dew point will (a) increase (b) decrease (c) remain the same (d) unpredictable Ans : (c) If air is heated without changing its moisture content, the dew point will remain the same 1-2 → Relative humidity line 3-4 → Dew point line 5-6 → Dry bulb temperature line 7-8 → Wet bulb tempaerature line 100. Air is normally dehumidified by (a) injecting water (b) passing steam (c) heating (d) cooling Ans : (d) Air is normally dehumidified by cooling. The removal of moisture from the air, without change in its dry bulb temperature is called dehumidification In dehumidification, the relative humidity decreases and

SSC Junior Engineer Mechanical Online Exam 2017 CPWD/CWC/MES Mechanical Engineering

Time: 10 am]

[Exam Date : 2 March, 2017

1. A football was inflated to a gauge pressure of 1 bar when the ambient temperature was 15° C. When the game started next day, the air temperature at the stadium was 5° C. Assume that the volume of the football remains constant at 2500 cm ³ . Gauge pressure of air to which the ball must have been originally inflated so that it would equal 1 bar gauge at the stadium is:	$T_{h_1} = 150$ $M_h = Mass f$ $M_c = Mass f$ $C_n = Specific$ $C_c = Specific$ Effectiveness
(a) 2.25 bar (b) 1.54 bar (c) 1.07 bar (d) 1 bar	$\epsilon = q/q =$
Ans : (c) $P_{G_1} = 1bar = 100 KPa$	• • • • • • • • • • • • • • • • • • •
Absolute pressure	heat
$P_{abs} = P_{gauge} + P_{atm}$	(Heat flow ra
$P_a = 100 + 101.325$	
$P_a = 201.325 \text{KPa}$	
$T_1 = 278K$	m _c C
$T_2 = 288K$	·
P_1V_1 P_2V_2	
$\frac{-1}{T_1} = \frac{-2}{T_2}$	
V = C	therefor, $\varepsilon = -$
$\frac{P_1}{T_1} = \frac{P_2}{T_2} \Longrightarrow P_2 = \frac{P_1 T_2}{T_1}$	$\varepsilon = \frac{1}{1}$
$P_{z} = \frac{201.325 \times 288}{2}$	3. The a
⁻ ^g 278	which
$p_g = 208.56 kPa$	(a) Si (b) B
$P_{abs} = P_g + P_{atm}$	(b) B((c) Fa
$208.56 = P_g + 101.325$	(d) Di
$p_{a} = 107.325 kPa$	Ans: (c) Ate
$p_{gauge} + 1.07 bar$	Atomic packi
2. The engine oil at 150°C is cooled to 80°C in a parallel flow heat exchanger by water entering at 25°C and leaving at 60°C. The exchanger effectiveness will be	Ex- for fcc
(a) 0.36 (b) 0.46	number of ato
(c) 0.56 (d) 0.66	
Ans : (c)	
Temp' $hot \eta_{uid}$ T_{b_1}	Ċ.
T _{e1}	APF

$APF = \frac{4 \times \frac{4}{3} \pi (a\sqrt{2}/4)^3}{a^3} = \frac{\pi}{3 \times \sqrt{2}} = 0.74$ Structure APF Diamond cubic 0.34 Simple cubic 0.52 Body centered cubic 0.68 Face centered cubic 0.74 Hexagonal close packed 0.74 4. The valves mounted on the boilers which change the direction of flow of steam by 90°C and valves fitted in the pipelines which allow the steam in the same direction are respectively called as:	6. Entropy is a measure of: (a) Reversible heat transfer (b) System efficiency (c) Degree of randomness (d) System temperature Ans: (c) Entropy:- Entropy is the measure of the degree of randomness of molecules. It is an important thermodynamic property of a working substance, which increases with the addition of heat, and decreases with its removal. Change in Entropy $\int_{1}^{2} ds = \int_{1}^{2} \frac{\partial Q}{T}$ where - T= absolute temperature ∂Q = Heat transfer Note : The entropy of a substance is zero at absolute zero kelvin.
(b) Junction valves and stop valves	7. Gibbs free energy is considered at which one of the following condition 2
 (c) Junction valves and safety valves (d) Each safety valves and stop valves 	(a) Isothermal, isochoric(b) Isobaric, isochoric
Ans : (b) The valves mounted on the boilers which	(c) Isothermal, isobaric (d) None of these
 change the direction of flow of steam by 90⁰ is called junction valve and a valve which fit in pipelines allow the steam in the same direction is called stop valves. 	Ans : (c) Gibbs free energy, also known as the Gibbs function, Gibbs energy, or free enthalpy, is a quantity that is used to measure the maximum amount of work done in a thermodynamic system when isothermal or temperature and pressure are kept constant. Gibbs free Energy equation -
\wedge	Gibbs free energy is equal to the enthalpy of the system minus product of difference of the temperature and entropy.
	$\boxed{\mathbf{G} = \mathbf{H} - \mathbf{TS}} \boxed{\mathbf{G} = \mathbf{F} + \mathbf{PV}}$
	Where:-
Orthe	G= Gibbs free energy
- () () () () () () () () () (H= enthalpy T= Temperature
5. Which of the following are boiler mountings	S= Entropy
and not boiler accessories ?	8. In vapour absorption refrigeration systems,
A. Pressure gauge	which of the following fluids are commonly used?
B. Alf preneater	(a) All and water (b) Sulphur dioxide and water
(a) B and C only (b) A only	(c) Ammonia and water
(c) A, B and C (d) A and C only	(d) Freon and water
Ans : (b) Boiler mounting:-	Ans : (c) Vapour absorption Refrigeration system-
These are the fittings which are mounted on the boiler for its proper and safe functioning. Some of the important boiler mountings are as follows 1- Water level indicator 2- Pressure gauge	The vapour absorption system uses heat energy instead of mechanical energy as in VCRS. This system may be used in both the domestic and large industrial refrigerating plants. In this system ammonia (NH_3) is used commonly as refrigerant and water is used as absorber. The vapour absorption system consists of an absorber, a
3- Safety valves	pump, generator and a pressure reducing valve.
4- Steam stop valve	Conditioner Bligh pression SR, Vypour
5- Blow off-cock	Liquid of
7- Fusible plug	
Boiler Accessories: - These are the devices of a boiler	Receiver y L J
and help in increasing efficiency. Some important	Toppense birty December 200 Program Section 100 Program
accessories are as follow.	
1- Feed Pump	
2- Super neater	Vapour Absorption Retrigeration system
4- Air pre heater	Compression Refrigeration System)
SSC JE Mechanical Online Exam 2017 df 2 3 2017 10am	4 VCT

 a) In a cross compound steam engine	о т		
 (a) One mign and one low pressure cylinder are set ide by side, driving the same shaft. Exhant (b) Two cylinders are centred on the piston rod the L.p. cylinder being placed nearest the crank shaft (c) Two cylinders are set at 90°, usually to save floor space (d) None of these Ans : (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder passes directly into low pressure cylinder passes directly into low pressure cylinder compound engines. 1. Tandem type compound engines. 2. Woolf type compound engines. 3. Receiver type compound engine. The two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water (a) Steam (b) Solid ice is greater than steam, melting ice and water. 10. Which of the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 Air 0.024 [cc 2.1] Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The event of the are containe containe intercases. 	$9. \ln a$	a cross compound steam engine	Ans : (d) If a reversible thermodynamic cycle
set stude of ysite, univing the same shaft, cranks being set y0° apart (b) Two cylinders are centred on the piston rod, the L.p. cylinder being placed nearest the crank shaft (c) Two cylinders are set at 90°, usually to save floor space (d) None of these Ans : (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder compound engines. 2. Woolf type compound engines. 3. Receiver type compound engines. 3. Receiver type compound engine. 3. Receiver type compound engine. 3. Receiver type compound engine. 3. Receiver type compound engine. 4. Dr) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type canpound engine. 4. Always increases the dryness fraction of steam at condenser inlet C. Always increases the mean temperature of heat actioning increases of the space field to two different cranks saft at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engines are cross compound engine. 4. Always increases the dryness fraction of steam at condenser inlet C. Always increases the mean temperature of heat actioning to solid ice is greater than steam, melting ice and water. 4. Ans: (b) Wr f Water is the following is expected to have highest thermal conductivity of solid ice is greater than steam, melting ice and water. 4. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water vapour 0.016 4. A reversible thermodynamic cycle containing 4. A neversible thermodynamic cycle containing 4. A neversible thermadynamic cycle containing 4. A mage the plant fraction of steam at condenser intel tincreases. 5. The mount of the traneater intermetases. 5. The mount of the traneater intermetases. 5. The mount of the traneater of heat regiction = Constant Efficiency (n) \rightarrow increase or decrease brows increases the intermetases. 5. The mount o	(a)	One high and one low pressure cylinder are	containing only three processes and producing work is
(b) Two cylinders are centred on the piston rod, the L.p. cylinder being placed nearest the crank shaft (c) Two cylinders are set at 90°, usually to save floor space (d) None of these Ans : (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder passes directly into low pressure cylinder. Two cylinders are generally classified as 1. Tandem type compound engines. 2. Woolf type compound engines. 3. Receiver type compound engines. 3. Receiver type compound engines. 3. Receiver type compound engines. Tandem type compound engines. 3. Receiver type compound engines. Tandem type compound engines. 4. Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine. Two cylinders water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.0224 lce 2.1 Water wate value of 0.024 lce 2.1 Water wate value value value and the two of the following is expected to have inghest thermal conductivity (W/m-k) Diamond 2300 Air 0.0224 lce 2.1 Water wate value		set side by side, driving the same shall,	to be constructed than polytropic processes are not followed. The number of possible cycle
 (c) Two cylinders are self used of neuron to be an addition of the following statements is correct? (d) None of these (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder asses directly into low pressure cylinder. Two cylinder compound engines. 2. Woolf type compound engines. 3. Receiver type compound engine. The two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Note: The woolf type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different piston rods attached to two different ranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different piston rods attached to two the different ranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type compound engine. 10. Which of the following is expected to have has team, melting ice and water. Material Thermal Conductivity (Wm-k) Diamond 2300 Air = 0.024 lee 2.1 Water wappour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 12. A reversible thermodynamic cycle containing 13. A reversible thermodynamic cycle containing 14. A reversible thermodynamic cycle containing 15. The amount of heat regiction = Constant Efficiency (n) → increase or decrease. 13. The amount of heat regiction of steam at condenser inlet increases. 	(b)	Two cylinders are centred on the niston rod	(1) (2)
in the same crank shaft. (c) Two cylinders are set at 90°, usually to save floor space (d) None of these Ans: (a) Steam is expanded in two or more stages. One high pressure cylinder passes directly into low pressure cylinder passes directly into low pressure cylinder compound engines. Two cylinder compound engines. 2. Woolf type compound engines. 3. Receiver type compound engine. The two cylinder (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0° to each other) Woolf type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0° to each other. These cranks are act in the same crank shaft. Note: The woolf type and receiver type compound engine. Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0° to each other. These cranks are acts in the same crank shaft. Note: The woolf type and receiver type compound engine. Two cylinders (H.P. and L.P) have different give and nect. These cranks are acts in the same crank shaft. Note: The woolf type and receiver type compound engine. Wo cylinders (H.P. and the same merank shaft. Ans: (b) Thermal conductivity? (a) Steam (b) Solid ice is greatert han steam, melting ice and water. Material Thermal Conductivity (Wm·k), Diamond 2300 Air 0.024 Ice 2.1 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 12. The amount of heat regiured to raise the thermal enderse intel increases. 13. The amount of heat reguired to raise the type increase the crase the specific work output (b) and class	(0)	the L n cylinder being placed nearest the	
(c) Two cylinders are set at 90°, usually to save floor space (d) None of these Ans: (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder compound engines. 3- Receiver type compound engines. 3- Receiver type compound engines. 3- Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0 ¹⁰ to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 0 ¹⁰ to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 9 ¹⁰ to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 9 ¹⁰ to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two highest thermal conductivity of solid ice is greater han steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 lce 2.1 Water wa 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the 13. The amount of heat required to raise the 14. A reversible thermodynamic cycle containing		crank shaft	
(d) None of these (d) None of these (d) None of these Ans: (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder compound engines. 1. Tandem type compound engines. 2. Woolf type compound engines. 3. Receiver type compound engine. That the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. The same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal Conductivity (W/m.k) Diamond 2300 Air 0.0224 Ice 2.1 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the thermal since ases. 14. The main out of the tranease. 15. The mount of heat required to raise the thermal conductivity of solid ice is greater by nest fraction of steam at condenser inlet increases. 14. A reversible thermodynamic cycle containing 15. The mount of heat required to raise the the	(c)	Two cylinders are set at 90° usually to save	V+c N
 (d) None of these Ans: (a) Steam is expanded in two or more stages. One high pressure and one low pressure cylinder are set side by side, driving the same shaft. Exhaust from high pressure cylinder compound engines. 3- Receiver type compound engines. 3- Receiver type compound engine. 3- Receiver type compound engine. The two cylinder (HP, and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine. Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine. Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (b) Mrit (G) Water Ans : (b) Wr ↑ Wich (G) the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (b) Mrit (G) Water Ans : (b) Wr ↑ Wich (G) Water (c) Melting ice (d) Water (c) Melting ice and water. Material Thermal Conductivity (W/m·k) Diamond 2300 Air 0.024 (c) 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 	(0)	floor space	T=C T=C
(d) Total difference in the same shaft. Exhaust from high pressure cylinder are set sided by side, driving the same shaft. Exhaust from high pressure cylinder are set sided by side, driving the same shaft. Exhaust from high pressure cylinder are set sided by side, driving the same shaft. Exhaust from high pressure cylinder compound engines. 3. Receiver type compound engines. 3. Receiver type compound engine: The two cylinder (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0 ⁰ to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different ranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal Conductivity (W/m-k) Diamond 2300 Air 0.0224 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing	(b)	None of these	$\lambda ^2$
And x. (a) steam is expanded in two of interval stages. So the high pressure and one low pressure cylinder are statistic pressure cylinder compound engines. Two cylinder compound engines. 1. Tandem type compound engines. 2. Woolf type compound engines. 3. Receiver type compound engines. 3. Receiver type compound engines. Tandem type compound engines. 3. Receiver type compound engines. Tandem type compound engines. 3. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks nate action the same crank shaft. Note: The woolf type and receiver type compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The amount of heat rejection = Constant Efficiency (n) \rightarrow increases or lace rease. bryness fraction of steam at condenser inlet increases. 13. The amount of heat rejection = linet increases.	(\mathbf{u})	Steem is expended in two or more stages. One	P = C 3 $P = C$
(3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	high press	steam is expanded in two of more stages. One	→v →v
 (3) (3) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	hy side	driving the same shaft Exhaust from high	
rythider. Two cylinder compound engines are generally classified as 1- Tandem type compound engines. 2- Woolf type compound engines. Tandem type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing A reversible thermodynamic cycle containing	pressure	cylinder passes directly into low pressure	(3) (4)
Two cylinder compound engines are generally classified as 1 - Tandem type compound engines. 3 - Receiver type compound engine: The two cylinder (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0° to each other) Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The amount of heat reguired to rease the 13. The amount of heat reguired to rease the 14. A reversible thermodynamic cycle containing	cvlinder.		P↑ P1
as 1. Tandem type compound engines. 2. Woolf type compound engine. Tandem type compound engine. Tandem type compound engine. Tandem type compound engine. Tandem type compound engine. The two cylinders (H.P, and L.P) have a common piston rods working on same crank. (i.e crank are at 0 ⁰ to each other) Woolf type compound engine: Two cylinders (H.P, and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P, and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The amount of heat rejection = Constant Efficiency (n) \rightarrow increase or decrease Dryness fraction of steam at condenser inlet increases. 13. The amount of heat rejection rease the constant Efficiency (n) \rightarrow increase or decrease Dryness fraction of steam at condenser inlet increases.	Two cvlin	der compound engines are generally classified	2 P+C
 1- Tandem type compound engines. 2- Woolf type compound engines. 3- Receiver type compound engine: Two cylinders (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0° to each other) Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity (W/m-k) Diamond 2300 Air 0.0224 (c) 2.1 Water Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.6 Water vapour 0.16 11. A reversible thermodynamic cycle containing 	as	······································	
 2. Woolf type compound engines. 3. Receiver type compound engine. The two cylinders (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0⁰ to each other) Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different piston at conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 (c) 2.1 (W	1- Tanden	n type compound engines.	T-CK 3
 3- Receiver type compound engines. Tandem type compound engine. The two cylinders (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0° to each other) Woolf type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P. and L.P) have different piston rods attached to two different piston rods attached to two different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) W₁ ↑ Water is the mal Conductivity (W/m-k) Diamond 2300 Air 0.6 Water 0.6 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	2- Woolf t	type compound engines	<u>v</u> +c
 Tandem type compound engine. The two cylinder (H.P. and L.P) have a common piston rod working on same crank. (i.e crank are at 0° to each other) Wolf type compound engine: Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engine. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ce 2.1 Water 0.6 Water Water Cast and conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ce 2.1 Water 0.6 Water 1. A reversible thermodynamic cycle containing 	3- Receive	er type compound engines	→v
 11. A reversible thermodynamic cycle containing 12. Which combination of the following statements is correct ? 12. Which combination of the following statements is correct ? 13. The amount of heat required to reach other 14. P. have different piston rods attached to two different cranks set of 180° to each other. These cranks are cast in the same crank shaft. 14. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water 15. A reversible thermodynamic cycle containing 16. A reversible thermodynamic cycle containing 17. The amount of heat required to reach other of the required to raise the same crank shaft. 18. Always increases the thermal efficiency of the plant 19. A reversible thermodynamic cycle containing 10. A reversible thermodynamic cycle containing 10. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 12. Which combination of the following statements is correct? 11. A reversible thermodynamic cycle containing 12. Which combination of the following statements is correct? 12. Which combination of the following statements is correct? 13. The amount of heat required to raise the statements is correct? 	Tandem	type compound engine. The two cylinder	P = C
 12. Write compound engine: pistor rots of the plant 12. Write compound of the following statched to two different ranks set of 180° to each other These cranks are cast in the same crank shaft. 13. The amount of the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 Air 0.0224 Ice 2.1 Water 0.6 Water vapour 0.016 14. A reversible thermodynamic cycle containing 15. Write to monitor of the following statched to two different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. 16. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water 17. A reversible thermodynamic cycle containing 18. Always increases the specific work output (a) A and D only (b) B and D only (c) A, C and D only (d) A, B, C and D 19. Always increases or mean temperature of heat addition - may increase or Re-heat Cycle 10. Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	(HP and	L P) have a common piston rod working on	12 Which combination of the following statements
Woolf type compound engine: and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft.The incorporation of re-heater in a steam power plantReceiver type compound engine: and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft.A. Always increases the thermal efficiency of the plantNote:- The woolf type and receiver type compound engines are cross compound engine.D. Always increases the mean temperature of heat addition10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) WaterD. Always increases the specific work output (a) A and D only (b) B and D only (c) A, C and D only (d) A, B, C and DAns : (b) Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal conductivity (Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal conductivity (Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal conductivity (Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal conductivity (Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Thermal conductivity (Thermal c	same cran	k. (i.e crank are at O^0 to each other)	is correct ?
 and L.P) have different piston rods attached to two different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	Woolf ty	pe compound engine :- Two cylinders (H.P	The incorporation of re-heater in a steam
 different cranks set of 180° to each other These cranks are cast in the same crank shaft. Receiver type compound engine:- Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	and L.P)	have different piston rods attached to two	nower nlant
are cast in the same crank shaft. Receiver type compound engine: Two cylinders (H.P and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note: The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing a cost in the same crank shaft. a content of the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing a cost in the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 b cost in the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 b cost in the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 b cost in the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 b cost in the following is expected to have highest thermal conductivity (W/m-k) Diamond 2300 b cost in the following is expected to have in the follo	different c	cranks set of 180° to each other These cranks	A Always increases the thermal efficiency of the
 Receiver type compound engine:- Two cylinders (H.P. and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	are cast in	the same crank shaft.	nlant
and L.P) have different piston rods attached to two different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the	Receiver	type compound engine:- Two cylinders (H.P	B Always increases the dryness fraction of steam
different cranks set at 90° to each other. These cranks are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing	and L.P) have different piston rods attached to two		at condenser inlet
are cast in the same crank shaft. Note:- The woolf type and receiver type compound engines are cross compound engine. 10. Which of the following is expected to have highest thermal conductivity? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing	different o	cranks set at 90° to each other. These cranks	C. Always increases the mean temperature of heat
Note:- The woolf type and receiver type compound engines are cross compound engine.D. Always increases the specific work output (a) A and D only (b) B and D only (c) A, C and D only (d) A, B, C and D10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) WaterD. Always increases the specific work output (a) A and D only (b) B and D only (c) A, C and D only (d) A, B, C and DAns : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water.Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016Mean temperature of heat addition - may increase or Mean temperature of heat rejection = Constant Efficiency (η) \rightarrow increase or decrease Dryness fraction of steam at condenser inlet increases.11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containingThe amount of heat required to raise the	are cast in	the same crank shaft.	addition
 (a) A and D only (b) B and D only (c) Melting ice (d) Water (e) Melting ice (e) Melting ice (f) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air Air Air Air Cod24 Ice Ice Ice Itermal Conductivity (W/m-k) Mater 0.6 Water vapour Water wapour Mater in thermodynamic cycle containing (a) A and D only (b) B and D only (c) A, C and D only (d) A, B, C and D Ans: (b) W _T ↑ W_n= Constant W_n= (W_T - W_p)↑ W_n= (W_T - W_p)↑ W_n= temperature of heat addition - may increase or decrease Mean temperature of heat rejection = Constant Efficiency (η) → increase or decrease Dryness fraction of steam at condenser inlet increases. 	Note:- T	he woolf type and receiver type compound	D. Always increases the specific work output
 10. Which of the following is expected to have highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 	engines ar	e cross compound engine.	(a) A and D only (b) B and D only
highest thermal conductivity ? (a) Steam (b) Solid ice (c) Melting ice (d) Water Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 11. A reversible thermodynamic cycle containing	10. Wh	ich of the following is expected to have	(c) A, C and D only (d) A, B, C and D
(a) Steam (b) Solid ice (c) Melting ice (d) Water Ans: (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing (a) Steam (b) Solid ice (b) Water (c) Water W _p = Constant W _{net} = (W _T - W _p)↑ Q _{supplied} ↑ Q _R ↑ Mean temperature of heat addition - may increase or decrease Mean temperature of heat rejection = Constant Efficiency (η) → increase or decrease Dryness fraction of steam at condenser inlet increases. 13. The amount of heat required to raise the	higl	hest thermal conductivity ?	Ans: (b) W_{π} \uparrow
(c) Melting ice(d) WaterAns : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. $W_{net} = (W_T - W_p)^{\uparrow}$ $Q_{supplied} \uparrow Q_R^{\uparrow}$ TMaterialThermal Conductivity (W/m-k) Diamond2300 Air0.024 IceMean temperature of heat addition - may increase or decreaseTMater0.6 Water vapour0.016Re-heat Cycle decreaseRe-heat Cycle decrease11.A reversible thermodynamic cycle containing13.The amount of heat required to raise the	(a)	Steam (b) Solid ice	W = Constant
Ans : (b) Thermal conductivity of solid ice is greater than steam, melting ice and water. $W_{net} = (W_T - W_p)^T$ T MaterialThermal Conductivity (W/m-k) Diamond2300 Air0.024 IceMean temperature of heat addition - may increase or decrease $Re-heat Cycle$ Item 1A reversible thermodynamic cycle containingMean temperature of heat rejection = Constant Efficiency (\eta) \rightarrow increase or decrease Dryness fraction of steam at condenser inlet increases.Item 111.A reversible thermodynamic cycle containing13.The amount of heat required to raise the	(c)	Melting ice (d) Water	$W_p = (W W)^{\uparrow}$
than steam, melting ice and water. Material Thermal Conductivity (W/m-k) Diamond 2300 Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the	Ans : (b)	Thermal conductivity of solid ice is greater	$\mathbf{W}_{\text{net}} = (\mathbf{W}_{\text{T}} = \mathbf{W}_{\text{p}})^{\top}$ \mathbf{T}
MaterialThermal Conductivity (W/m-k)Diamond2300Air0.024Ice2.1Water0.6Water vapour0.01611.A reversible thermodynamic cycle containing	than steam	n, melting ice and water.	Qsupplied QR
Diamond2300Air 0.024 Ice 2.1 Water 0.6 Water vapour 0.016 11. A reversible thermodynamic cycle containing13. The amount of heat required to raise the	Mater	rial Thermal Conductivity (W/m-k)	Mean temperature of heat
Air 0.024 Re-heat CycleIce 2.1 decreaseWater 0.6 Mean temperature of heat rejection = Constant11. A reversible thermodynamic cycle containingEfficiency $(\eta) \rightarrow$ increase or decrease13. The amount of heat required to raise the	Diamo	ond 2300	addition - may increase or
Ice2.1Water0.6Water vapour0.01611. A reversible thermodynamic cycle containingMean temperature of heat rejection = ConstantEfficiency $(\eta) \rightarrow$ increase or decreaseDryness fraction of steam at condenser inlet increases.13. The amount of heat required to raise the	Air	0.024	decrease Re-heat Cycle
Water0.6Water vapour0.01611.A reversible thermodynamic cycle containing13.The amount of heat required to raise the	Ice	2.1	Mean temperature of heat rejection = Constant
Water vapour 0.016 11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the	Water	0.6	Efficiency $(n) \rightarrow \text{increase}$ or decrease
11. A reversible thermodynamic cycle containing 13. The amount of heat required to raise the	Water	vapour 0.016	Dryness fraction of steam at condenser inlet increases
	11. A r	reversible thermodynamic cycle containing	13 The amount of heat required to raise the
only three processes and producing work is to $ $ tempearture of 1 kg of water from $0^{\circ}C$ to the	only	y three processes and producing work is to	tempearture of 1 kg of water from 0° C to the
be constructed. The constraints are : $constructed = constructed = cons$	be c	constructed. The constraints are :	saturation temperature T_s^0C at a given
1. There must be one isothermal process constant pressure is defined as :	1. 1	There must be one isothermal process	constant pressure is defined as :
2. There must be one isentropic process (a) Superheat (b) Entropy	2. 1	There must be one isentropic process	(a) Superheat (b) Entropy
3. Maximum and minimum cycle pressures and (c) Latent heat (d) Sensible heat	3. N	Maximum and minimum cycle pressures and	(c) Latent heat (d) Sensible heat
the clearance volume are fixed, and Ans: (d) Sensible heat:-	t	he clearance volume are fixed, and	Ans : (d) Sensible heat:-
4. Polytropic processes are not followed Then, the The amount of heat required to raise the	4. P	olytropic processes are not followed Then, the	The amount of heat required to raise the
number of possible cycles is temperature of 1 kg of water from 0°C to the saturation	n	number of possible cycles is	temperature of 1 kg of water from 0°C to the saturation
(a) 1 (b) 2 [temperature $T^{\circ}C$ of at a given constant pressure is]	(a)	1 (b) 2	temperature T ^o C of at a given constant pressure is
(c) 3 (d) 4 defined as sensible heat.	(c)	3 (d) 4	defined as sensible heat.

Thermal diffusivity $(\alpha) = \frac{\text{heat conducted}}{\text{heat stored}}$	Ans : (b) We know that for saturated air, the relative humidity is 100% and the dry bulb temperature, wet
where:- $K = w/m-k$	build temperature and dew point temperature is same.]
$C_P = J/kg-k$	
$\rho = Kg/m^3$	DBI = WBI = DPI
• unit of thermal diffusivity is m ² /sec	When air is unsaturated, dew point temperature is
• Thermal diffusivity of a material tells about the	always less than the wet build temperature and dry build temperature
ability of material to allow the heat energy to get	DPT < WDT < DDT
diffused or pass through the medium more rapidly	DF1 <wb1<db1< td=""></wb1<db1<>
26. Condensing temperature in a refrigerator is	29. In a vapour compression refrigeration system,
(a) of cooling medium	(a) keen the COP constant
(b) of freezing zone	(a) Reep the COT constant (b) prevent the liquid refrigerant from entering
(c) of evaporator	the compressor
(d) at which refrigerant gas becomes liquid	(c) sub-cool the liquid refrigerant leaving the
Ans : (d) Condensing process:- Vapour refrigerant	condenser
pass through the condenser where it is completely	(d) sub-cool the vapour refrigerant from the
condensed at constant pressure and temperature. The	evaporator
Vapour reingerant is changed into inquid reingerant.	Ans: (c) The remigerant after condensation process is
around a circular nine, heat loss to	such a process is called undercooling or sub cooling of
surroundings due to	the refrigerant. The ultimate effect of undercooling is to
(a) convection increases, where as due to	increase the value of coefficient of performance (COP).
conduction decreases	The process of under cooling is severally brought about
(b) convection decreases, where as due to	by circulating water through the condenser of by using water colder than the main circulating water. This
(c) both convection and conduction decreases	process is also brought about by employing a heat
(d) both convection and conduction increases	exchanger.
(a) both convection and conduction increases	P↑
• Insulation increases the conductive thermal	2 2 2
resistance due to which heat transfer by conduction	
decreases.	
• Insulation decreases the convective thermal	
resistance due to which heat transfer by convection	/ 4' E 1'
increases more rapidly.	h>
A Gen	• Provides subcooling outside the condenser.
	 Improves cycle efficiency in some cases.
	LSHX = Liquid to suction heat Exchanger
	3 Condenser
$I_{\rm B} \longrightarrow I_{\rm I}$	
Critical radius	Bos Exchanger
1. Cylindrical tube $ \mathbf{r}_0 = \frac{\mathbf{K}_{ins}}{\mathbf{I}} $	S S Comment
h	Expansion H K King to be a compression
2 Subscriptly $\frac{2K_{ins}}{2}$	~3 H
2. Spherical $ r_0 = \frac{h}{h} $	
28 For air with a relative humidity of 80%	
(a) dry bulb temperature is less than the wet bulb	
temperature	30 If a mass of moist air in an airtight regard in
(b) dew point temperature is less than wet bulb	beated to a higher temperature then
temperature	(a) specific humidity of the air increases
(c) dew point and wet bulb temperatures are	(b) specific humidity of the air decreases
equal (d) dry hulb and days point tomporotypes and	(c) relative humidity of the are increases
equal	(d) relative humidity of the air decreases
•1	

Ans : (d) If a mass of moist air in a airtight vessel is heated to a higher temperature, then relative humidity of the air decreases. **Relative humidity (R.H.):-** It is the ratio of actual mass of water vapour in a given volume of moist air to mass of water vapour in the same volume of saturated air at

same temperature and pressure.

Ans : (d) It has two acceleration and we need to take resultant of both of them. Acceleration towards the centre of rotation (radius)

$$V = 3m/s$$

$$R = 9m$$

$$\frac{dv}{ds} = \frac{1}{3}m/s/m$$

$$\boxed{a_{\text{total Resultant}} = \sqrt{a_{\text{tan gential}}^2 + a_{\text{Radial}}^2}}{a_{\text{tangential}} a_t = \frac{dv}{dt} = \frac{dv}{ds} \times = \frac{ds}{dt} = v \times \frac{dv}{ds}}{a_{\text{tangential}} a_r} = \frac{V^2}{R} = \frac{3^2}{9} = \frac{9}{9} = 1m/s^2}{a_{\text{tangential}}} a_r = \frac{\sqrt{a_r^2 + a_r^2}}{\sqrt{a_r^2 + a_r^2}} = \sqrt{2m/s^2}}$$

- . Which of the following statements is correct regarding an impulse turbine?
 - (a) The steam is initially compressed in a nozzle from low pressure to high pressure
 - (b) The steam is initially expanded in a nozzle low pressure to high pressure
 - (c) The steam is initially compressed in a nozzle from high pressure to low pressure
 - (d) The steam is initially expanded in a nozzle from high pressure to low pressure

Ans : (d) Impulse turbine:- The steam is initially expanded in a nozzle from high pressure to low pressure.

- In impulse turbine, the pressure head of the incoming steam is converted into a large velocity head at the exit of the supply nozzle. That is the available energy of the steam is converted into kinetic energy.
- 34. A draft tube is used with
 - (a) impulse tubine
 - (b) Pelton wheel turbine
 - (c) reaction turbines
 - (d) axial turbine pumps

Ans : (c) Draft tube:- The basic function of draft tube s to convert kinetic head in to the pressure head.

The angle of straight divergent type draft tube should not be more than 8° otherwise eddies will be formed & efficiency will be reduced.

- The draft tube is used only in reaction turbine as there is a change in pressure energy involved. In an impulse turbine there is no change in pressure so no need of a draft tube.
- Draft tube installed in reaction turbine at the exit of runner.

- 35. For Newtonian fluid behaviour, the shear 38. stress exerted by the fluid is equal to the
 - (a) Fluid viscosity divided by the velocity gradient parallel to the direction of shear
 - (b) Fluid viscosity divided by the velocity gradient perpendicular to the direction of shear
 - (c) Product of the fluid viscosity and the velocity gradient parallel to the direction of shear
 - (d) Product of the fluid viscosity and the velocity gradient perpendicular to the direction of shear

Ans : (d) The shear stress exerted by the fluid is equal to the product of the fluid viscosity and the velocity gradient perpendicular to the direction of shear. 1. 2. 39. 777777 777777 dθ du or dθ = Rate of angular deformation – dt $\tau =$ Shear stress du = Velocity gradient dv $\mu = Dynamic viscosity$ 36. Which of the following are the advantages of impulse turbine over reaction turbines? A. Occupies less space per unit power B. Compounding is not necessary for speed reduction as the rotor speeds are usually low C. Suitable for high power generation (a) B and C only (b) A only (c) C only (d) A and C only **Ans** : (b) Advantage of impulse turbine over reaction 40. turbine. Impulse turbine there is no use of Draft tube 1. 2. Occupies less space for same amount of power generate.

- 3. Compounding is necessary in impulse turbine due to very high speed.
- 4. Use for high head low discharge
- 5. Impulse turbine work at atmospheric pressure.
- 37. The compressors used in a gas turbine are typically of which type?(a) Centrifugal(b) Centripetal
 - (c) Reciprocating (d) Axial
- Ans : (d) Axial flow compressor:- An axial flow compressor, in its simplest form consist of a number of rotating blade fixed to a rotating drum. The drum rotates inside an air tight casing which are fixed stator blade. The blades are made of airfoil section to reduce the loss caused by turbulence and boundary separation. The flow of air is parallel to the axis of compressor.

. Which turbine is also called as the propeller turbine?

(a) Kaplan turbine (b) Francis turbine (c) Pelton wheel (d) Thompson turbine **Ans : (a)** The Kaplan turbine is a propeller type water turbine which as adjustable blades. It is also called as the propeller turbine. It is axial flow turbine which means that the flow direction does not change as it crosses the rotor. It has high discharge and low head turbine. Specific speed (N.) = $\frac{N\sqrt{P}}{N}$

Specific speed (N_s) =
$$\frac{N\sqrt{P}}{H^{5/4}}$$

Specific speed (N_s) of axial turbine

- 1. Propeller $N_s \rightarrow (300 600)$
- 2. Kaplan $N_s \rightarrow (600 1000)$
- **39.** According to Bernoulli's principle in fluid dynamics, for inviscid flow, increase in speed of fluid leads to which of the following?
 - (a) Increases in pressure and/or increase in fluid's potential energy
 - (b) Decrease in pressure and/or increase in fluid's potential energy
 - (c) Increase in pressure and/or decrease in fluid's potential energy
 - (d) Decrease in pressure and/or decrease in fluid's potential energy

Ans : (d) Bernoullis Equation:- The Bernoullis equation states that for a perfect incompressible fluid, flowing in a continuous stream the total energy of a particle remains the same, while the particle moves from one point to another.

$$\frac{P_1}{w} - \frac{V_1^2}{2g} + z = \frac{P_2}{w} + \frac{V_2^2}{2g} + z_2 = \text{constant.}$$

• It is energy conservation equation.

• Bernoulli's equation is applied to venturimeter, orifice meter and point tube.

• Increase in speed of fluid leads to decrease in pressure or decrease in fluid potential energy.

- 0. The material commonly used for air craft gas turbine is......
 - (a) stainless steel(b) high alloy steel(c) duralumin(d) titanium

Ans : (*) The material commonly used for air craft gas turbine is Timken haste and colonel alloys Ni base super alloy.

• Duralumin alloy are relatively soft, ductile, and workable in the normal state, they may be rolled, forged extruded or drawn into a variety of shapes and products their light weight and consequent high strength per unit weight compared with steel suitable for air craft body construction.

Duralumin: Al = 94. Cu = 4%, Mg, Mn, Si Fe 0.5%

- It can easily cast, forged and stamping
- tensile strength is high.
- 41. The difference of absolute pressure and local atmospheric is known as:
 - (a) Negative pressure(b) Positive pressure(c) Gauge pressure(d) Hydraulic pressure

Ans : (c) Mach number (m)=	Ans : (d)
Velocity of fluid in compressible flow(v)	(i) Compressible flow \rightarrow mach number
Speed of Sound in air (c)	(ii) Free Surface flow \rightarrow Weber number
	(iii) Boundry layer flow \rightarrow Skin friction coefficient
$M = -\frac{V}{V}$	(iv) Pipe flow \rightarrow Reynolds number
	(v) Heat convection \rightarrow Nusselt number
Note : IF:-	
(i) $M < 1$ = Sub sonic flow	52. Match the items in List 1 and 2.
(1) $M = 1 = \text{Sonic flow}$	List-1 List -2
(iii) $M > I = I$ to $b =$ Super sonic flow	A Centrifugal 1 Axial flow
$\frac{(1)}{M} = 0 - Hyper some how$	compressor
48. which type of forces dominates a fluid flow with a yery high Daynolds Number (Do ~	B Centrifugal pump 2 Surging
\sim 10000)?	C Pelton wheel 3 Priming
(a) Inertial (b) Viscous	D Kaplan turbine 4 Pure impulse
(c) Reaction (d) Divergent	(a) $A-2$ $B-3$ $C-4$ $D-1$
Ans : (a) Inertia force dominates over viscous force in	(a) $A = 2, B = 3, C = 1, D = 4$
a fluid flow with a very high Reynolds number ($R \approx$	(c) $A-3$, $B-4$, $C-1$, $D-2$
10000)	(d) $A-1, B-2, C-3, D-4$
• Viscous force dominates over inertia force in a fluid	Ans: (a)
flow with a less than 2000 Reynolds number. Means in	A. Centrifugal compressor 2. Surging
laminar types of flow viscous flow dominates.	B. Centrifugal pump 3. Priming
49. To avoid cavitation in centrifugal pumps	C. Pelton wheel 4. Pure impulse
(a) suction pressure should be low (b) delivery pressure should be low	D. Kaplan Turbine 1. Axial flow
(c) suction pressure should be high	53. A fluid whose shear stress is linearly
(d) delivery pressure should be high	proportional to the velocity gradient in the
Ans : (c) To avoid cavitations in centrifugal pumps	direction perpendicular to the plane of shear is
suction pressure should be high because to avoid	called as
cavitations the pressure of the fluid must be maintained	(a) Friction Iluid (b) Stress Iluid (a) Newtonian fluid (d) Cartagian fluid
above its vapour pressure at all point as it passes	(c) Newtonian fiuld (d) Cartesian fiuld
through the pump. $\rightarrow \rightarrow$	Ans: (c) Shear stress $\tau = u \left(\frac{du}{du}\right)^{u}$
50. For the continuity equation given by $\nabla . V = 0$ to	$\frac{1}{dy}$
be valid, where V is the velocity vector, which	(du)
one of the following is a necessary condition?	If $n = 1$ then $\tau = \mu \left(\frac{1}{dv} \right)$
(a) Steady flow	so stress is linearly proportional to the velocity gradient
(b) Irrotational flow	such type fluid are called Newtonian fluid example
(c) Inviscia now (d) Incompressible flow	water, air, petrol, etc.
(d) incompression now $2(-) - 2(-) - 2$	54. Euler's equation for the motion of liquid
Ans: (d) $\frac{\partial(\rho u)}{\partial r} + \frac{\partial(\rho v)}{\partial r} + \frac{\partial(\rho w)}{\partial r} + \frac{\partial\rho}{\partial r} = 0$ Generat	assumes that
$\partial x \partial y \partial z \partial t$	(a) Fluid is viscous
51. Match the items in List 1 and 2.	(b) Fluid is homogeneous and incompressible
List-1 List –2	(c) Velocity of flow is non-uniform over the
A Compressible flow 1 Reynolds number	section
B Free surface flow 2 Nusselt number	(d) Flow is unsteady along with stream line
C Boundary layer flow 3 Weber number	Ans : (b) Euler's equation represent momentum
D Pipe flow 4 Froude number	conservation.
E Heat convection 5 Mach number	$\left \left \frac{dp}{dp} + y dy + q dz - 0 \right $ Euler's equation
6 Skin friction	$\left \left \rho \right \right \rho$
coefficent	assumptions of Euler's equation
(a) A-1, B-4, C-2, D-6; E-3	(i) steady flow
(b) A-3, B-4, C-6, D-1; E-2 (c) A 5, D 2, C $($ D 1, E $($	(ii) Non-viscous or frictionless flow
(c) $A-5, B-3, C-6, D-1; E-4$	(iii) Stream line flow

(a) One-dimensional flow (b) Three dimensional flow (c) Tow-dimensional flow (d) Four-dimensional flow (d) Four-dimensional flow (e) Two-dimensional flow (e) Two-dimensional flow (f) Four-dimensional flow (h) Three dimensional flow (h) Three fl	55. A flow whose stream line is represented by a	59. A flow whose stream line is represented by a
(a) One-dimensional flow (b) Three dimensional flow (c) Tow-dimensional flow (d) Four-dimensional flow (e) Tow-dimensional flow (f) Tow-dimensional flow (f) Tow-dimensional flow (h) Three dimensional flow (h) Three flow field is represented (h) Ans i (h) Three flow field is represented (h) Ans i (h) Three flow field is represented (h) Three dimensional flow (h) Three dimensional flow (h) Three dimensional flow (h) Capillary tomes flow (h) Capillary tomesion (h) Cap	(a) One dimensional flow	curve, is called
(b) Three dimensional flow (c) Tow-dimensional flow (d) Four-dimensional flow (d) Four-dimensional flow (e) Two-dimensional flow (f) Four-dimensional flow (f) Four-dimensional flow (g) Four-dimensional flow (h) Four-dimensional flow (g) Four-dimensional flow (h) Four-dimensional flow (g) Four-dimensional flow (h) A single speed centrifugal pump, feeding a small water supply distribution system of a block of houses works at reduced efficiency (h) Minimum efficiency (h) A single speed centrifugal pump feeding a small water supply distribution system, of a block of houses works at reduced efficiency (h) I nuder-dampied vibrating with reference to time (h) fight policity (h) Capillary the baove the free water (h) fight policity (h) Capillary compression (h) Capillary compression (h) Capillary porpressure (d) None of these Fars: (h) Capillary porpressure (d) None of these Fars: (h) Capillary compressi	(a) One-dimensional flow	(a) One-dimensional flow
(c) Two-dimensional flow (d) Four-dimensional flow (d) Four-dimensional flow (d) Four-dimensional flow (f) four-dimension	(b) Three dimensional flow	(b) Three dimensional flow
(d) Four-dimensional flow→ fluid motion can be said to be a two dimensional flow when the flow velocity at any point on a given normal to that fixed plane should be constant. Ans : (c) Two dimensional flow when the flow velocity at any point on a given normal to that fixed plane should be constant. Ans : (c) Two dimensional flow when the flow velocity at any point on a given normal to that fixed plane should be constant. Ans : (c) Two dimensional flow when the flow velocity at any point on a given normal to that fixed plane should be constant. Ans : (d) Four-dimensional flow when the flow velocity at any point on a given normal to that fixed plane should be constant. Ans : (d) The firetional resistance of a pipe varies approximately with and parallel. Ans : (d) The firetional resistance of a pipe varies application the resistance of a pipe varies with the square of velocity of the fluid. According to fluid grow the resistance of pipe under fluid flow. $\overline{\mathbb{R} \leq \Delta V^2}$ where $\Delta = surface area V = fluid velocity (a) Low velocity (b) Low pressure (c) High velocity (b) Low pressure (c) High velocity (c) High pressure (a) increases linearly (b) capitary tube above the free varies with the square of velocity (c) High veloci$	(c) Tow-dimensional flow (d) Four dimensional flow	(c) Two-dimensional flow
Ans : (c) Two dimensional flow-is thud motion can be also do be a two dimensional flow is the flow is a function of the flow is a function of only one of one should be constant. Ans : (c) Two dimensional flow is two dimensional flow is the flow is a function of the flow is a function of only one of one as a given normal to that fixed plane should be constant. Ans : (c) Two dimensional flow is the flow is a function of only one of one as a given normal to that fixed plane should be constant. Ans : (c) Two dimensional flow when the flow is a function of only one of one as a given normal to that fixed plane should be constant. Ans : (b) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluid application the resistance of a pipe varies with the square of velocity of the fluid flow one of these Ans : (b) Cavitation is a hydraulic machine is mainly due to (a) the fluid flowing through any hydraulic turbine. Ans : (b) Cavitations is formation of vagour bubbles in the exit represence (d) High pressure (c) High velocity (d) High pressure (d) None of these Ans : (b) Cavitations is formation of vagour bubbles in the exit regression of the turbines. 58. The stress, which is responsible for retaining water is a capillary tube above the free water is inner exit (d) $\frac{s}{m} < \left(\frac{c}{2m}\right\right]^{-1}$ with all one of these Ans : (b) capillary compression (c) Capillary tube above the free water is in the twite gluid outfrace in a small vertical tube. Height of rise or fall on the two is given by - $h = \frac{4ccasx}{cod}$ were $\sigma = surface tension \sigma = Angle of contact of the liquid surface \sigma = Specific weight of liquid and \sigma = Angle of contact of the liquid and \sigma = Angle of contact of the liquid and \sigma = Angle of contact of t$		(d) Four-dimensional flow
velocity at any point on a given normal to that fixed plane should be constant. one dimensional flow: is the flow in which parameters (velocity, Pressures, density, viscosity and term vary only in one direction and the flow is a function of only one constraint as a function of only one constraints are arging that a parallel. 56. The frictional resistance of a pipe varies with the square of velocity (i) c) velocity (i) cube of the velocity (i) c) velocity (i) cube of the velocity (i) cube of the velocity (i) cube of the velocity (ii) for finitional resistance of pipe varies with the square of velocity of the fluid. According to fluid application the resistance of pipe under fluid flow one of these (ii) for eaviation in a hydraulic machine is mainly due to	Ans: (c) Two dimensional flow \rightarrow fluid motion can be said to be a two dimensional flow when the flow velocity at every point is parallel to a fixed plane The	Ans : (c) Two dimensional flow- two dimensional stream line flow is represented by curve. Fluid motion
plane should be constant one dimensional flow: is the flow in which parameters (velocity, Pressures, density, viscosity and term vary only in one direction and the flow is a function of only one co- ordinate axis and time. The flow field is represented by 56. The frictional resistance of a pipe varies approximately with of the liquid : (a) pressure (b) square of velocity (c) velocity (d) cube of the velocity (c) velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of pipe under fluid flow [$\underline{\mathbb{R} \le \Delta V^2$] where $A =$ surface area V = fluid velocity () Huid velocity () Huid velocity () Huid velocity () Huid relation in a hydraulic machine is maindy due to (a) Low velocity (d) High pressure (c) High velocity (d) High pressure (c) High velocity (d) High pressure (c) High velocity (d) High pressure (d) low cours when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary torbis is misered, is called the (a) Capillary compression (b) Capillary tube is given by - $h = \frac{4 \sigma casax}{od}$ were $\sigma =$ surface tension $\sigma = Angle of contact of the liquid surface \sigma = Specific weight of liquid and\sigma = Angle of contact of the liquid surface \sigma = Specific weight of liquid and\sigma = Angle or contact of the liquid and \sigma = Angle or contact of the liquid and \sigma = Angle or contact of the liquid and \sigma = Angle or contact of the liquid and \sigma = Angle or contact of the liquid and \sigma = Angle or $	velocity at any point on a given normal to that fixed	can be said to be a two dimensional flow when the flow
one dimensional flow:- is the flow in which parameters (velocity, Pressures, density, viscosity and term vary only in one direction and the flow is a function of only one co- ordinate axis and time. The flow field is represented by streamlines which are straight and parallel.Uelocity at any point on a given normal to that fixed plane should be constant.56. The frictional resistance of a pipe varies approximately with	plane should be constant	velocity at every point is filled to a fixed plane. The
$ \begin{aligned} & (velocity, Pressures, density, viscosity and term vary onlyin one direction and the flow is a function of only one co-ordinate axis and time. The flow field is represented bystreamlines which are straight and parallel. Constantapproximately with of the liquid(a) pressure (b) square of velocity(c) velocity (d) cube of the velocity(c) velocity (d) cube of the velocity(c) velocity of the fluid. According to fluidsapplication the resistance of a pipe varies withthe square of velocity of the fluid. According to fluidsapplication the resistance of pipe under fluid flow[\mathbb{R} \propto \Lambda V^2]where \Lambda = surface areaV = fluid velocityf' = fluid friction coefficientor [\mathbb{R} = f \times \Lambda V^2]where \Lambda = surface areaV = fluid velocity(b) Low pressure(c) High velocity (b) Low pressure(c) High velocity (b) Low pressure(c) High velocity (d) High pressure(d) How evlocity (b) Low pressure(c) High velocity (d) High pressurefalls below it sapour prosure. Cavitation is nost likelyto occur near the fast moving blades of the turbines.58. The stress, which is responsible for retainingwater in a capillary tube above the free watersurface of the water body in which thecapillary tube is inserted, is called the(a) Capillary propressure(d) None of theseAns : (b) capillary: - It is defined as a phenomenon ofrise or fall of a liquid surface in a small vertical tubeHeight of rise rafil in the tube is given by -h = \frac{4\sigma cas\alpha}{\sigma d}were \sigma = surface tension\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weight of fluid and\alpha = -Angle of contact of the liquid surface\phi = Specific weigh$	one dimensional flow:- is the flow in which parameters	velocity at any point on a given normal to that fixed
in one direction and the flow is a function of only one co- ordinate axis and time. The flow field is represented by streamlines which are straight and parallel. 56. The frictional resistance of a pipe varies (a) pressure (b) square of velocity (c) velocity (d) cube of the velocity (c) velocity (d) cube of the velocity (f) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity (f) The frictional resistance of a pipe varies with the velocity field fluid in the resistance of a pipe varies with or $\boxed{\mathbb{R} = f' \times AV^2}$ 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (d) None of the tarbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary ore pressure (d) None of these Ans: (b) capillary1 is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ were $\sigma =$ surface tension $\omega = Angle of contact of the liquid surface\omega = Specific weight of liquid and\omega = Specific weigh$	(velocity, Pressures, density, viscosity and term vary only	plane should be constant.
ordinate axis and time. The flow field is represented by streamlines which are straight and parallel. 56. The frictional resistance of a pipe varies approximately withof the liquid : (a) pressure (b) square of velocity (c) velocity (d) cube of the velocity Ans: (b) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of pipe under fluid flow $\boxed{\mathbb{R} \propto AV^2}$ where A = surface area V = fluid velocity (c) High velocity (b) Low pressure (c) High velocity (d) High pressure (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure Ans: (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbined falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and the exitegion of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube is inserted, is called the (a) Capillary propression (b) Capillary propression (c) Capillary propression (c) Capillary propression (d) Maximum efficiency (e) None of these Ans: (b) capillary: - It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube Height of rise or fall in the ube is given by - $h = \frac{4\sigma caso}{\sigma d}$ were σ = surface tension α = Angle of contact of the liquid surface σ = Specific weight of liquid and α = Angle of contact of the liquid surface σ = Specific weight of liquid and α = Angle of contact of the liquid surface σ = Specific weight of liquid and α = Angle of contact of the liquid and α = Specific weight of liquid and α = Specific weight of liquid and α = Specific weight of liquid and α = Specific	in one direction and the flow is a function of only one co-	60. A single speed centrifugal pump, feeding a
Streamines which are straight and parallel. 56. The frictional resistance of a pipe varies approximately with of the liquid : (a) pressure (b) square of velocity (c) velocity (d) cube of the velocity (c) velocity (d) cube of the velocity (c) velocity (d) cube of the velocity (c) Reduced efficiency (d) None of these Ans : (b) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of pipe under fluid flow $\boxed{\mathbb{R} \propto AV^2}$ where A = surface area $V = fluid velocity (f' = fluid velocity (d) Low velocity (d) Low pressure (c) High velocity (d) High pressure (d) None of the turbines and in the exit region of the turbines. 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (d) High pressure (c) High velocity (d) High pressure (c) High velocity (d) High pressure (c) High velocity (d) High pressure (d) None of these Ans : (b) Cavitations is formation of vapour bubbles in the liquid flab below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free waters (d) None of these Ans : (b) Capillary tension (e) Capillary compression (f) Capillary compression (g) Capillary tension (g) Capillary the turb is given by - h = \frac{4\sigma cas\alpha}{\sigma d}were \sigma = surface tension\alpha = Angle of contact of the liquid surface\sigma = Specific weight of liquid and\sigma = Specific weight of$	ordinate axis and time. The flow field is represented by	small water supply distribution system of a
56. The frictional resistance of a pipe varies approximately with	streamlines which are straight and parallel.	block of houses, works at
approximately with of the inquid: (a) pressure (b) square of velocity (c) velocity (d) cube of the velocity (c) velocity (d) cube of the velocity (d) None of these Ans: (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbines and in the exit region of the turbines. 57. The cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free waters surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tube is inserted, is alled the (c) Capillary tube is inserted, is called the (a) Capillary tube is inserted, is called the (b) Capillary tube is inserted, is called the (c) Capillary tube is inserted, is called the (d) None of these Ans: (b) Capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube.	56. The frictional resistance of a pipe varies	(a) Maximum efficiency
(a) pressure (b) square of velocity (c) velocity (d) cube of the velocity (d) cube of the velocity (d) Square of velocity (d) cube of the velocity (d) Square of velocity (d) Figure velocity (d) None of these (Ans : (c) A single speed centrifugal pump feeding a small water supply distribution system of a block of houses works at reduced efficiency. Centrifugal pumps are the most commonly used. Centrifugal force pushes the liquid outward from the eye of the impeller where it enters the casing. 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure 57. The cavitation is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations is formation of vapour bubbles in the static Pressure of the liquid at the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary compression (c) Capillary compression (d) None of these (d) None of the section (e) Capillary tube above the free water surface of fue water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary compression (c) Capillary tores mailly vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ were $\sigma = surface tension (a = Angle of contact of the liquid surface (c) = 3 (d) 4 Ans: (b) A three rotor system has natural frequencies (d) 4 Ans: (b) A three rotor system number of natural frequencies (d) 4 Ans: (b) A three rotor system number of natural frequencies (d) A three rotor system number of natural frequencies (d) A three rotor system number of natural frequencies (d) A three rotor system number of natural frequencies (d) A three rotor sys$	approximately with of the liquid :	(b) Minimum efficiency
(c) velocity (d) cube of the velocity Ans : (b) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of pipe under fluid flow $ \underline{R} \propto A V^2 $ where $A = surface area V = fluid velocityf' = fluid friction coefficientor \underline{R} = \underline{f} \times A V^2 57. The cavitation in a hydraulic machine ismainly due to(a) Low velocity (b) Low pressure(c) High velocity (d) High pressure(a) Low velocity (d) High pressure(c) High velocity (d) High pressure(d) None of the settion is most the turbines58. The stress, which is responsible for retainingwater in a capillary tube above the free waterssurface of the water body in which thecapillary compression(b) Capillary compression(c) Capillary compression(d) None of theseAns: (b) capillary: . It is defined as a phenomenon ofrise or fall of a liquid surface in a small vertical tube.Height of rise or fall in the tube is given by -h = \frac{4\sigma cas\alpha}{od}were \sigma = surface tension \alpha = Angle of contact of the liquid surface \phi = Specific weight of liquid and \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the covilic for or system number of natural \phi = Directer of the or system for the trane for the system for the or system number of n$	(a) pressure (b) square of velocity	(c) Reduced efficiency
Ans: (b) The frictional resistance of a pipe varies with the square of velocity of the fluid. According to fluids application the resistance of pipe under fluid flow $ \underline{R} \propto AV^2 $ where $A = surface areaV = fluid velocityf' = fluid fliction coefficientor \underline{R} = \underline{f} \times AV^2 57. The cavitation in a hydraulic machine ismainly due to(a) Low velocity (b) Low pressure(c) High velocity (d) High pressurefails below its vapour pressure. Cavitation is most likelyto occur near the fast moving blades of the turbines andin the exit region of the turbines.58. The stress, which is responsible for retainingwater in a capillary tube above the free watersurface of the water body in which thecapillary tube is inserted, is called the(a) Capillary compression(b) Capillary compression(c) Capillary tope pressure(d) None of theseAns : (b) capillary:- It is defined as a phenomenon ofrise or fall of a liquid surface in a small vertical tubeHeight of rise or fall in the tube is given by -h = \frac{4ccasa}{od}were \sigma = surface tension\alpha = Angle of contact of the liquid surface\phi = Specific weight of liquid andd = Angle of contact of the liquid surface\phi = Specific weight of liquid and\phi = Specific weight of liquid and\phi = Specific weight of liquid and\phi = Specific weight of the tube$	(c) velocity (d) cube of the velocity	(d) None of these
The square of velocity of the lind. According to fluids application the resistance of pipe under fluid flow $\left[\frac{\alpha \propto AV^2}{2}\right]$ where $A = surface areaV = fluid velocityf' = fluid friction coefficientor \overline{R = f' \times AV^2}57. The cavitation in a hydraulic machine ismainly due to(a) Low velocity (b) Low pressure(c) High velocity (d) High pressure(a) Low velocity (d) High pressure(c) High velocity (d) High pressure(a) Low velocity (d) High pressure(a) Increases linearly(b) ncreases exponentially(c) decreases linearly(d) decreases seponentially(e) decreases seponentially(f) decreases exponentially(f) decreases exponentially(h) under damp vibration(h) Capillary tube above the free watersurface of the water body in which thecapillary tube is inserted, is called the(a) Capillary tube is defined as a phenomenon of(b) Capillary tension(c) Capillary pore pressure(d) None of theseAns : (b) capillary tube is inserted, is called the(a) Capillary tube is given by -h = \frac{4Ccas\alpha}{cod}were \sigma = surface tension\alpha = Angle of contact of the liquid surface\omega = Specific weight of fliquid andd = Directors of the rether(a) I (b) 2(c) 3 (d) 4Ans : (b) A three rotor system has natural frequencies2 where as two rotor system number of naturalfrequencies(a) I (b) 2(c) 3 (c) 4$	Ans : (b) The frictional resistance of a pipe varies with	(d) None of these
application the resistance of pipe under fluid flow $\frac{ \mathbf{R} \propto A ^2 }{ \mathbf{r} = A ^2 ^2 }$ shows works at reduced efficiency. Centrifugal force pushes the liquid outward from the eye of the impeller where it enters the casing. 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (d) Low velocitis Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary tone pressure (d) None of these Ans : (b) Capillary compression (b) Capillary tension (c) Capillary tone for easing were $\sigma =$ surface tension $\alpha =$ Angle of contact of the liquid surface $\sigma =$ Specific weight of liquid and $\sigma =$ Angle of contact of the liquid surface $\sigma =$ Specific weight of liquid and $\sigma =$ Angle of contact of the liquid surface $\sigma =$ Specific weight of liquid and $\sigma =$ Norther of the verification the tube is given by - $h = \frac{4\sigma casa}{\sigma d}$ were $\sigma =$ surface tension $\alpha =$ Angle of contact of the liquid surface $\sigma =$	the square of velocity of the fluid. According to fluids	Ans: (c) A single speed centrilugal pump leeding a
$\frac{ \mathbf{R} \propto AV^2 }{ \mathbf{r} \propto AV^2 }$ where $A = surface area V = fluid velocity f' = fluid velocity f' = fluid friction coefficient or \overline{ \mathbf{R} = f \times AV^2 }57. The cavitation in a hydraulic machine ismainly due to(a) Low velocity (b) Low pressure(c) High velocity (d) High pressure(c) High velocity (d) High pressure(c) High velocity (d) High pressure(c) Ars : (b) Cavitations is formation of vapour bubbles inthe liquid flowing through any hydraulic turbines.58. The stress, which is responsible for retainingwater in a capillary tube above the free watersurface of the water body in which thecapillary tube is inserted, is called the(a) Capillary compressure(d) None of theseAns : (b) capillary retriated is a manual vertical tube.Height of rise or fall in the tube is given by -h = \frac{4\sigma cas\alpha}{od}were \sigma = surface tension\alpha = Angle of contact of the liquid surface \sigma = Specific weight of liquid and d = Discurver differements and the fluid surface d = Discurver dif$	application the resistance of pipe under fluid flow	small water supply distribution system of a block of
where $A = surface area V = fluid velocity f' = fluid friction coefficient or \overline{[R = f' \times AV^2]}57. The cavitation in a hydraulic machine ismainly due to (a) Low velocity (b) Low pressure(c) High velocity (c) High pressure(c) High velocity (c) High pressure(c) High velocity (c) High pressure (c) decreases linearly (c) decreases linearly (c) decreases linearly (c) decreases linearly (c) decreases exponentiallyto occur near the fast moving blades of the turbines.58. The stress, which is responsible for retainingwater in a capillary tube above the free watersurface of the water body in which thecapillary compression(c) Capillary compression(d) None of theseAns : (b) Capillary core pressure(d) None of theseAns : (b) Capillary core pressure(d) None of theseAns : (b) Capillary core pressure(d) None of theseAns : (b) Capillary: It is defined as a phenomenon oftise or fall of a liquid surface in a small vertical tube.Height of rise or fall in the tube is given by -h = \frac{4 \sigma cas\alpha}{\sigma d} were \sigma = surface tension\alpha = Angle of contact of the liquid surface\sigma = Specific weight of liquid andd =$ Downter of the previous of the liquid surface $\sigma =$ Specific weight of liquid and d = Downter of the previous of the liquid surface $\sigma =$ Specific weight of liquid and d = Downter of the number of natural frequencies 2 where as two ortor system has natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor system number of natural frequencies 2 where as two rotor syste	$\mathbf{R} \propto \mathbf{AV}^2$	nouses works at reduced efficiency. Centifugal
V = fluid velocity f' = fluid friction coefficient or $\overline{[R = f' \times AV^2]}$ 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (c) Ans : (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary compression (d) None of these Ans : (b) capillary: - It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ϕ = Specific weight of liquid and d = Derwyter of the guiller the flique toric d = Derwyter of the fliquid and d = Derwyter of the registion of liquid and d = Derwyter	where $A = surface area$	force pushes the liquid outward from the eve of the
f' = fluid friction coefficient or $\boxed{\mathbb{R} = f' \times AV^2}$ 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (d) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary pore pressure (d) None of these Ans : (b) capillary: It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - h = $\frac{4\sigma casa}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ϕ = Specific weight of liquid and d = Divention of the liquid surface ϕ = Specific weight of liquid and d = Divention of the liquid surface ϕ = Specific weight of liquid and d = Divention of the suffice and the liquid surface ϕ = Specific weight of liquid and ϕ = Divention of the suffice and the liquid surface ϕ = Specific weight of liquid and ϕ = Divention of the liquid surface ϕ = Specific weight of liquid and ϕ = Divention of the previous of the liquid surface ϕ = Specific weight of liquid and ϕ = Divention of the previous of the suffice previous of the liquid surface ϕ = Specific weight of liquid and ϕ = Divention of the previous of the suffice previou	V = fluid velocity	impeller where it enters the casing
or $\underline{\mathbb{R} = \mathbf{f}' \times AV^2}$ 57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (c) decreases exponentially (d) decreases exponentially (d) decreases exponentially (e) decreases exponentially (f) $\underline{\mathbb{S}} > (\frac{c}{2m})^2$ vibration conduction is called under damp vibration in under damping motion is simple periodic motion • Ams : (b) Capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary trension (c) Capillary trension (d) None of these Ans : (b) capillary: It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface \phi = Specific weight of liquid and d = Diverstore fide scrillen the tension d = Diverstore f$	f ' = fluid friction coefficient	Imperier where it enters the easing.
57. The cavitation in a hydraulic machine is mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (c) High velocity (c) High any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Height of rise or fall in the tube is given by - h = $\frac{4\sigma cas\alpha}{od}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Divertion effets criticult and d = Divertion effets criticu	or $\mathbf{R} = \mathbf{f} \times \mathbf{AV}^2$	amplitude of vibration with reference to time
mainly due to (a) Low velocity (b) Low pressure (c) High velocity (d) High pressure Ans : (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary top pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon off rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Directive of the surface tension d = Directive of the surface in the surface tension d = Directive of the surface in the surface tension d = Directive of the surface in the surface tension d = Directive of the surface in the surface in the liquid surface ω = Specific weight of liquid and d = Directive of the surface in the surface in the surface of the surface tension d = Directive of the surface in the surface in the surface of the surface of the surface in the surface of the surface in the surface of the surface tension ω = Directive of the surface in the surface in the surface of the surface in t	57. The cavitation in a hydraulic machine is	•••••
(a) Low velocity (b) Low pressure (c) High velocity (d) High pressure (c) High velocity (d) High pressure (c) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary compression (b) Capillary compression (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface \omega = Specific weight of liquid andd = $ Directive of the surface tension d = Directive of the surface of the updid and d = Directive of the surface the surface tension d = Directive of the surface tension d = Directive of the surface of the updid and d = Directive of the surface of the updid and d = Directive of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the surface of the updid and d = Directive of the surface of the surface of the updid and the directive of the surface of the updid and the directive of the surface of the updid tense of t	mainly due to	(a) increases linearly
(c) High velocity (d) High pressure (c) High velocity (d) High pressure (c) Ans: (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary pore pressure (d) None of these Ans: (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Dimension for the under of the input of the surface of the input of the surface of the input of the surface in a small vertical tube. Height of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall of the input of	(a) Low velocity (b) Low pressure	(b) ncreases exponentially
Ans : (b) Cavitations is formation of vapour bubbles in the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface\phi = Specific weight of liquid andd = Dirmet of the liquid andd = Dirmet of t$	(c) High velocity (d) High pressure	(c) decreases linearly
the liquid flowing through any hydraulic turbine. Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary properssure (d) None of these Ans: (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ (a) 1 (b) 2 (c) 3 (d) 4 Ans: (b) A three rotor system has natural frequencies 2 where as two rotor system number of natural frequencies 2. (a) 1 (b) 2 (c) 3 (d) 4 Ans: (b) A three rotor system number of natural frequencies 2. (b) A three rotor system number of natural frequencies 2. (c) 3 (d) 4 Ans: (b) A three rotor system number of natural (c) 3 (d) 4 Ans: (b) A three rotor system number of natural (c) 3 (d) 4 Ans: (b) A three rotor system number of natural (c) 3 (d) 4 Ans: (b) A three rotor system number of natural (c) 3 (d) 4 Ans: (b) A three rotor system number of natural (c) 3 (d) 4 Ans: (b) A three rotor system number of natural	Ans : (b) Cavitations is formation of vapour bubbles in	(d) decreases exponentially
Cavitations occurs when the static Pressure of the liquid falls below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\sigma d}$ (a) 1 (b) 2 (c) 3 (d) 4 Ans : (b) A three rotor system has natural frequencies $\alpha =$ Angle of contact of the liquid surface $\alpha =$ Angle of contact of the liquid surface $\alpha =$ Discust of fliquid and $\alpha =$ Discust of fliquid fliquid and $\alpha =$ Discust of fliquid and $\alpha =$ Discust of fliquid fliquid and $\alpha =$ Discust of fliquid fliquid fliquid and $\alpha =$ Discust of fliquid fli	the liquid flowing through any hydraulic turbine.	$\left[2 \left(2\right)^{2}\right]$
Tails below its vapour pressure. Cavitation is most likely to occur near the fast moving blades of the turbines and in the exit region of the turbines. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Director for the constitution of the surface of the liquid surface ω = Specific weight of fliquid and d = Director system has natural frequencies 2 where as two rotor system number of natural frequencies	Cavitations occurs when the static Pressure of the liquid	Ans : (d) $\left \frac{s}{s} > \left(\frac{c}{s}\right)\right $ vibration conduction is called
The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface\omega = Specific weight of fliquid andd = Director system has natural frequencies2 where as two rotor system number of naturalfrequencies is two rotor system number of naturalfrequencies is two rotor system number of natural2 where as two rotor system number of naturalbetween the system has natural frequencies is two rotor system number of naturalcomplete the capiller to the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of naturalcomplete the system has natural frequencies is two rotor system number of natural frequencies is the system has natural frequen$	falls below its vapour pressure. Cavitation is most likely	m (2m)
 In under extregion of the throms. 58. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary compression (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - h = 4σcasα//ωd were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and Δ = Director stress of the surface tension α = Angle of contact of the liquid and Ans : (b) A three rotor system has natural frequencies 2 where as two rotor system number of natural 	in the axit region of the turbines	under damp vibration
So. The stress, which is responsible for retaining water in a capillary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface\omega = Specific weight of liquid andd = Dievater effte capillary tube is defined and the number of natural frequencies is a stress of the surface is a stress of$	59 The strange which is mercercitle for which is	• In under damping motion is simple periodic motion
water in a capinary tube above the free water surface of the water body in which the capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface \omega = Specific weight of liquid andd = Directer of the serillery table$	58. The stress, which is responsible for retaining water in a capillary tube above the free water	• Amplitude of vibration in under damp condition
capillary tube is inserted, is called the (a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ Were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Director effthe consultant tube.	surface of the water body in which the	gradually decreases and after some time gain
(a) Capillary compression (b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$ $\alpha = Angle of contact of the liquid surface \omega = Specific weight of liquid andd = Dispurster a fabre arrithment the$	capillary tube is inserted, is called the	equilibrium conditions.
(b) Capillary tension (c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface$ tension $\alpha = Angle of contact of the liquid surface \omega = Specific weight of liquid and d = Dirmeter of the consiltent tube.$	(a) Capillary compression	$\int \int \int dx dx dx dx$
(c) Capillary pore pressure (d) None of these Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ (a) 1 (b) 2 (c) 3 (d) 4 Ans : (b) A three rotor system has natural frequencies $\alpha = $ Angle of contact of the liquid surface $\omega = $ Specific weight of liquid and $\Delta = $ Director of the semillementation	(b) Capillary tension	$ \bullet \stackrel{s}{=} = \left(\stackrel{c}{=} \right) \Rightarrow$ Critical damping
(d) None of these (d) None of these (d) None of these (e) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (f) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (e) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (f) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (g) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (h) $\frac{s}{m} < \left(\frac{c}{2m}\right)^2 \Rightarrow \text{ over damping}$ (a) 1 (b) 2 (c) 3 (d) 4 (c) 3	(c) Capillary pore pressure	m (2m)
Ans : (b) capillary:- It is defined as a phenomenon of rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and σ = Diameter of the consiltent tube.	(d) None of these	$\left[1 + \left(1 + 1\right)^2\right]$
rise or fall of a liquid surface in a small vertical tube. Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Diameter of the consiltent tabe. (a) 1 (b) 2 (c) 3 (d) 4 Ans : (b) A three rotor system has natural frequencies 2 where as two rotor system number of natural 2 where as two rotor system number of natural	Ans : (b) capillary:- It is defined as a phenomenon of	$ \bullet \stackrel{s}{\longrightarrow} < (\frac{c}{2}) \Rightarrow$ over damping
Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Diameter of the consiltent take	rise or fall of a liquid surface in a small vertical tube.	m (2m)
$h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and d = Dirmeter of the consiltent take		62. A three rotor system has following number of
$m = \frac{1}{\omega d}$ (a) 1 (b) 2 (c) 3 (d) 4 (a) 1 (b) 2 (c) 3 (d) 4 (c) 3 (c) 3 (c) 3 (c) 3 (c) 3 (c) 4 (c) 4	Height of rise or fall in the tube is given by -	
were $\sigma = \text{surface tension}$ $\alpha = \text{Angle of contact of the liquid surface}$ $\omega = \text{Specific weight of liquid and}$ d = Dispute tension d = Dispute tension	Height of rise or fall in the tube is given by - $4\sigma cas\alpha$	natural frequencies
α = Angle of contact of the liquid surface ω = Specific weight of liquid and Δ = Diameter of the conjulant take	Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$	natural frequencies (a) 1 (b) 2
ω = Specific weight of liquid and ω = Diameter of the conjular type	Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were $\sigma = surface tension$	natural frequencies
de Diemeter of the confilment take	Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface	natural frequencies (a) 1 (b) 2 (c) 3 (d) 4 Ans : (b) A three rotor system has natural frequencies
d= Diameter of the capillary tube infineduencies 1.	Height of rise or fall in the tube is given by - $h = \frac{4\sigma cas\alpha}{\omega d}$ were σ = surface tension α = Angle of contact of the liquid surface ω = Specific weight of liquid and	natural frequencies (a) 1 (b) 2 (c) 3 (d) 4 Ans: (b) A three rotor system has natural frequencies 2. where as two rotor system number of natural

63. The figure given below shown a crusher having several cylindrical rollers of weight W. The crushing force due to each roller will be :

Ans: (c)

Mathematically centrifugal tension $T_c = mv^2$ (in Newton's) where m = Mass of the belt per unit length in kg and v = Linear velocity of the belt in m/s The power transmitted by a belt drive is maximum when the maximum tension in the belt (T) is three times the centrifugal tension T_c the velocity of the belt (v) for maximum power is given by $V = \sqrt{\frac{T_c}{3m}}$ 70. A rotating mass having moment of inertia of 30 kgm ² rotates at 800 rpm and is travelling in a curve of 170 metre radius at a speed of 240 km/hr. It will experience a gyroscopic reaction of (a) 10 m kgf (b) 100 m kgf	 72. The following is the inversion of slider crank mechanism : A. Whitworth quick return mechanism B. Hand pump C. Oscillating cylinder engine (a) only A (b) only B (c) only C (d) A, B and C Ans : (d) Whitworth quick return mechanism hand pump, oscillating cylinder engine are inversion of single slider crank mechanism Inversion of single slider crank mechanism (i) On fixing the cylinder- reciprocating compressor (ii) On fixing the crank- Whitworth quick return mechanism rotary engine (iii) On fixing the connecting road→ oscillating
(c) 1000 m kgf (d) 10000 m kgf	cylinder engine
Ans : (b) Rotating mass moment Inertia ((I) = $30 \text{ kg}\text{-m}^2$ Speed of rotating mass N = 800 rpm .	 (iv) On fixing the slider → hand pump bull engine. Inversion of double slider crank mechanism (a) Elliptical trammels (b) Scotch yoke mechanism (c) Oldham's coupling
	 73. The horse power transmitted by a belt is dependent upon : A. tension on tight side of belt B. tension on slack side of belt C. radius of pulley
$\omega = \frac{2\pi N}{2\pi N} = \frac{2 \times \pi \times 800}{2\pi N}$	D. speed of pulley
$\frac{60}{60} = \frac{60}{60}$	(a) only A and B (b) only B and C (c) only D (d) A B C and D
$\omega = 83.78 \text{ rad/sec}$	(c) only D (d) A, B, C and D
$v = 240 \times 1000 = 0.202 \text{ rod}/s$	dependent upon -
$\omega_{\rm p} = \frac{1}{r} = \frac{1}{170 \times 60 \times 60} = 0.3921 {\rm ad} / {\rm s}$	(i) Tension in tight side belt
gyroscopic reaction $C = I \times w \times w_p$	(ii) Tension in slack side belt
$C = 30 \times 83.78 \times 0.392 = 985.64$	(iii) Radius of pulley
C = 985.64 Nm	(iv) Speed of pulley
Note : $C = 985.64 \text{ Nm}$	power transmitted by belt (P) = $(T_1 - T_2) V$ J/sec
C = 100.47 kgf – m	74. Which of the following is a lower pair ?
(:: 1 Kgf = 9.81 N)	A. Ball and socket
71 Throw of a sam is the maximum distance of the	B. Piston and cylinder
71. Throw of a call is the maximum distance of the follower from :	C. Cam and follower (a) only A (b) only B
(a) Base circle (b) Pitch circle	(a) only A (b) only B (c) only C (d) A and B
(c) Root circle (d) Prime circle	(c) only c (d) A and b
 Ans : (a) Base circle→ It is the smallest circle that can be draw to the cam profile. Pitch Point→ It is a point on the pitch curves having the maximum pressure angle. Pitch circle→ It is circle drawn from the centre of the 	Ans : (d) Lower pair \rightarrow when the two elements of a pair have a surface contact when relative motion take place and the surface of one element slides over the surface of the other, the pair formed is known as lower pair. It will be seen that sliding pairs, turning pairs and screw pairs form lower pairs.
cam through the pitch points Prime circle It is the smallest circle that can be drawn from the centre of the cam and tangent to, the pitch curve for a knife edge and a flat face follower. The prime circle and the base circle are Identical for a roller follower. The prime circle is larger than the base circle by the radius of the roller	Higher pair \rightarrow when the two elements of a pair have a line or point contact. When relative motion takes place and the motion between the two elements is partially turning and partially sliding then the pair is known as higher pair. A pair of friction disc, toothed gearing, belt and rope drives, ball and roller bearing, cam and follower are the examples of higher pairs.

	Modulus of rigidity is defined as the ratio of	(c) at the support
		(d) anywhere
	(a) longitudinal stress and longitudinal strain	Ans : (c) A cantilever beam will fail at fixed end
	(b) volumetric stress and volumetric strain	because bending moment is maximum at fixed end.
	(c) lateral stress and lateral strain (d) shear stress and shear strain	w
	(d) shear stress and shear strain $(d) = d + d + d + d + d + d + d + d + d + d$	1 ×
Ans a	a (d) modulus of rigidity (G) is defined as the Ratio	
01 511		
(i) m	odulus of rigidity (G) = $\frac{\tau}{1}$ snear stress	
	ϕ shear strain	wl
	σ_{ℓ}	BMD
(11)	$E = -\frac{1}{\epsilon_{e}}$ E = young's modulus	87. At the principal planes
		(a) the normal stress is maximum or minimum
	σ_{ℓ} = longitudinal stress	and the shear stress is zero
	\in_{ℓ} = longitudinal strain	(b) the tensile and compressive stresses are zero
	- direct stress	(c) the tensile stress is zero and the shear stress is
(iii)	$k = \frac{6}{100} \frac{\text{direct stress}}{1000} = (\text{Bulk Modulus})$	maximum
	e _v Volumetric strain	(d) no stress acts
83.	The intensity of stress which causes unit strain	Ans: (a) A stress is a perpendicular force acting on an object per unit area. The maximum stress is called the
	is called	principal stress and the plane at which the maximum
	(a) unit stress	stress induced is called the principal plane and the shear
	(b) bulk modulus	stress will be zero on the principal plane.
	(c) modulus of rigidity	• Principal stress σ_1 and σ_2 are at the 90 ⁰ one another
A	(d) The intersity of stress which serves with strein	• Radius of Mohr's circle represent the value of
Ans :	a modulus of electicity	maximum shear stress
15 Cal	intensity of strong (-)	• Different of principal stress represent the dia of
Modu	alus of elasticity (E) = $\frac{\text{Intensity of stress(o)}}{\text{IL} + (C)}$	Nionr's circle.
	Unit Strain (∈)	88. I wo wires AO and BO support a vertical load W at Ω as shown in the figure below. The wires
84.	The property of a material by virtue of which	are of equal length and equal cross sectional
	a body returns to its original snape after removal of the load is called	area. The tension in each wire is equal to :
	(a) Plasticity (b) Elasticity	AB
	(a) Plasticity(b) Elasticity(c) Ductility(d) Malleability	Manual Bur
Ans	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (b) Elasticity:- It is the property of a material to 	
Ans regain	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the 	45° 45°
Ans regain	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (b) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable 	45° 145°
Ans regain extern for m	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (b) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable naterials used in tools and machines It may be noted 	45' 45' W
Ans regain extern for m that s	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (b) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. 	(a) $W/2$ (b) W
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? 	(a) $W/2$ (b) W (c) $\sqrt{2}W$ (d) $W/\sqrt{2}$
Ans regain extent for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable naterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ Ans : (d) In equilibrium condition according to Lami's
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable aterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) In equilibrium condition according to Lami's theorem
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ Ans : (d) In equilibrium condition according to Lami's theorem $T_1 = T_2 = W$
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (Ans : (d) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable materials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) Elasticity (c) Malleability (c) Malleability<	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) W/ $\sqrt{2}$ (e) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable aterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) W/ $\sqrt{2}$ (e) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	 (a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these 	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) W/ $\sqrt{2}$ (d) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) W/ $\sqrt{2}$ (e) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (c) only C (d) None of these (c) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for hetween $\frac{1}{2}$ and $\frac{1}{2}$ Poisson's ratio for aluminium	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (a) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable interials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio $-$ The ratio of lateral strain to r strain is called Poisson's ratio for aluminium	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (a) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85. 85.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for between $\frac{1}{4}$ and $\frac{1}{3}$ Poisson's ratio for aluminium 3 for cork = 0	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) W/ $\sqrt{2}$ (d) W/ $\sqrt{2}$ (e) W (c) $\sqrt{2}$ W (f) W (f) W/ $\sqrt{2}$ (f) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s85.Ans linear steel $= 0.3$ 86.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for between $\frac{1}{4}$ and $\frac{1}{3}$ Poisson's ratio for aluminium 3 for cork = 0 A beam is loaded as cantilever. If the load at	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (a) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s $85.$ Ans linear steel = 0.3 $86.$	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for between $\frac{1}{4}$ and $\frac{1}{3}$ Poisson's ratio for aluminium 3 for cork = 0 A beam is loaded as cantilever. If the load at the end is increased, the failure will occur	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (a) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s 85. 85. Innear steel = 0.3 86.	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for between $\frac{1}{4}$ and $\frac{1}{3}$ Poisson's ratio for aluminium 3 for cork = 0 A beam is loaded as cantilever. If the load at the end is increased, the failure will occur (a) in the middle	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (a) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$
Ans regain extern for m that s $85.$ Ans linear steel = 0.3 $86.$	(a) Plasticity (b) Elasticity (c) Ductility (d) Malleability (e) Elasticity:- It is the property of a material to n its original shape after deformation when the nal forces are removed .This property is desirable laterials used in tools and machines It may be noted teel is more elastic than rubber. For which material the Poisson's ratio is more than unity? A. steel B. copper C. aluminium D. cast iron (a) only A (b) only B (c) only C (d) None of these (d) Poisson's ratio \rightarrow The ratio of lateral strain to r strain is called Poisson's ratio. Poisson's ratio for between $\frac{1}{4}$ and $\frac{1}{3}$ Poisson's ratio for aluminium 3 for cork = 0 A beam is loaded as cantilever. If the load at the end is increased, the failure will occur (a) in the middle (b) at the tip below the load	(a) W/2 (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (b) W (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (c) $\sqrt{2}$ W (d) $W/\sqrt{2}$ (d) In equilibrium condition according to Lami's theorem $\frac{T_1}{\sin(90+45^0)} = \frac{T_2}{\sin(90+45^0)} = \frac{W}{\sin 90^0}$ (c) T_1 (c) T_2 (c) T_3 (c) T_4

A weight of 300 K is held on a smooth plane, inclined at 30° to the horizontal by a force P acting 30° above the plane as shown in the figure below. The reaction of plane on the weight will be :

90. Given figure shows a quick return mechanism. The crank OA rotates clockwise uniformly. OA
= 2 cm. OO' = 4cm. The ratio of time for forward motion to that for return motion is :

92. Which of the following is not a casting process?(a) Carthias process(b) extrusion	 96. Magnetic arc blow is (a) a recent welding technique (b) used to weld materials
(c) semi–centrifuge method	(c) occurs when welding near equator
(d) slush process	(d) phenomenon of occurrence of splatter because
Ans : (b) Extrusion:- is a metal forming process in	of magnetic fields created in d.c. arc welding
which metal or work piece is forced to flow through a	Ans: (d) Magnetic arc blow is phenomenon of loccurrence of spelter because of magnetic fields created
die to reduce its cross section or convert into desire shape. This process is extensively used in pipes and	in d.c arc welding.
steel rods manufacturing	97. Preheating is essential in welding
93. Carburising flame is used to weld metals like	(a) high speed steel (b) stainless steel
••••••	(c) cast iron (d) german silver
(a) steel	Ans: (c) Preheating is essential in welding of cast iron.
(b) copper and brass	Heat control is the single most important factor in
(c) aluminium, nickel, monel etc.	avoiding cracks. A cast iron would requires three steps.
(d) carburised steel	• Pre- heating
Ans : (c) Reducing or carburizing flame:- The	• Low heat input
oxygen	Slow cooling
A Carburizing flame is commonly used for welding of	98. Tool in the case of ultrasonic machining is
high carbon steel and hard facing non ferrous alloys as	(a) HSS (b) diamond
nickel and monel.	(c) brass or copper (d) stainless steel
94. The most commonly used flame in gas welding is :	Ans : (c) Ultrasonic machining \rightarrow In ultrasonic
A. Neutral	machining the metal is removed by using abrasive
B. Oxidising	slurry between the tool and work. The abrasive slurry
C. Carburising (a) only A (b) only B	contains tine particles of aluminium oxide or silicon carbide or boron carbide and water. The vibratory tool
(c) only C (d) only A and B	(made of brass or capper) striking on the flow of
Ans : (a) Neutral flame: - The neutral flame is obtained	abrasive slurry causes thousands of microscopic
by supplying equal volumes of oxygen and acetylene. It	abrasive grains to remove the work material by abrasion
has the following two sharply defined zones.	99. Thread rolling is somewhat like
(i) An inner luminous cone (3200° C) and	(a) cold extrusion (b) cold machining (c) cold rolling (d) cold forging
(ii) An outer cone or envelope of bluish color (125°C).	(c) cold rolling (d) cold rolling
steel cast iron copper aluminium etc) is done with the	in which the threads are formed by rolling a thread
neutral flame	blank between hardened dies that cause the metal to
95. In braze welding, the filler metal is :	flow radially into the desired shape.
A. Distributed by capillary attraction	• Thread Rolling is a chipless process it is fast and
B. Melted and deposited at the point where the	 The blank must be of a ductile material
weld is to be made	 It is applicable for mass production.
C. Not required $(b) = a a b b$	100. The fatigue strength of metal is improved by
(a) Only A (b) Only B (c) Both A and B (d) Only C	setting up compressive stresses in the surface
(c) Boun A and B (d) only C \mathbf{A} as a the property would be a property would be property would be a property would be a property would be prope	by a process known as
Ans: (b) blaze weight \rightarrow is a procedure used to join two pieces of metal. It is very similar to fusion welding	(a) lancing (b) shot-peening (c) hemming (d) slugging
with the exception that the base metal is not melted the	(c) iterating (u) sugging
filler materials distributed into the metal surfaces by	used to finish metal parts to prevent fatigue and stress
tinning.	corrosion failures.
(ii) Braze welding differs from brazing in that the joint	• In shot peening, a small spherical shot bombards the
design for braze welding is similar or identical to that	surface of the part to be finished.
(iii) Canillary action is not a factor in the formation of a	• The shot acts like a peen hammer, dimpling the
bond.	dimple
	ampre.

SSC Junior Engineer Mechanical Online Exam 2017 CPWD/CWC/MES Mechanical Engineering

Time : 2.45 pm]

[Exam Date : 2 March, 2017

 A body is thrown up at an angle of 45° with a velocity of 100 m/sec so as to describe a parabola. Its vertical velocity on point of return down will be (a) Zero (b) 130 m/sec 	 Note:- It the body drop in the air i.e. atmosphere then the body of higher mass reached on the earth surface shortally than light weight body because the body is effected by viscous drag & buoyancy effect of air. 4. The apparent weight of a man in moving lift is
(c) 50 m/sec (d) 70.7 m/sec	less than his real weight when it is going down
Ans. : (d) Velocity of ball $u = 100 \text{ m/sec}$ Velocity of body hits the earth with same Velocity as its thrown.	(a) uniform speed (b) an acceleration (c) some linear momentum (d) retardation
$A \xrightarrow{u \le 45^{\circ}} U \le 45^{\circ}$ $A \xrightarrow{u' \le 145^{\circ}} U' \le 45^{\circ}$ $U' \le 145^{\circ}$	 Ans. : (b) Consider the man of mass in inside the lift (i) When the lift is moving down wards then apparent weight of man is less than the real weight of man Apparent weight W=mg- ma (ii) When the lift is moving upward then apparent weight of man is more than the real weight of man apparent weight w = (mg + ma)
Vertical velocity at hitting points- B.	ţ.w.
$u'' = u' \sin 45^{\circ}$ $= 100 \times \frac{1}{\sqrt{2}}$ $\therefore \boxed{u'' = 70.7} \text{m/sec}$	
2. When the spring of a watch is wound it possess	(iii) It the lift is freely fall i.e. $a=\sigma$
(a) heat energy (c) potential energy(b) kinetic energy (d) wound energyAns. : (c) when the spring of watch is would it possess potential energy	 (iv) It the lift moves up wards or downwards with constant velocity i.e. acceleration (a)=0 then apparent weight (w)= mg i.e. real weight. 5. A body is thrown vertically upwards with a
 Potential energy⇒ It is the energy possessed by a body for doing work due to change of its position & size Example:- Stored energy in the key of watch energy 	velocity of 980 cm/sec, then the time the body will take to reach the ground will be (a) 1 second (b) 2 seconds (c) 2.5 seconds (d) 4 seconds
in stretched spring energy of watch, water in dam energy $P.E = mgh$	Ans.: (b) Given that- u = 980 cm/s = 9.8 m/s
 3. When a body falls freely under gravitational force, it possesses (a) maximum weight (b) minimum weight (c) no weight (d) No effect on its weight 	Vertical displacement (s) = 0 $S = ut + \frac{1}{2}at^{2}$ $S = ut - \frac{1}{2}gt^{2} (a = -g)$
Ans. : (c) When any body freely drop or drop under the gravity force then weight of body is not worked ie become zero this is the reason that two body of different masses falls freely or under the action of gravity force in vacuum, then they reached on the earth in equal time i.e. gravitational acceleration (g) does not depend on the mass of the body.	$0 = 9.8 \text{ t} - \frac{1}{2} \times 9.8 \text{ t}^{2}$ $\frac{1}{2} 9.8 \text{ t}^{2} = 9.8 \text{ t}$ $\boxed{\text{t} = 2 \text{ sce}}$