MECHANICAL ENGINEERING

[English Medium]

SSC JE

Chapterwise and Sub-topicwise SOLVED PAPERS

Chief Editor Anand Kumar Mahajan

Compiled & Written by Mechanical Engg. Expert Group

> **Computer Graphics by** Balkrishna, Charan Singh

Editorial Office 12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com/www.yctfastbook.com © All rights reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Laxmi Narayan Printing Press, Prayagraj. In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the Judicial area will be Prayagraj.

CONTENT

Mechanical Engineering Exam Syllabus	
Mechanical Engineering Exam Papers Analysis Chart	5
Mechanical Engineering Exam Papers Pie Chart and Bar Graph	
■ Highlights of SSC JE Mechanical Engineering-2023 Exam	1-48
Engineering Mechanics	7-31
Strength of Materials	
Theory of Machines	
Machine Design	
Material Science	149-165
Production Technology	
Workshop Technology	
Thermodynamics	
Power Plant Engineering	
Refrigeration and Air-Conditioning	
Internal Combustion Engine	
Automobile Engineering	
Fluid Mechanics	
Fluid Machinery	
Heat and Mass Transfer	535-544

SSC Junior Engineer Paper Syllabus

MECHANICAL ENGINEERING

The Examination will be conducted in two stages :

B. Paper-II (Mains) (300 marks)

Total Written Test (500 marks)

Written Test :

Paper	Subject	Number of Questions/ Max. Marks	Duration & Timing
Paper-I Objective type	(i) General Intelligence & Reasoning(ii) General Awareness(iii) General Engineering (Mechanical)	50 /50 50 / 50 100 / 100	2 Hours
Paper-II Objective type	General Engineering (Mechanical)	100/ 300	2 Hours

There will be **negative marking equal to one-fourth (1/4) of the marks** allotted to the question for each wrong answer in Paper-I & negative marking of one mark for each wrong answer in Paper-II.

Syllabus of Examination

The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Mechanical Engineering from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below.

Paper-I

- General Intelligence & Reasoning: The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgment, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate's abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.
- <u>General Awareness</u>: Questions will be aimed at testing the candidate's general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.
- General Engineering : Civil and Structural, Electrical & Mechanical

Mechanical Engineering

Theory of Machines and Machine Design, Engineering Mechanics and Strength of Materials, Properties of Pure Substances, 1st Law of Thermodynamics, 2nd Law of Thermodynamics, Air standard Cycles for IC Engine Performance, IC Engines Combustion, IC Engine Cooling & Lubrication, Rankine cycle of System, Boilers, Classification, Specification, Fitting & Accessories, Air Compressors & their cycles, Refrigeration cycles, Principle of Refrigeration Plant, Nozzles & Steam Turbines. Properties & Classification of Fluids, Fluid Statics, Measurement of Fluid Pressure, Fluid kinematics, Dynamics of Ideal fluids, Measurement of Flow rate, basic principles, Hydraulic Turbines, Centrifugal Pumps, Classification of steels.

A. Paper-I (Pre) (200 marks)

Detailed Syllabus JE Mechanical Engineering

Theory of Machines and Machine Design

■ Concept of simple machine, Four bar linkage and link motion, Flywheels and fluctuation of energy, Power transmission by belts – V-belts and Flat belts, Clutches – Plate and Conical clutch, Gears – Type of gears, gear profile and gear ratio calculation, Governors – Principles and classification, Riveted joint, Cams, Bearings, Friction in collars and pivots.

Engineering Mechanics and Strength of Material

Equilibrium of Forces, Law of motion, Friction, Concepts of stress and strain, Elastic limit and elastic constants, Bending moments and shear force diagram, Stress in composite bars, Torsion of circular shafts, Bucking of columns – Euler's and Rankin's theories, Thin walled pressure vessels.

Thermal Engineering

Properties of Pure Substances:

■ P-V & P-T diagrams of pure substance like H₂O, Introduction of steam table with respect to steam generation process; definition of saturation, wet & superheated status. Definition of dryness fraction of steam, degree of superheat of steam. H-S chart of steam (Mollier's Chart).

<u>1st</u> Law of Thermodynamics :

Definition of stored energy & internal energy, 1st law of Thermodynamics of cyclic process, Non-Flow Energy Equation, Flow Energy & Definition of Enthalpy, Conditions for Steady State and Steady Flow; Steady State Steady Flow Energy Equation.

<u>2nd Law of Thermodynamics</u> :

■ Definition of Sink, Source Reservoir of Heat, Heat Engine, Heat Pump & Refrigerator; Thermal Efficiency of Heat Engines & co-efficient of performance of Refrigerators, Kelvin – Planck & Clausius Statements of 2nd Law of Thermodynamics, Absolute or Thermodynamic Scale of temperature, Clausius Integral, Entropy change calculation of ideal gas processes. Carnot Cycle & Carnot Efficiency, PMM-2; definition & its impossibility.

Air standard Cycles for IC engines :

• Otto cycle; plot on P-V, T-S Planes; Thermal Efficiency, Diesel Cycle; Plot on P-V, T-S planes; Thermal efficiency.

IC Engine Performance, IC Engine Combustion, IC Engine Cooling & Lubrication.

Rankine cycle of steam :

■ Simple Rankine cycle plot on P-V, T-S, H-S planes, Rankine cycle efficiency with & without pump work. Boilers; Classification; Specification; Fittings & Accessories : Fire Tube & Water Tube Boilers. Air Compressors & their cycles; Refrigeration cycles; Principle of a Refrigeration Plant; Nozzles & Steam Turbines

Fluid Mechanics & Machinery

Properties & Classification of Fluid :

■ Ideal & real fluids, Newton's law of viscosity, Newtonian and Non-Newtonian fluids, compressible and incompressible fluids.

Fluid Statics : Pressure at a point.

Measurement of Fluid Pressure : Manometers; U-tube, Inclined tube.

Fluid Kinematics : Stream line, laminar & turbulent flow, external & internal flow, continuity equation.

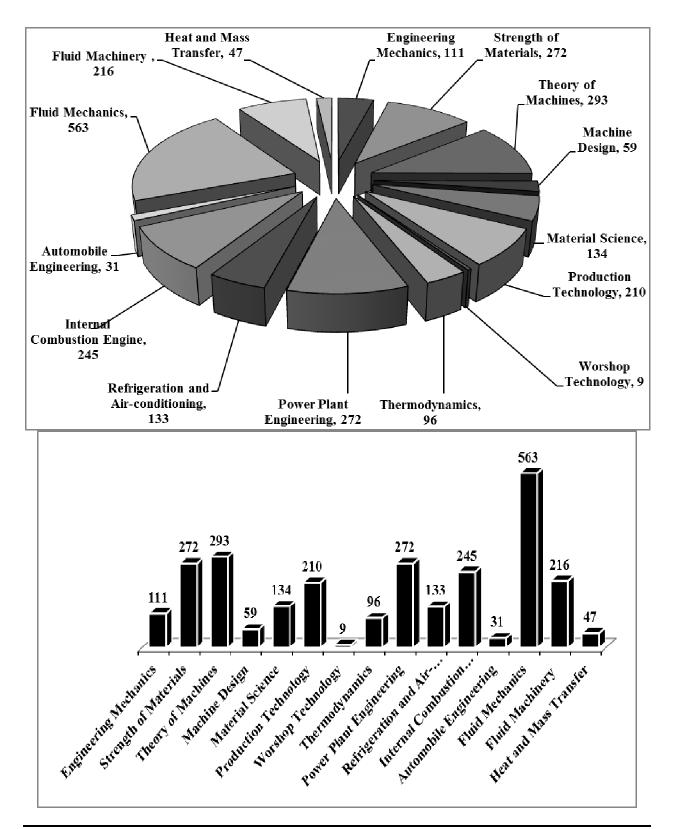
Dynamics of ideal fluids : Bernoulli's equation, Total head; Velocity head: Pressure head; Application of Bernoulli's equation.

Measurement of Flow rate Basic Principles : Venturimeter, Pilot tube, Orifice meter

Hydraulic Turbines : Classifications, principles

Centrifugal Pumps : Classifications, Principles, Performance.

Production Engineering


Classification of Steels :

Mild steal & alloy steel, Heat treatment of steel, Welding – Arc Welding, Gas Welding, Resistance Welding, Special Welding Techniques i.e. TIG, MIG, etc. (Brazing & Soldering), Welding Defects & Testing; Foundry & Casting – methods, defects, different casting processes, Forging, Extrusion, etc, Metal cutting principles, cutting tools, Basic Principles of machining with (i) Lathe (ii) Milling (iii) Drilling (iv) Shaping (v) Grinding, Machines, tools & manufacturing processes.

<u>Mechanical Engineering JE Previous Years</u> <u>Exam Papers Analysis Chart</u>

Sl No	Exam	Proposed Year	Total Question
1.	SSC (JE) Shift-II	09.10.2023	100
2.	SSC (JE) Shift-II	11.10.2023	100
3.	SSC (JE) Shift-II	14.11.2022	100
4.	SSC (JE) Shift-II	16.11.2022	100
5.	SSC (JE) Shift-I	22.03.2021	100
6.	SSC (JE) Shift-II	22.03.2021	100
7.	SSC (JE) Shift-I	27.10.2020	100
8.	SSC (JE) Shift-II	27.10.2020	100
9.	SSC (JE)	28.10.2020	100
10.	SSC (JE)	11.12.2020	100
11.	SSC (JE)	25.09.2019	100
12.	SSC (JE) Shift-I	27.09.2019	100
13.	SSC (JE) Shift-II	27.09.2019	100
14.	SSC (JE) Shift-I	22.01.2018	100
15.	SSC (JE) Shift-II	22.01.2018	100
16.	SSC (JE) Shift-I	23.01.2018	100
17.	SSC (JE) Shift-II	23.01.2018	100
18.	SSC (JE) Shift-I	24.01.2018	100
19.	SSC (JE) Shift-II	24.01.2018	100
20.	SSC (JE) Shift-I	25.01.2018	100
21.	SSC (JE) Shift-II	25.01.2018	100
22.	SSC (JE) Shift-I	27.01.2018	100
23.	SSC (JE) Shift-II	27.01.2018	100
24.	SSC (JE) Shift-I	29.01.2018	100
25.	SSC (JE) Shift-II	29.01.2018	100
26.	SSC (JE) Shift-I	01.03.2017	100
27.	SSC (JE) Shift-II	01.03.2017	100
28.	SSC (JE) Shift-I	02.03.2017	100
29.	SSC (JE) Shift-II	02.03.2017	100
30.	SSC (JE) Shift-I	03.03.2017	100
31.	SSC (JE) Shift-II	03.03.2017	100
32.	SSC (JE) Shift-I	04.03.2017	100
33.	SSC (JE) Shift-II	04.03.2017	100
34.	SSC (JE)	2015	100
35.	SSC (JE) Shift-I	2014	100
36.	SSC (JE) Shift-II	2014	100
37.	SSC (JE)	2013	100
38.	SSC (JE)	2012	100
39.	SSC (JE)	2011	100
40.	SSC (JE)	2010	50
41.	SSC (JE)	2009	50
42.	SSC (JE)	2008	50
43.	SSC (JE)	2007	50

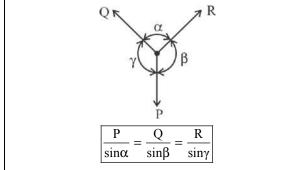
Trend Analysis of Previous Years Questions of Mechanical Engineering Through Pie Chart & Bar Graph

Highlights of SSC JE Mechanical Engineering-2023

3.

Chapter-1

Engineering **Mechanics**


Forces and Force Systems

1. Select the correct statement of Lami's theorem.

- (a) If two forces are in equilibrium, then each force is directly proportional to sine of the angle between them
- (b) If three forces are non-coplanar, then each force is directly dependent on sine of the angle between the other two forces
- (c) If three forces are not in equilibrium, then each force is inversely proportional to sine of the angle between the other two forces
- (d) If three forces acting on a body are said to be in equilibrium, then each force is directly dependent on sine of the angle between the other two forces

SSC JE 11.10.2023 Shift-II

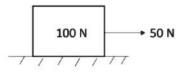
Ans. (d) : Lami's theorem– If three forces acting on a body are said to be in equilibrium, then each force is directly dependent on sine of the angle between the other two forces.

- Which of the following statements about 2. equilibrium is correct?
 - (a) Summation of all the forces in all the possible directions must be zero
 - (b) Summation of all the forces acting in all the possible directions must be non-zero
 - (c) Summation of all the forces acting in one direction must not be zero
 - (d) Summation of all the forces in one direction must be zero

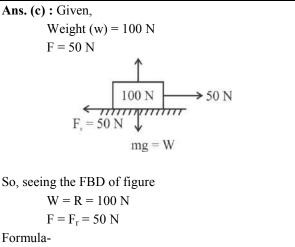
SSC JE 09.10.2023 Shift-II

Ans. (a) : According to equilibrium forces, summation of all the forces in all the possible direction must be zero.

 $\Sigma F_{\rm H} = 0, \quad \Sigma F_{\rm V} = 0, \quad \Sigma F_{\rm M} = 0,$ Where.

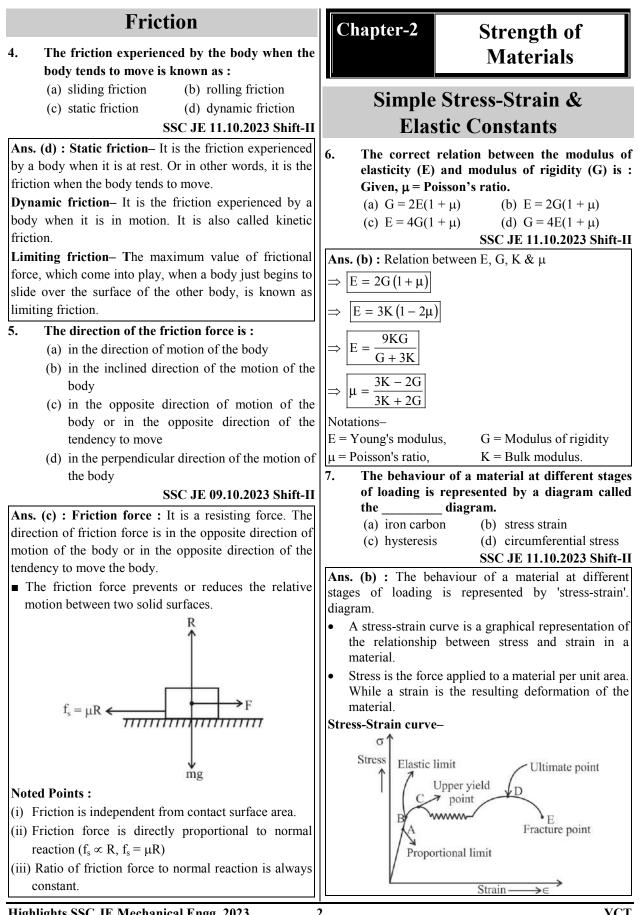

 $\Sigma F_{\rm H} \Rightarrow$ Algebraic summation of all forces in horizontal direction.

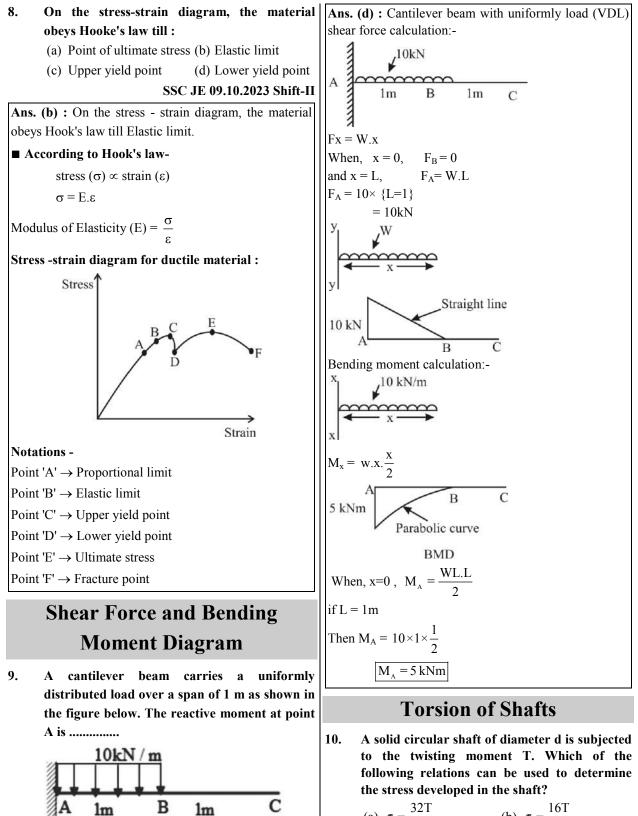
 $\Sigma F_{\rm V} \Rightarrow$ Algebraic summation of all forces in vertical direction.


 $\Sigma F_{M} \Rightarrow$ Algebraic summation of all moments.

Moments and Couples

A body of weight 100 N is lying on a rough horizontal surface, an the horizontal force of 50 N is applied on the body as shown in the figure, which is just enough to move the body. What will be the coefficient of friction?


SSC JE 11.10.2023 Shift-II



Formula-

1

$$F_r = \mu R$$
$$\mu = \frac{F_r}{R} = \frac{50}{100} = 0.5$$
$$\mu = 0.5$$

(a)
$$\tau = \frac{32T}{\pi d^3}$$
 (b) $\tau = \frac{16T}{\pi d^3}$
(c) $\tau = \frac{64T}{\pi d^3}$ (d) $\tau = \frac{128T}{\pi d^3}$

SSC JE 09.10.2023 Shift-II

(b) 30 kN-m

(d) 5 kN-m

SSC JE 09.10.2023 Shift-II

(a) 0 kN-m

(c) 10 kN-m

Ans. (d) : Radial or disc cam : The line of stroke of a Ans. (b) : Maximum stress developed in the solid shaft : follower passes through the centre of rotation of a cam, called radial (disc) cam. $\tau_{\max} = \frac{16T}{\pi d^3}$ • The axis of the follower passes through the axis of the cam. Where, T = twisting momentd = diameter of solid circular shaft Maximum shear stress of hollow shaft. $\tau_{\rm hollow} = \frac{16T}{\pi d^3 (1-k^4)}$ Roller follower Where. $\left\{ k = \frac{d_i}{d_o} \right\}$ **Gears and Gear Trains** d_i = Inner diameter of hollow shaft. d_0 = Outer diameter of hollow shaft. 13. The speed ratio of a compound gear train is **Theory of Columns** defined as . Product of number of teeth of driver shafts 11. A seamless pipe having a diameter of 600 mm (a) Product of number of teeth on driven shafts and thickness of 9 mm, contain the fluid under Speed of last follower a pressure of 4 MPa, find the longitudinal (b) stress developed in the pipe. Speed of first driver (a) 88.8 Mpa (b) 133.3 Mpa Product of number of teeth on driven shafts (c) (c) 66.6 Mpa (d) 77.7 Mpa Product of number of teeth on driver shafts SSC JE 11.10.2023 Shift-II Product of speed of followers Ans. (c) : Given, (d) Product of speed of drivers d = 600 mm,t = 9 mmSSC JE 11.10.2023 Shift-II p = 4 Mpa $\sigma_{\rm L} = ?$ Ans. (c) : Compound gear train – In this gear train, $\sigma_{\rm L} = \frac{\rm pd}{4\rm t}$ each shaft supports two gear wheels except the first and $=\frac{4\times600}{4\times9}=\frac{600}{9}$ the last. = 66.6 MPa0 Chapter-3 **Theory of Mechanics** Train value, $\frac{N_{output}}{N_{output}} = \frac{Product of no. of teeth on driving gears}{N_{output}}$ **Cams and Follower** Product of no. of teeth on driven gears If the line of stroke of a follower passes through 12. $\frac{N_6}{N_1} = \frac{T_1 \times T_3 \times T_5}{T_2 \times T_4 \times T_6}$ the centre of rotation of a cam, then the cam is called • Speed ratio = $\frac{1}{\text{Train value}}$ (a) Globoidal cam (b) Oscillating cam and follower (c) Offset cam Product of number of teeth on driven shafts Speed ratio =(d) Radial cam Product of number of teeth on driven shafts SSC JE 09.10.2023 Shift-II Highlights SSC JE Mechanical Engg. 2023 YCT 4

Belts, Ropes and Chains

14. Which of the following statements related to rope drives is incorrect?

- (a) Shafts do not require exact alignment
- (b) Rope drives have high mechanical efficiency
- (c) It is used to transmit power only for shorter distances
- (d) It has good crushing resistance

SSC JE 09.10.2023 Shift-II

Ans. (c) : Advantages of Rope drive-

- Rope drive are used for long distance and for large amount of power transmission.
- Rope drive can be employed when there is a misalignment between the pulleys within limits.
- In the rope drive, frictional grip is more than belt drives.
- Rope drives have high mechanical efficiency.
- It has good crushing resistance.

Flywheel and Governors

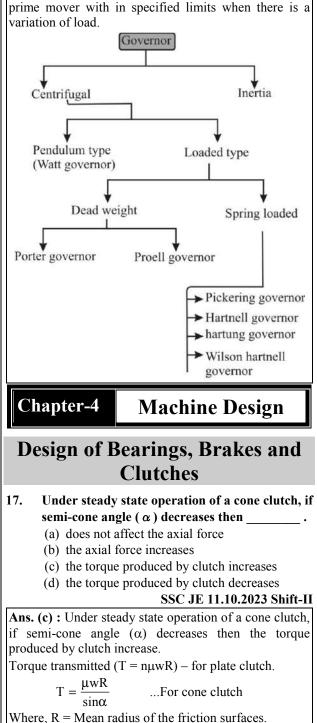
- 15. Which of the following statements is correct about a working engine?
 - (a) Operation of the governor is continuous, whereas operation of the flywheel is more or less intermittent
 - (b) Operation of both the flywheel and the governor is continuous
 - (c) Operation of both the flywheel and the governor is intermittent
 - (d) Operation of the flywheel is continuous, whereas operation of the governor is more or less intermittent

SSC JE 11.10.2023 Shift-II

Ans. (d) : If Engine is continuous working then It's fly wheel is continuous operated but the governor is more or less intermittent operated.

Flywheel:-It is used to control the variations in speed during each cycle of an engine flywheel of suitable dimensions attached to the crankshaft, makes the moment to inertia of the rotating parts quite large and thus acts as a reservoir of energy.

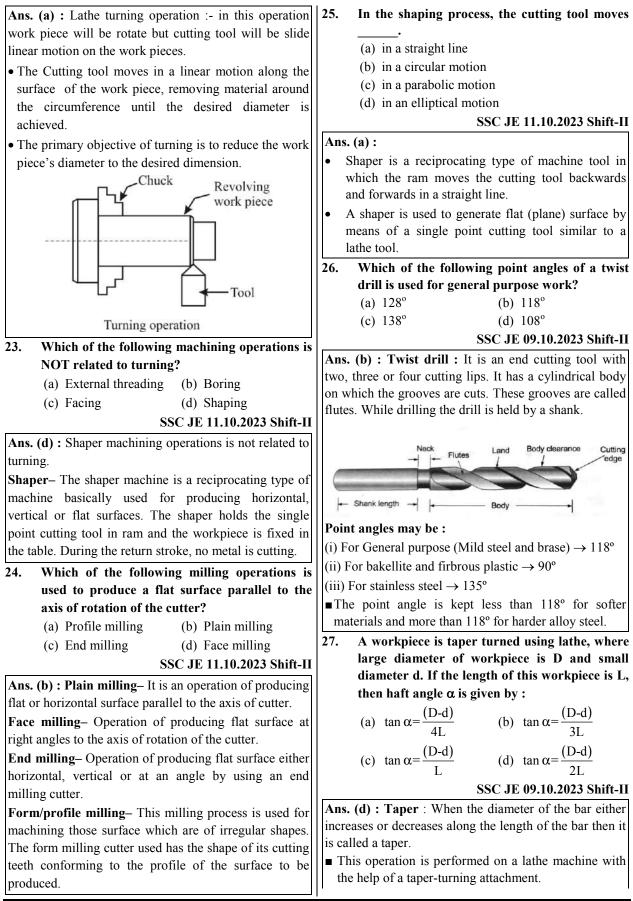
Governor :- The function of a governor is to maintain the speed of an engine with in specified limits whenever there is a variation of load.

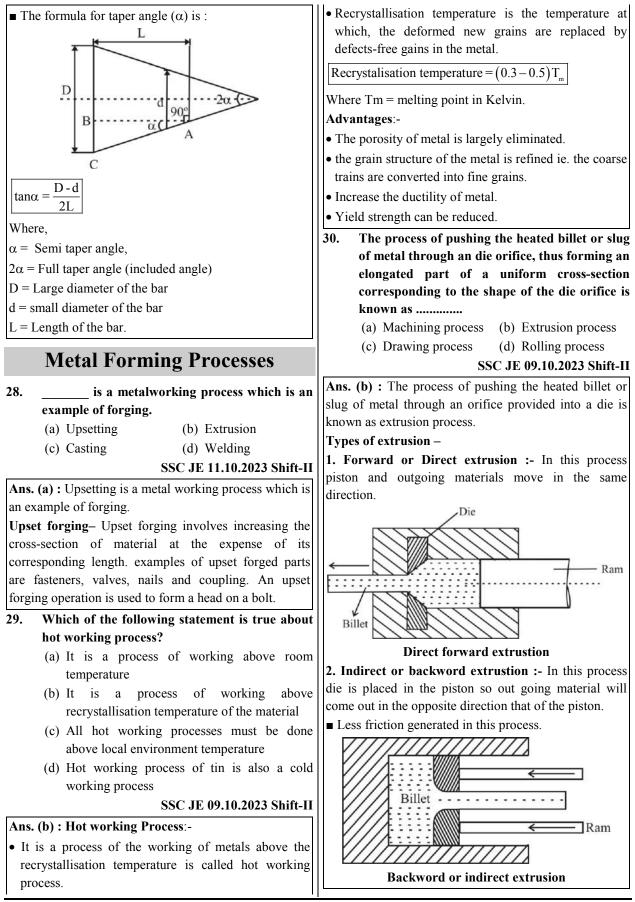

Gyroscope

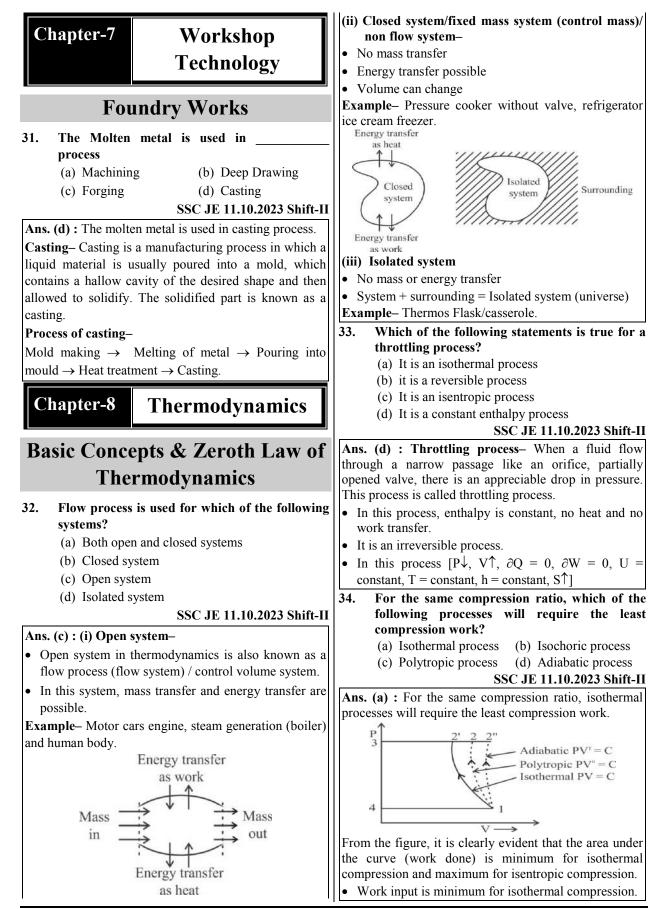
- 16. Which of the following statements is correct regarding governor?
 - (a) It is not a compulsory device of the prime mover
 - (b) It controls acceleration of the prime mover

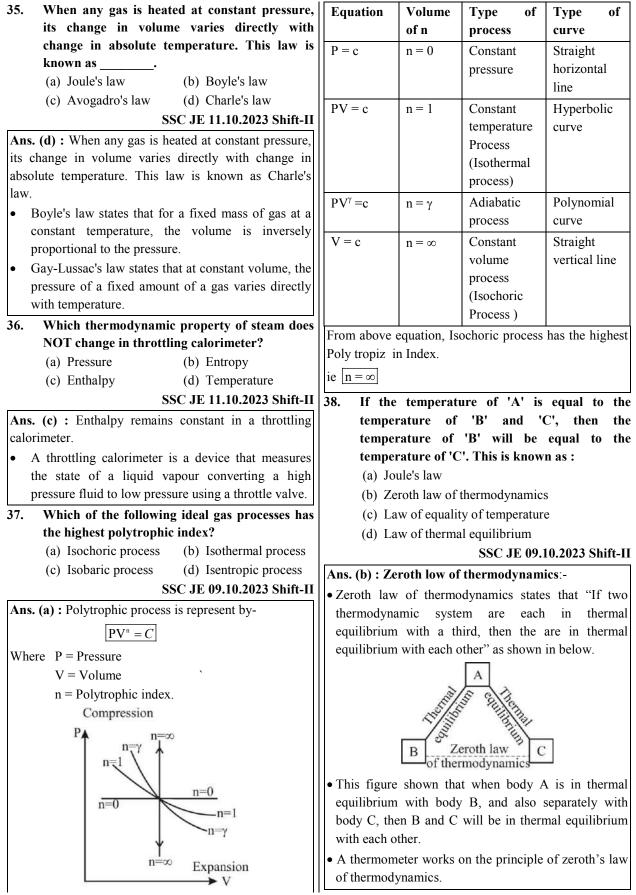
(c) It controls the temperature of the prime mover

(d) It controls the mean speed of the prime mover


SSC JE 09.10.2023 Shift-II Ans. (d) : Governor controls the mean speed of the




R =
$$\frac{2}{3} \frac{(r_1)^3 - (r_2)^3}{(r_1)^2 - (r_2)^2}$$
 (For uniform pressure)


 $R = \frac{r_1 + r_2}{2}$ (For uniform wear)

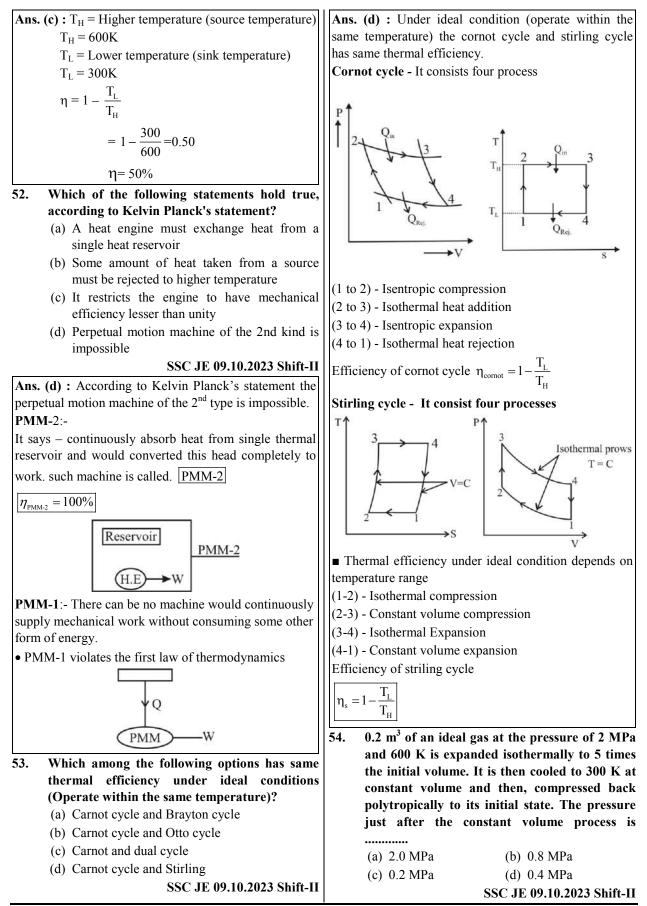
Chapter-5 Material Science	 Disadvantage of hot working- Shorter tool life.
iviater lai Science	Poor surface finish
Material Properties	Lower dimensional accuracy.
18. The property of tool material to retain its	High production cost.
hardness at elevated temperature is known as :	
(a) Elasticity (b) Red hardness	Chapter-6 Production
(c) Plasticity (d) Toughness	Technology
SSC JE 11.10.2023 Shift-II	Technology
Ans. (b) : Red hardness is the ability of the material to	Metal Cutting Processes
retain its hardness at elevated temperatures. It is to resist	Micial Cutting 110ccsscs
plastic deformation and reduce wear rate at elevated	21. If the cutter and workpiece movements are
temperatures.	opposite direction, the milling process is know
19. Which of the following is NOT an example of brittle material ?	as :
	(a) Side milling (b) Up milling
	(c) Down milling (d) Face milling
(c) Cast iron (d) Aluminium	SSC JE 09.10.2023 Shift-
SSC JE 09.10.2023 Shift-II	Ans. (b) : Up milling – (conventional milling)
Ans. (d) : Aluminium is not on example of brittle	• The cutter and work piece movement are in opposit
material.	direction
Brittle material:- Brittle material show little	Cutting force-
deformation before fracture and failure occurs suddenly	0
without any warning.	minimum at beginning
• Normally if the elongation is less than 5% then these	maximum at the end
material is called brittle nature.	• The cutting action tends to lift the work piece.
Example \rightarrow Cast iron, glass, ceramics etc.	Down milling :- (climb milling) :-
Characteristics of Brittle material-	• Cutter rotation is in the same direction as the motio
(i) High compressive strength	of the work piece being fed.
(ii) Low tensile strength	Cutting force-
(iii) They have good toughness	max at beginning
	min at the end.
Heat Treatment Process 20. Due to the refinement of grains, mechanical properties such as toughness, ductility, elongation and reduction in the area are improved in process. (a) Hot working (b) Forming	Upmilling Downmilling
(c) Joining (d) Cold working	Upmilling and Down Milling
SSC JE 11.10.2023 Shift-II	
Ans. (a) : Due to the refinement of grains, mechanical	Machining and Machine Tool
properties such as toughness, ductility, elongation and reduction in the area are improved in hot working	Operations
process.	22. Choose the correct option related to latl
Advantage of hot working–	turning operation.
 Significant plastic deformation. 	(a) Work piece will rotate
	(b) Both tool and work piece will not rotate
• Significant change in workpiece shape.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Significant change in workpiece shape.Lower forces are required.	(c) Tool will rotate
• Lower forces are required.	(c) Tool will rotate(d) Both tool and work piece will rotate
• Lower forces are required.	 (c) Tool will rotate (d) Both tool and work piece will rotate SSC JE 11.10.2023 Shift-

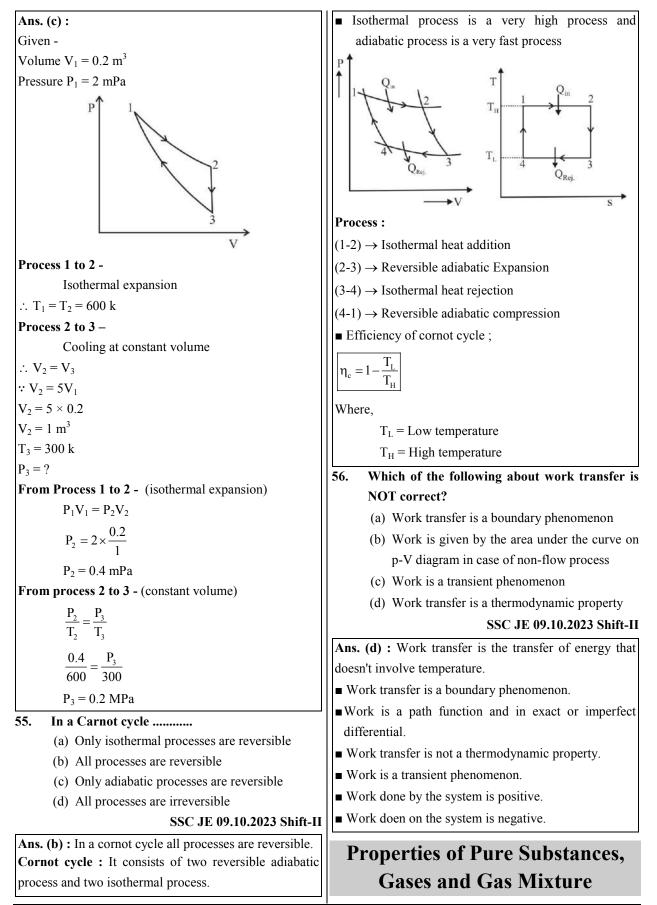
39. Which of the following is an isochoric process?	
(a) Heating of steam is cylinder containing a	Ans. (a):
sliding piston	from addition during the constant pressure process is
(b) Heat supplied is zero	equal to change in enthalpy.
(c) Heat is supplied during evaporation	According to first law of thermodynamics,
(d) Heating of steam in a closed rigid vessel	$\delta Q = \delta w + dU$
SSC JE 09.10.2023 Shift-II	For constant pressure process;
Ans. (d) : Isochoric process : -	$\delta w = p dv$
• It is a thermodynamic process that take place at	Form 1^{st} law, $dU = \delta Q - d(PV)$
<u>constant volume</u> .	$\delta Q = d(U + PV)$
• It is also known as an isometric process	$\delta Q = dH$
• In this process, volume of the gas remains constant so	~
the work done is zero.	$dH = mC_p dT$
For Isochoric process –	$\therefore \delta \mathbf{Q} = \mathbf{d} \mathbf{H} = \mathbf{m} \mathbf{C}_{\mathbf{p}} \mathbf{d} \mathbf{T}$
\therefore V = constant	42. A thermometer works on the principle of
$\therefore dv = 0$	(a) Zeroth law of thermodynamics
Then work done $(\partial w) = p dv$	(b) 3 rd law of thermodynamics
$= P \times 0$	(c) 2^{nd} law of thermodynamics
$\boxed{\partial w = 0}$	(d) Joule's law
Ex-	SSC JE 09.10.2023 Shift-II
(i) A gas is filled in a closed container then the volume	
of the gas will remain constant.	zeroth law of thermodynamics.
(ii) Heating of steam in a closed a closed rigid vessel.	Zeroth law of thermodynamics is deals with
40. The SI unit of specific heat is :	temperature measurement.
(a) J/kg (b) J/kg.K	Types of thermometer :
(c) Jkg/K (d) JK/kg	Type of Principle Thermometric
SSC JE 09.10.2023 Shift-II	thermometer Property
Ans. (b) : The SI unit of specific heat is J/kg. k	Resistance Wheat stone Resistance
Specific heat : It is the amount of heat required to raise	bridge
the temperature of its unit mass through 1°C.	Thermocouple See back E.M.F. (Voltage)
$\Delta Q = mC \Delta t \Rightarrow C = \frac{\Delta Q}{m \times \Delta t}$	effect
All the liquids and solids have one specific heat only.Gas can have any number of specific heats (lying	Constant Ideal gas Pressure
between zero and infinity) depending upon the	volume Sub equation
conditions, under which it is heated.	thermometer
 There are two types of specific heats of a gas - 	Constant Ideal gas Volume
1. Specific heat at constant volume (C_v)	pressure gas equation
2. Specific heat at constant pressure (C_p)	thermometer
$C_p - C_v = R$	
Where,	First Law of Thermodynamics
R = characteristic gas constant (J/kg k)	42 The evolution integral of Ω/T for a reversible evolution
41. Heat addition during the constant pressure	43. The cyclic integral of Q/T for a reversible cycle is equal to zero. This statement is known as :
process is equal to	is equal to zero. This statement is known as .
(a) change in enthalpy	(a) Clausius theorem
(b) change in internal energy	(b) Rankine theorem
(c) change in entropy	(c) Carnot theorem
	(d) the principle of Carathéodory
(d) specific heat	(d) the principle of Caratheodory
(d) specific heat SSC JE 09.10.2023 Shift-II	

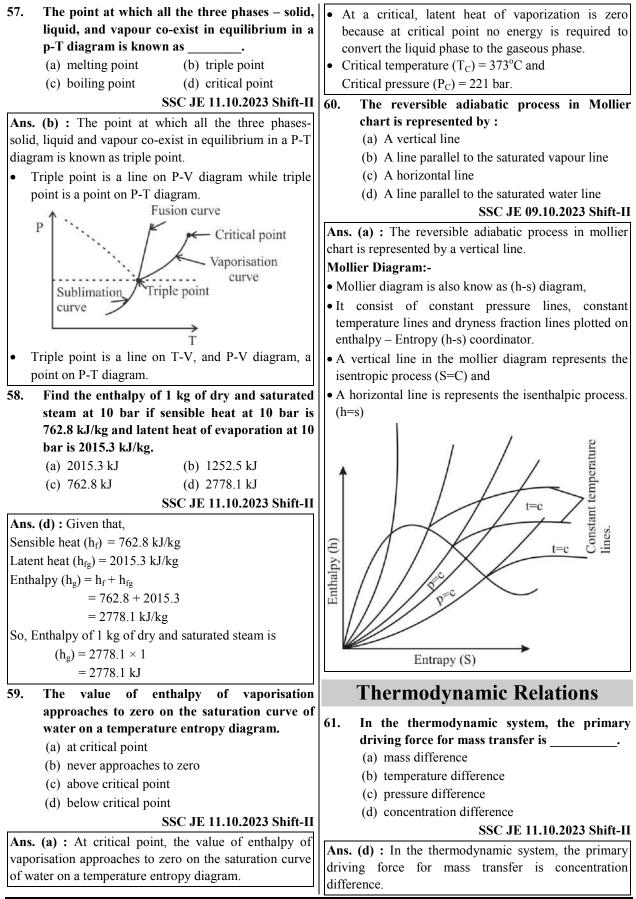
Ans. (a) : Clausius theorem– The algebraic sum of the	$50 - 75 = 5 \times 0.718 \times dT$
ratio $\frac{\delta Q}{T}$ i.e., the heat interaction to the absolute	$dT = \frac{-25}{5 \times 0.718} = -6.96 \text{ °C}$
temperature for a reversible heat engine is equal to zero.	$dT = 7^{\circ}C$ (decrease)
$Q_i = 0 \text{ or } O \delta Q = 0$	The temperature of the air will decrease by 7°C.
$\frac{Q_i}{T_i} = 0 \text{ or } \bigcirc_{R} \frac{\delta Q}{T} = 0$	
Clausius inequality- The algebraic sum of the	Second Law of Thermodynamics
ratio $\frac{\delta Q}{T}$ i.e., the heat interaction to the absolute	46. The enthalpy of water is considered as 'zero' at
temperature for an irreversible heat engine is less than	(a) 100° C (b) 0.01° C
zero.	(c) 37° C (d) 4° C
$\sum \frac{Q_i}{T_i} < 0 \text{ or } \oint \frac{\delta Q}{T} < 0$	SSC JE 11.10.2023 Shift-II
T _i J _I T	Ans. (b) : The enthalpy of water is considered as zero at
44. A closed system undergoes a process in which	0.01°C. But.
the work done by the system is 100 J and the	For water, the triple point ($T = 0.01$ °C and $P = 0.611$ k
internal energy decreases by 50 J. According to the first law of thermodynamics, what is the	Pa) is selected as the reference state, where the internal
amount of heat transferred into or out of the	energy and entropy of saturated liquid are assigned a zero value.
system?	$\therefore h = u + PV$
(a) -150 J (b) -50 J	
(c) 150 J (d) 50 J	• At triple points, u=0, but $p \times v \neq 0$ • Therefore h. (0 of the triple point
SSC JE 09.10.2023 Shift-II	• Therefore $h \neq 0$ at the triple point.
Ans. (d) : Given that :- work by the system $(\partial w) = 100$	liquid
J decreases in internal energy (dU) -50 J Amount of	$\sum phase / vapour phase$
head transfer $(\partial Q) = ?$ Into or to the first law of thermodynamics –	solid
$\partial Q = \partial W + dU$	phase Tripple point
$\partial Q = 100 + (-50)$	
$\partial Q = 50 \text{ J}$	► T
	47. An engine is working with temperature limits
45. A closed vessel contains 5 kg of air, and 50 kJ of heat is given to it. If 75 kJ of work is done by	of 29°C and 229°C. It receives 1000 kW and
the system, then which of the following is true?	rejects 429 kW of heat. Possible cycle executed
(Take Cp = 1.005 J/kg-K, Cv = 0.718 kJ/kg-K)	by the engine is : (a) Carnot cycle (b) impossible cycle
(a) The temperature of the air will decrease by 7°	(c) Irreversible cycle (d) Reversible cycle
(b) The temperature of the air will increase by 5°	SSC JE 11.10.2023 Shift-II
(c) The temperature of the air will decrease by 34.8°	Ans. (b) : Temperature limits:-
(d) The temperature of the air will increase by 7°	$T_1 = 29^{\circ}C = 29 + 273 = 302K$
SSC JE 09.10.2023 Shift-II	$T_2 = 229^{\circ}C = 229 + 273 = 502K$
Ans. (a) : Given that -	$T_2 = 502K$
mass of air (m) = 5 kg	\mathbf{v} Q ₂ =1000KW
heat supplied $(\partial Q) = 50 \text{ kJ}$	
work done by the system $(\partial w) = 75 \text{ kJ}$	(H.E) \longrightarrow W (571 KW)
According to first law of thermodynamics ;	v Q₁=429KW
$\partial \mathbf{Q} = \mathbf{d}\mathbf{u} + \partial \mathbf{w}$	$T_1 = 302K$
$50 = mC_V dT + 75$	11-502K

According to clausius lnequality;

$$\frac{\oint Q}{T} = 0$$

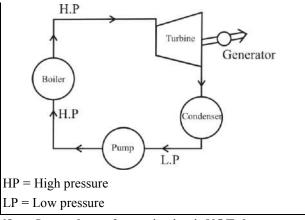

$$\frac{\oint Q}{(T_1 - T_1)} = \left(\frac{1000}{502} - \frac{429}{302}\right) = (1.99 - 1.42)$$


$$\frac{\oint Q}{T} = 0.57 > 0$$


$$\frac{\oint Q}{T} = 0 = 0.57 > 0$$

$$\frac{6}{2} = 0.57 > 0$$

$$\frac{10}{2} = 0.57 = 0$$



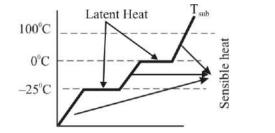
-	ibstance in two regions. ifference, then there will tance to move from the	Water tube boiler- In this type of boilers the water travels through tubes surrounded by flue gas. 64. The ratio of the energy received by the steam to the energy supplied by the fuel to produce steam in a steam boiler is known as (a) Equivalent evaporation (b) Actual evaporation (c) Boiler horsepower (d) Boiler efficiency
Steam Powe	er Plant	SSC JE 11.10.2023 Shift-II
 62. According to the A Mechanical Enginee evaporation of 15.63 kg hour from 100°C feed w known as (a) Boiler efficiency (b) Actual evaporation (c) Boiler horsepower (d) Equivalent evaporatio SSC Ans. (c) : According to the mechanical engineers (ASME defined as :	American Society of ers (ASME), the of water at 100°C per ater in a steam boiler is C JE 11.10.2023 Shift-II e American society of), the boiler power is	Ans. (d) : Boiler efficiency– It may be defined as the ratio of heat actually used in producing the steam to the heat liberated in the furnace. It is also known as thermal efficiency of the boiler. Mathematically, boiler efficiency or thermal efficiency, $\eta = \frac{\text{Heat actually used in producing steam}}{\text{Heat liberated in the furnace}}$ $\eta = \frac{m_e (h - h_{f_i})}{C}$ $m_e = \text{Mass of water actually evaporated or actual evaporation in kg/kg of fuel, and}$ $C = \text{Calorific value of fuel kJ/kg of steam}$
	21.290	h_{f_1} = Sensible heat of feed water in kJ/kg of steam.
 According to ASME, the eva water at 100°C per hour from steam boiler is known as b boiler h.p.) 	n 100°C feed water in a	$m_e = \frac{m_s}{m_f}$ $m_s = Total mass of water evaporated into steam in kg$
63. Which of the following i	s a water-tube boiler?	$m_f = Mass of fuel in kg$
 (a) Lancashire boiler (b) Babcock & Wilcox b (c) Cochran boiler (d) Cornish boiler 	oiler C JE 11.10.2023 Shift-II	$\eta = \frac{m_s \left(h - h_{f_i}\right)}{m_f \times C}$ 65. Generation of steam in a boiler is an example of an
Ans. (b) : List of water tube an	d fire tube boilers-	(a) isobaric process (b) isothermal process
Water tube boiler	Fire tube boiler	(c) adiabatic process (d) isochoric process
Babcock & Wilcox boiler	Cochran boiler	SSC JE 11.10.2023 Shift-II
La-mount boiler	Cornish boiler	Ans. (a) : Generation of steam in a boiler is an example
Sterling boiler	Lancashire boiler	of an isobaric process.
Benson boiler	Locomotive boiler	Steam generation in a boiler – Water enters the boiler and is heated to its boiling point, vaporized, and then
Velox boiler		the steam is superheated. All these processes take place
Loffler boiler		isobarically.
Fire tube boiler – In this type travels through tubes that are st	-	66. Which of the following is NOT a type of steam separator?

- (a) Impact or baffle type
- (b) Reverse current type
- (c) Centrifugal type
- (d) Reciprocating type

SSC JE 09.10.2023 Shift-II

Ans. (d) : Steam Separator: - A steam separator is a device for separating water droplets from stream. • It is installed close to the steam engine or turbine. Classification:-• Impact or baffle type • Reverse current type 68. • Centrifugal type. Working Principle:-To turbine From Boiler -> Baffle Plats Water Gauge Drain Cock Baffle type steam Separator • The above figure shows a baffle type steam separator. • The steam is allowed in to the separator, the steam strides the baffle plates and the direction of the flow is changed. • As a result, heavier water particles in steam fall down to the bottom of the separator. The separated steam is free from water particles. 67. What is the main function of the condenser in a **Rankine cycle power plant?** (a) To increase the efficiency of the cycle (b) To increase the temperature of the cooling water (c) To decreases the efficiency of the cycle (d) To condense the steam till it transforms into saturated liquid SSC JE 09.10.2023 Shift-II Ans. (d) : The condenser is a device that converts the 69. low pressure exhaust steam from the turbine into water. In other words, Condenser condenses the steam which comes from the turbine into water at very low pressure.

B. Latent heat of vaporisation is NOT the


- (a) Heat required for complete conversion of ice into water
- (b) Heat added at constant temperature of 100°C convert water into steam
- (c) Heat required for complete conversion of saturated liquid into dry saturated vapour
- (d) Sum of internal latent heat and external work of evaporation

SSC JE 09.10.2023 Shift-II

Ans. (a) : Latent heat of vaporization is not the heat required for complete conversion of ice into water.

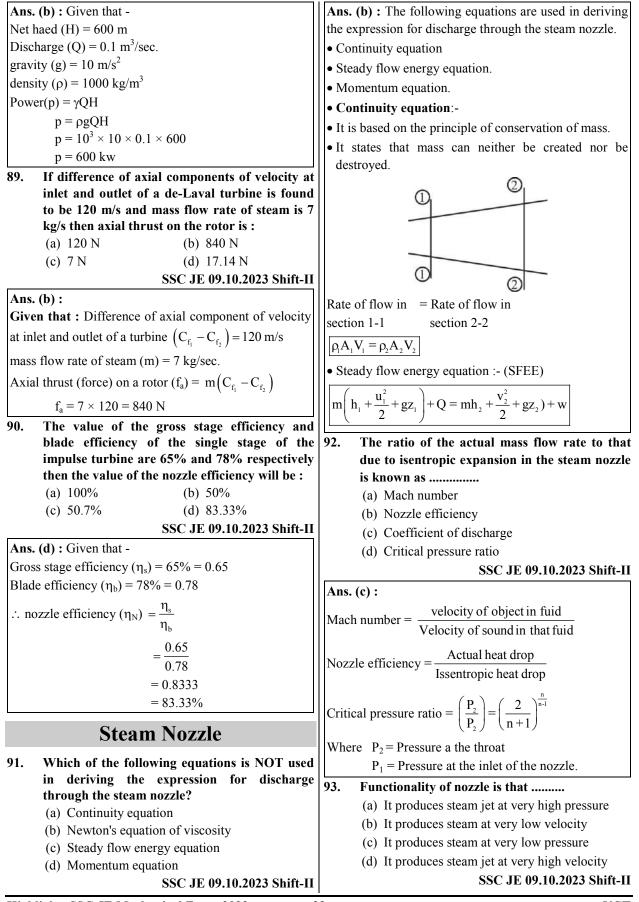
Latent heat of vaporization:-It is the energy required to change 1 kg of the material in its liquid state at its boiling points to 1 kg of the material in its gaseous state. Latent heat of Fusion:- It latent heat of fusion is the head energy required to change 1 kg of the material in its solid state at its melting points to 1 kg to the material in its liquid state.

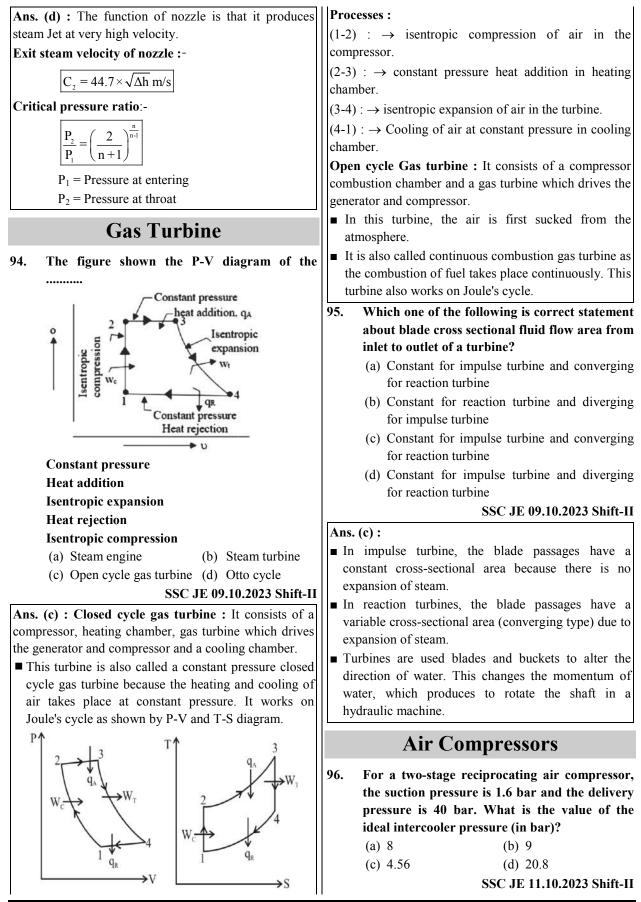
• Latent heat of vaporization is more than the latent heat of fusion.

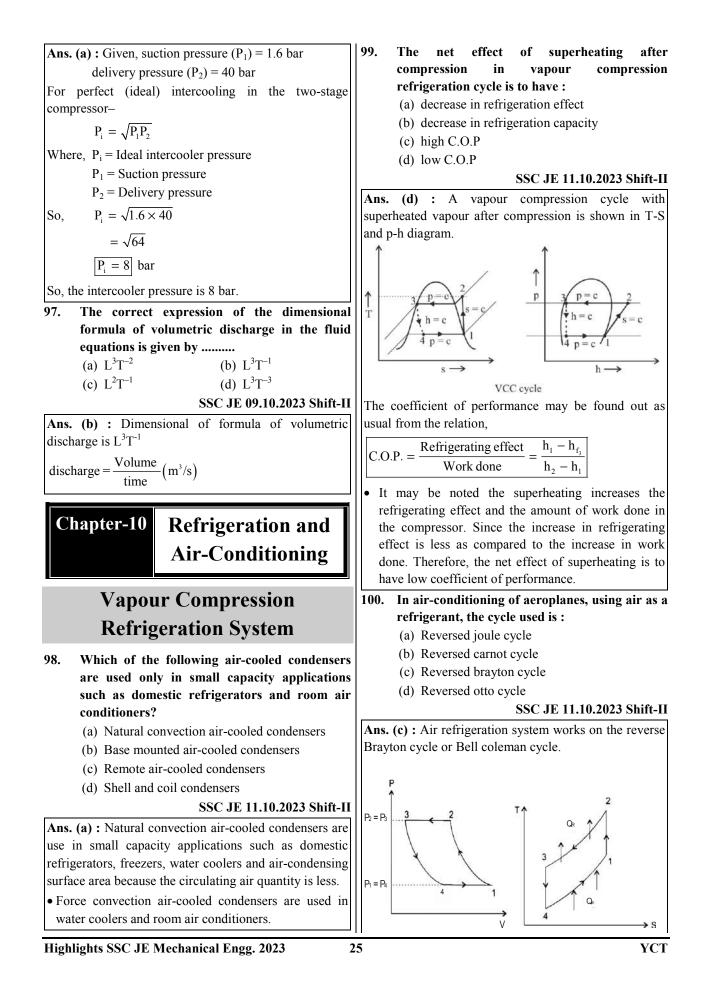
Boiler Mountings & Accessories

The air pre-heater increases the temperature of before it/they enter(s) the furnace.

(a) Air(b) feedwater(c) flue gases(d) fuel

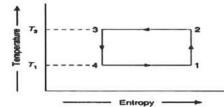

SSC	JE	11.10).2023	Shift-II
-----	----	-------	--------	----------


Ans. (a) : The air pre-heater increase the temperature of	Ans. (c) : Merit of dead weight safety value-
air before it enters the furnace.	• Given satisfactory performance during operation.
• Air preheated is used to increase the temperature of	• Simplicity of design.
inlet air there fore the efficiency of thermal power	• It is good choice for low pressure vessels.
plant will be increase.	Safety value-
70. In a steam boiler, an economiser is used for	• The function of safety value is to release the excess
heating of	steam when the pressure of steam inside the boiler
(a) flue gases (b) feedwater	exceeds the rated pressure.
(c) fuel (d) air	Type of safety valves-
SSC JE 11.10.2023 Shift-II	• Dead weight safety valve
Ans. (b) : Economiser:- It is a device used to heat lead	• Lever safety valve.
water by utilizing the heat in the exhaust flue gases	 Spring loaded safety valve
before leaving through the chimney. It improves the	• High steam and low water safety value.
economy of the steam boiler.	73. Which of the following statements is
Advantages of Economiser:-	INCORRECT about the Benson boiler?
(a) There is about is to 20% of cool saving	(a) The Benson boiler is heavier than other
(b) It boiler because it shortens the time required to	boilers
convert water in to steam.	(b) Benson boilers can be switched on very
(c) It prevent formation of scale in boiler water tubes.	quickly
71. Following figure shows which of the following	(c) In Benson boilers, drums are not used
parts of a steam generator?	(d) The average operating pressure for the
	Benson boiler is higher is higher than 200 bar
	SSC JE 09.10.2023 Shift-II
	Ans. (a) : Benson Boiler-
	• The Benson boiler is a water tube high pressure, drum
Steam	less, force circulated boiler.
Outlet	• The critical pressure is the pressure at which the
	liquid and gas phase is at equilibrium.
Steam Inlet	• In this boiler the water enters the boiler at just above
Steam inlet	the critical pressure so it suddenly converts into steam
Steam outlet	without generating air bubbles.
(a) Feed check valve (b) Steam stop valve	• It has a unique characteristic of the absence of a drum.
(c) Blow-off cock (d) safety valve	• The average operating pressure for the Benson boiler
SSC JE 11.10.2023 Shift-II	is higher than 200 bar.
Ans. (b) : The given figure shows the steam stop valve	• Benson boiler can be switched on very quickly.
of a steam generator.	74. What is the unit of measurement of actual
• Steam stop valve is a mounting of boiler.	evaporation in steam boilers?
Mounting – Mountings are used in boiler to maintain	(a) m^3/kg
safety. e.g.– Water level indicator, feed check valve,	(b) kg
pressure gauge etc.	(c) kg water evaporated/kg fuel burnt
Accessories– These are the components which is used	(d) kg fuel burnt/kg water evaporated
in increase the efficiency of boiler.	SSC JE 09.10.2023 Shift-II
e.g.– Air preheater, economiser, super heater etc.	Ans. (c) : Equivalent Evaporation:- It is the amount
72. Which of the following is NOT a merit of dead	water at 100°C and formed into dry and saturated
weight safety valve?	steam at 100°C at normal atmospheric pressure (1.01 bar)
(a) Gives satisfactory performance during operation	
(b) Simplicity of design	• It is usually, written as " from and at 100°C "
(c) Suitable for high pressure boiler	• Mathematically, equivalent evaporation
(d) It is good choice for low pressure vessels	$E = \frac{m_{e} \left(h - h_{f_{i}}\right)}{1 - 1 - 1}$
(d) it is good choice for low pressure vessels SSC JE 09.10.2023 Shift-II	2257
55C 0E 07.10.2025 SHIII-II	'


Where,	• To permit a rapid lowering of water level in the boiler
Mass of water acutally evaporated	if accidently it becomes too high.
$me = \frac{massor water actuary evaporated}{or, steam produced in kg/h or}$	Some other mountings-
	(i) Pressure gauge
kg water evaprated/kg fuel burnt	(ii) Fusible plug
To = Total heat of steam in kJ/kg of steam	(iii) Safety valves
h_{fl} = sensible head of feed water in kJ/kg of steam.	(iv) Feed check valve
Hence, The unit of measurement of actual evaporation	77. The evaporation of feed water at 100°C into
in steam boiler	dry and saturated steam at 100 °C at
= kg water evaporated / kg fuel burnt	atmospheric pressure is known as :
75. The function of an air pre-heater is	(a) Boiler horsepower
(a) To increase the temperature of air after	(b) Actual evaporation
entering the furnace	(c) Equivalent evaporation
(b) To decrease the temperature of air before	(d) Boiler efficiency
entering the furnace (c) To increase the temperature of air before	SSC JE 09.10.2023 Shift-II
entering the furnace	Ans. (c) : Equivalent evaporation:- Equivalent
(d) To decrease the temperature of air after	Evaporation – may by the from Boiler at given
entering the furnace	condition to the amount to water evaporated from water
SSC JE 09.10.2023 Shift-II	at 100°C to dry and saturated steam at 100°C.
Ans. (c) : Boiler accessories :-	Factor of evaporation (F _e)= $\left(\frac{\mathbf{h} - \mathbf{h}_{w}}{2257}\right)$
• Those components which are installed either inside or	
outside the boiler to increase the efficiency of the boiler.	E = Total heat required to evaporate feed water from and at 100°C.
Various boiler accessories are.	$E = \frac{m_e(h - h_f)}{2257}$
1. Air preheated	$E = \frac{1}{2257}$
2. Economizer	Where me is mass of steam actually product in kJ/kg of
3. Super- heater	fuel or like units.
4. Feed pump	78. Which of the following statements is correct
5. injector	about water-tube and fire-tube boilers?
Air Pre-heater:- It is used to increase the temperature	(a) In case of fire-tube boilers, water flow in the
of the air before it enters the furnace. It is generally	tubes
placed after the economizer; so that the flue gases pass	(b) In case of water-tube boilers, hot gases flow
through the economizer and then to the air preheater.	in the tubes
76. In the boiler mountings, the blow-off cock is	
fitted at	surrounded over the tubes
(a) Near the steam supply line	(d) In case of fire-tube boilers, hot gases flow in the tubes
(b) The middle of the boiler shell	SSC JE 09.10.2023 Shift-II
(c) The bottom of the boiler shell	Ans. (d) : In the case of fire tube boiler hot gases flow
(d) The top of the boiler shell	in the tubes.
SSC JE 09.10.2023 Shift-II	Fire-tube boiler:-
Ans. (c) : In the boiler mounting, the blow-off cock is $\sum_{i=1}^{n} a_i ^2 = 1$	
fitted at the bottom of the boiler shell.	• Hot Flue gases are present in inside the tube and water surrounds them
Blow-off- cock-	• Low pressure boiler (operating pressure 25 bar)
• The blow- off cock helps to drain out the water periodically from the boiler.	• Example-
• It ensures the discharge of mud, scale or sediments	Cornish boiler
and other impurities that settle down at the bottom of	
and other impurities that settle down at the bottom of	
the boiler.	Locomotive boiler
-	Locomotive boiler

Water tube boiler:-	Ans. (b) : The power required by an induced draught
• Water is present inside the tubes and the hot flue gases	fan is greater than that required by a force - draught fan
surround them.	for the same amount of draught.
• High pressure (operating pressure 250 bar)	Forced draft fans suck air from the atmosphere, they
• Example:-	handle fresh air. So they need low maintenance,
Stirling boiler	consume less power and operating costs are low.
Babcock and Wilcox boiler	■ ID fan is normally location at the outlet between the
Yarrow boiler	dust collector and chimney.
Lamont boiler	■ ID fans can handle hot flue gases.
Loeffler boiler	■ ID fans creates a negative pressure or suction to
Velox boiler	discharge the gases out after combustion from the furnace.
79. Which of the following is a forced circulation type of boiler?	Fuels and Combustion
(a) Lancashire boiler	
(b) LaMont boiler	81. Which of the following statements is
	INCORRECT?
(c) Cochran boiler(d) Babcock & Wilcox boiler	(a) The value of dryness fraction is 1 fo saturated steam condition
	(b) The value of dryness fraction is greater than 1
SSC JE 09.10.2023 Shift-II	for superheated steam condition
Ans. (b) : Natural circulation type boiler : In this type of steam boilers the circulation of water is by natural	(c) The value of dryness fraction is 0 fo
convection currents which are set up during the heating	saturated water condition
of water.	(d) The value of dryness fraction always lie
Examples : Cochran boiler, Locomotive boiler,	between 0 and 1
Lankashire boiler, Stirling boiler cornish boiler and	SSC JE 11.10.2023 Shift-I
Babcock & Wilcox boiler.	Ans. (b) : Dryness fraction- If in 1 kg of liquid vapour
Force circulation type boiler : In this type of steam	mixture, x kg is the mass of vapour and (1-x) kg is the
boilers, There is a forced circulation of water by a	mass of liquid, then x is known as the quality of dryness
centrifugal pump driven by some external power. Use	fraction of the liquid vapour mixtures.
of forced circulation is made in high pressure boilers.	$x = \frac{m_v}{m_v}$
Examples : Benson boiler La-Mont boiler Loeffler	$m_v + m_s$
boiler and velox boiler.	For saturated water, $x = 0$
80. Which of the following statements is correct	For saturated vapour, $x = 1$
about the forced-draught fan used in steam	• The value of dryness fraction always lies between 0
boilers?	and 1.
(a) The power required by an induced-draught	82. The mass of water evaporated per unit mass o
fan is less than that required by a forced	fuel burnt is termed as stean
draught fan for the same amount of draught	boilers.
(b) The power required by an induced draught	(a) Boiler performance of
fan is greater than that required by a forced-	(b) Equivalent evaporation in
draught fan for the same amount of draught	(c) Actual evaporation in
(c) The power required by an induced-draught	(d) Boiler efficiency of
fan may be greater than or less than that	SSC JE 11.10.2023 Shift-I
required by a forced-draught fan for the same	Ans. (c) : In steam boiler, actual evaporation is defined
amount of draught	as the mass of water evaporated per unit mass of fue
(d) The power required by an induced-draught	burnt. It is denoted by (m _e)
fan is equal to that required by a forced	Equivalent evaporation – Equivalent evaporation is the
draught fan for the same amount of draught SSC JE 09.10.2023 Shift-II	amount of water evaporated from feed water at 100°C and formed into dry and saturated steam at 100°C at

atmospheric pressure (1.01 bar). It is usually written as "from and at 100°C".	85. Natural draft cooling towers are also known as
	(a) artificial cooling towers
The equivalent evaporation, $E = \frac{m_{e} (h - h_{fg})}{2257}$	(b) mechanical draft cooling towers
2257	(c) automatic spray cooling towers
$m_e = Actual evaporation$	(d) atmospheric cooling towers
h = Total heat of steam in kJ/kg at given working	SSC JE 11.10.2023 Shift-II
pressure.	Ans. (d) : Natural draft cooling towers are also known
h_{fg} = Latent heat of feed water or fluid enthalpy.	as atmospheric cooling towers.
Steam Turbine	• Natural draft cooling towers use very large concrete chimneys to introduce air through the media. Due to
83. The mass flow is same at inlet and outlet in case	very large size these are installed in open space only.
of	86. Which of the following turbine has 50% degree
(a) Closed system	of reaction?
(b) isolated system	(a) Curtis turbine (b) Rateau turbine
• •	(c) Hero's turbine (d) Parson's turbine
(c) steady flow process	SSC JE 09.10.2023 Shift-II
(d) non-steady flow process	Ans. (d) : Degree of Reaction =
SSC JE 11.10.2023 Shift-II	Enthalpy drop in roter
Ans. (c) : The mass flow is same at inlet and outlet in	Enthalpy drop in stage
case of steady flow process.	• In impulse turbine there is no change in enthalpy drop
• Steady and unsteady flow:- If fluid flow	in the rotor. therefore degree of reaction is zero.
characteristics (such as density, velocity pressure etc.)	• For parson's turbine (R) $= 50\% = 0.5$
at a point do no change with time, the flow is said to be	• For Hero's turbine $(\mathbf{R}) = 100\% = 1$
steady flow.	87. In the context of work done of turbine, the
$\frac{dv}{dt} = 0, \frac{dp}{dt} = 0, \frac{d\rho}{dt} = 0$ for steady flow	power developed by the runner depends on
$\frac{dt}{dt} = 0, \frac{dt}{dt} = 0, \frac{dt}{dt} = 0$	which of the following parameters?
where,	(a) Blade velocity
v = velocity	(b) Velocity at the exit of draft tube
$\rho = \text{density}$	(c) Whirl velocity only
p = pressure	(d) Whirl and blade velocities
• If the fluid flow variables at a point may change with	SSC JE 09.10.2023 Shift-II
time, the flow will be unsteady.	Ans. (d) : In the turbine the power developed the
	runner depends on the whirl and blade velocities.
84. In a mechanical draught system, draught is	work done
produced by a	Runner power = $\frac{\text{work done}}{\text{time}}$
(a) chimney (b) blower	
(c) pump (d) chain grate stoker	$R.P. = (V_{w_{1}u_{1}} + V_{w_{2}u_{2}})$ Watt
SSC JE 11.10.2023 Shift-II	V_w = whirl velocity
Ans. (b) : Mechanical (or artificial) draught– It is the	u = blade velocity
draught produced by a fan, blower or steam jet. In	(V+V))
general, the mechanical draught is provided, when	$\eta_{\text{hyraulic}} = \frac{(V_{\text{w}_{1}\text{u}_{1}} + V_{\text{w}_{2}\text{u}_{2}})}{gH_{\text{net}}}$
natural draught is not sufficient. It may be induced or	
forced.	88. An impulse turbine is running at 100 rpm with
There are three types-	a net head 600 m. If the discharge through the
(i) Induced draught (I.D.)	nozzle is 0.1 m ³ /s, then what will be the power
(ii) Balanced draught (B.D.)	available at the nozzle? Take $g = 10 \text{ m/s}^2$.
(iii) Forced draught (F.D.)	(a) 450 kW (b) 600 kW
• Balanced draught $(B.D.) = ID + FD.$	(c) 700 kW (d) 525 kW
	SSC JE 09.10.2023 Shift-II



Processes :-

- $1-2 \Rightarrow$ Isentropically compression of air
- $2-3 \Rightarrow$ Isobarically heat rejection
- $3-4 \Rightarrow$ Isentropically expansion
- $4-1 \Rightarrow$ Isobarically heat extraction

 $COP = \frac{1}{(r_p)^{\frac{\gamma-1}{\gamma}} - 1}$

101. The following Temperature – Entropy diagram represents a Refrigeration system operates on the reversed Carnot cycle. The higher temperature of the refrigerant in the system is 35°C and the lower temperature is -15°C. What will be the C.O.P?

Temperature

Entropy

(a) 5.16 (b) 2.75 (c) 3.45 (d) 4.82 SSC JE 11.10.2023 Shift-II

Ans. (a) : Given, $T_L = -15^{\circ}C = -15 + 273 = 258 \text{ K}$ $T_{\rm H} = 35^{\circ}{\rm C} = 35 + 273 = 308 {\rm K}$ For COP of reverse carnot cycle- $COP = \frac{T_L}{T_H - T_L}$ $(\text{COP})_{\text{Rec}} = \frac{258}{308 - 258}$ $=\frac{258}{50}$ COP = 5.16

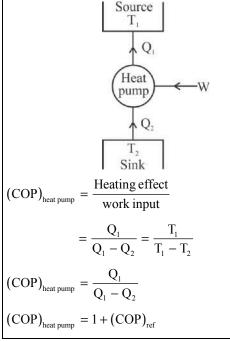
- 102. In an ammonia vapour compression system, the pressure in the evaporator is 2 bar. Ammonia at exit is 0.85 dry and at entry its dryness fraction is 0.19. During compression, the work done per kg of ammonia is 150 kJ. The latent heat and specific volume at 2 bar are 1325 kJ/kg and 0.58 m³ /kg, respectively. What will be its C.O.P? (a) 5.83 (b) 4.34
 - (d) 6.74 (c) 3.82
 - - SSC JE 11.10.2023 Shift-II

Ans. (a) : Given, $P_1 = P_4 = 2$ bar $x_1 = 0.85, \qquad x_2 = 0.19$ W = 150 kJ/kg, ma = 4.5 kg/min $h_{fg} = 1325 \text{ kJ/kg}, \text{ Vg} = 0.58 \text{ m}^3/\text{kg}$ Since the ammonia vapour at entry to the evaporator (at point-4) has dryness fraction (x_4) equal to 0.19 therefore enthalpy at point 4 $h_4 = x_4 \times h_{fg} = 0.19 \times 1325$ $h_4 = 251.75 \text{ kJ/kg}$ Similarly, enthalpy of ammonia vapour at exit i.e. at point-1 $h_1 = x_1 \times h_{fg} = 1126.25 \text{ kJ/kg}$ Therefore heat extracted from the evaporator or refrigerating effect- $R_e = h_1 - h_4 = 1126.25 - 251.75$ $R_e = 874.5$ We know that work done during compression W = 150 kJ/kg.So, COP = $\frac{\text{R.F}}{\text{W}} = \frac{874.5}{150}$ C.O.P. = 5.83103. Which of the following statements is true regarding vapour-compression refrigeration system (VCRS)?

- (a) VCRS with both water cooled and air cooled condenser will require same power for same refrigeration effect
- (b) Power consumption of VCRS with air cooled condenser is less as compared to that of VCRS with water cooled condenser
- (c) Power consumption of VCRS with air cooled condenser is more as compared to that of VCRS with water cooled condenser
- (d) Power consumption of VCRS with air cooled condenser may be lesser or greater than that of VCRS with water cooled condenser

SSC JE 11.10.2023 Shift-II

Ans. (c) : Power consumption of VCRS with air cooled condenser compared to VCRS with water cooled condenser will be higher due to high discharge temperature.

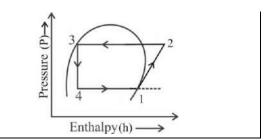

Discharge temperature The discharge of the compressor is the hottest part of the system. Higher the discharge temperature higher the work input required, the discharge temperature in the air cooled system is higher as compared to the water cooled system, therefore power input to the VCRS is more in the aircooled system as compared to water cooled system.

104. If Q₁ is the heat rejected to the source and Q₂ is the heat extracted from the sink, the coefficient of performance (COP) of a heat pump is given by _____.

(a)
$$\frac{Q_1}{Q_1 - Q_2}$$
 (b) $\frac{Q_1 - Q_2}{Q_1}$
(c) $\frac{Q_2}{Q_1 - Q_2}$ (d) $\frac{Q_1 - Q_2}{Q_2}$

SSC JE 11.10.2023 Shift-II

Ans. (a) : Heat pump– A heat pump is a device that works on a reversed Carnot cycle and transfers heat from a lower temperature body to a higher temperature body.


105. The expansion process in a vapour compression refrigeration cycle is a/an _____.

- (a) Constant volume process
- (b) Isenthalpic process
- (c) Isentropic process
- (d) Reversible isothermal process

SSC JE 11.10.2023 Shift-II

Ans. (b) : The expansion process in a vapour compression refrigeration cycle is an isenthalpic process.

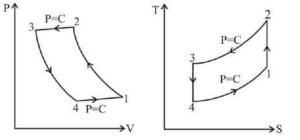
Expansion valve– The expansion valve allows the liquid refrigerant under high pressure and temperature to pass at a controlled rate after reducing its pressure and temperature. It is a constant enthalpy process.

- 106. In the refrigeration system, heat rejection factor is the ratio of
 - (a) Heat rejected to the refrigeration capacity
 - (b) Work done by compressor to the refrigeration capacity
 - (c) Load on the condenser to the COP
 - (d) Refrigeration capacity to the work done by compressor

SSC JE 09.10.2023 Shift-II

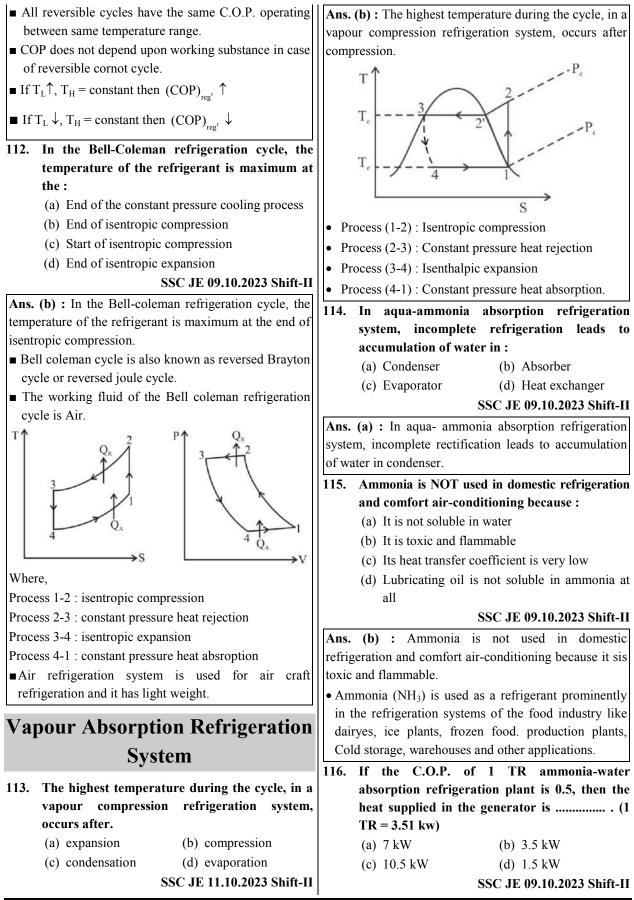
Ans. (a) : In the refrigeration system, heat rejection facture is the ratio of Heat rejected to the refrigeration capacity.

$$HRR = \frac{\text{Heat rejected by condenser}}{\text{Refrigeration effect}}$$
$$HRR = \frac{Q_{R}}{RE} = 1 + \frac{1}{COP}$$

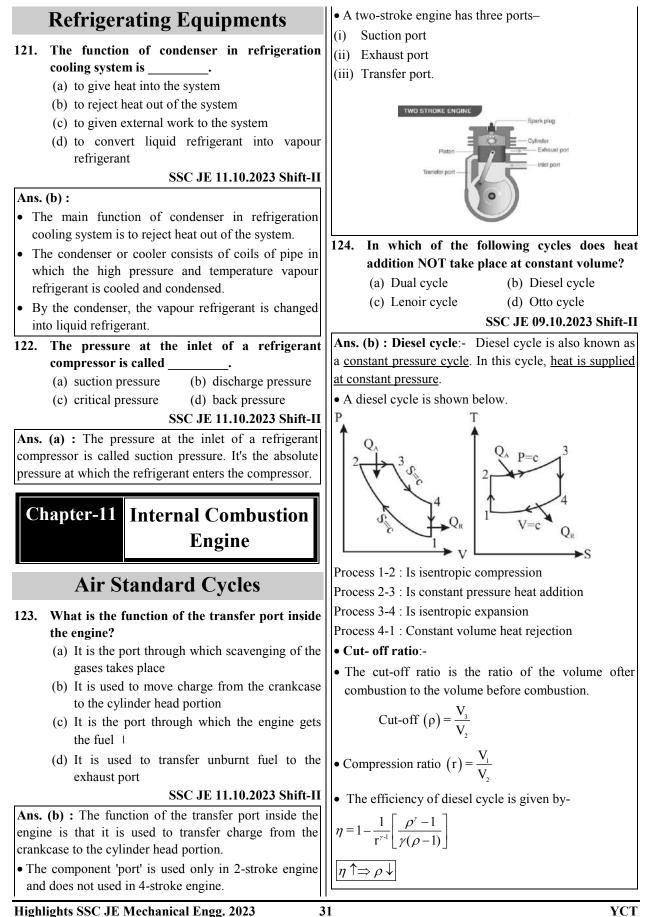

107. In Bell-Coleman cycle, the pressure at the end of isentropic compression is same as :

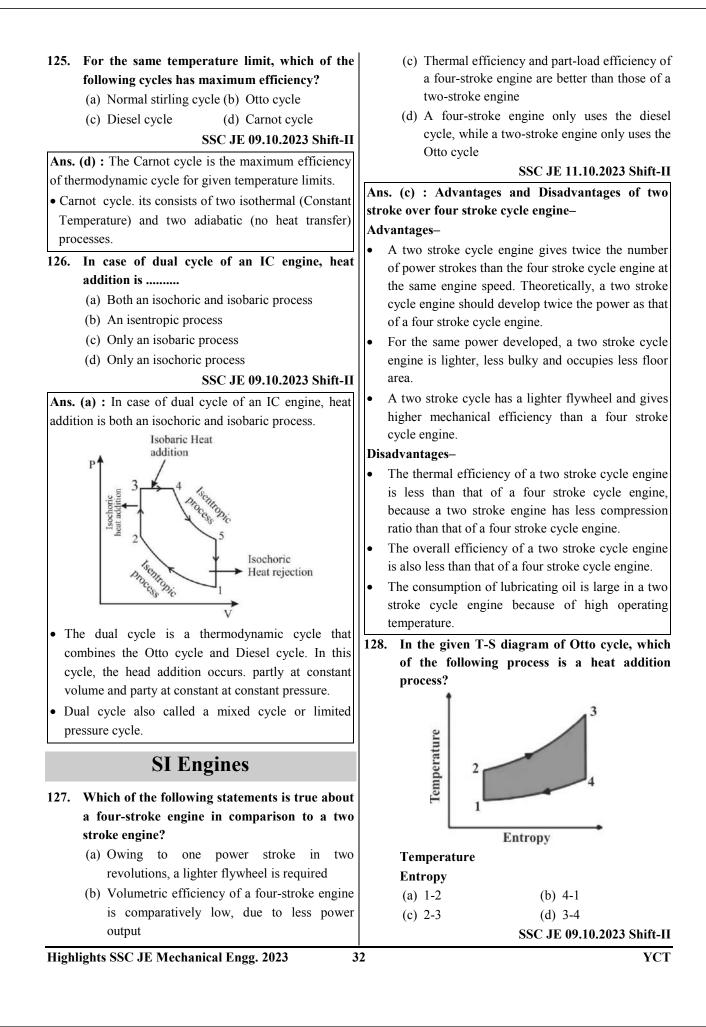
- (a) The pressure at the start of isentropic expansion
- (b) The pressure at the end of isentropic expansion
- (c) The pressure in constant pressure expansion
- (d) The pressure at the start of isentropic compression

SSC JE 09.10.2023 Shift-II

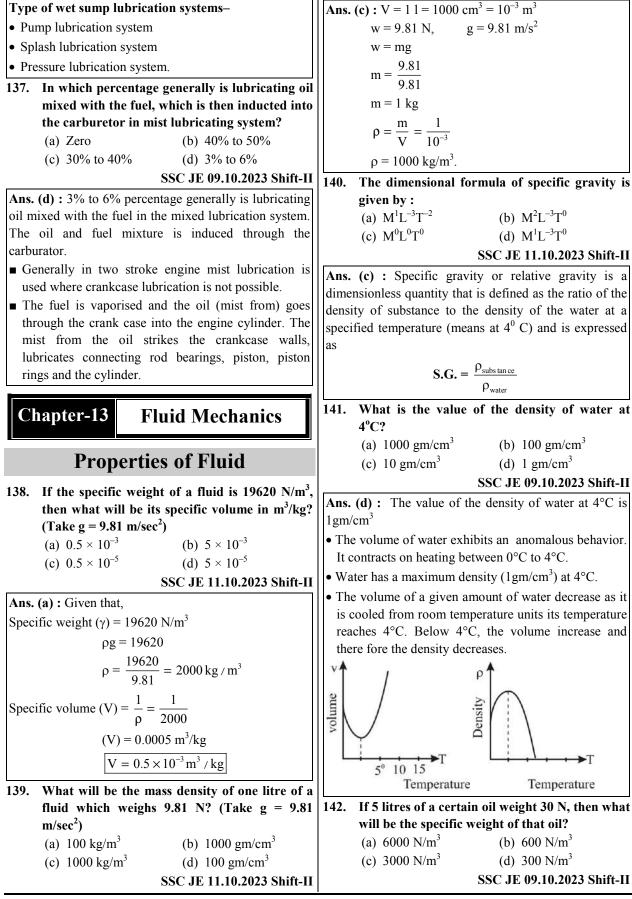

Ans. (a) : Gas Refrigeration cycle or Reverse Brayton cycle (Bell Colleman cycle) : In this cycle, the Pressure at the end of isentropic compression is same as the pressure at the start of isentropic expansion.

■ It consists of four process :

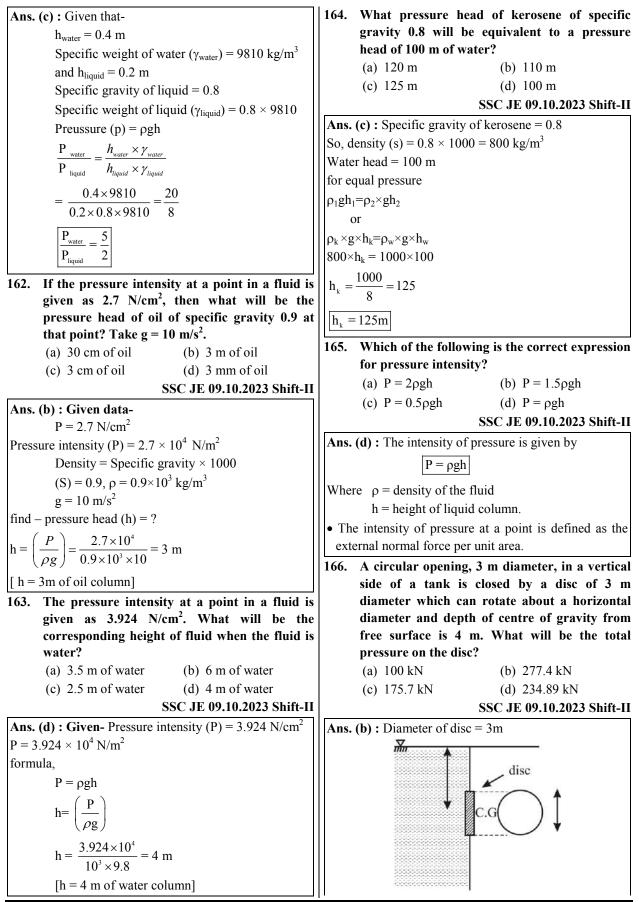



Process 1-2 : \rightarrow Isentropic compression. Process 2-3 : \rightarrow Constant pressure heat rejection

Process 3-4 : \rightarrow Isentropic expansion Process 4-1 : \rightarrow Constant pressure heat absorption C.O.P. of Bell colleman cycle ; $COP = \frac{1}{\left(r_{p}\right)^{\frac{\gamma-1}{\gamma}} - 1}$	 110. The difference in low temperature cascade condenser temperature and high temperature cascade evaporator temperature is called				
where, pressure ratio $(r_p) = \frac{p_2}{p_1} = \frac{p_3}{p_4}$	(c) Degree of subcooling				
	(d) Average temperature				
• It is used in aircraft because of low weight of per	SSC JE 09.10.2023 Shift-II				
tonne of refrigeration.	Ans. (a) : The difference between the low - temperature				
108. In actual air-conditioning applications for R-12 and R-22 refrigerant and operating at a condenser temperature of 40° C and an	cascade condenser temperature and high-temperature cascade evaporator temperature is called temperature overlap.				
evaporator temperature of 5°C, the heat rejection factor is about :	Temperature overlap is the important factor for achieving a higher C.O.P. because it shows the heat				
(a) 1 (b) 5.12	transfer in the system.				
(c) 1.25 (d) 2.15	The cascade condenser serves as an evaporator for the				
SSC JE 09.10.2023 Shift-II	low temperature circuit (LTC) and a condenser for				
Ans. (c) : Given that :	higher temperature circuit (HTC).				
Condenser temperature $(T_H) = 40^{\circ}C = 40 + 273$	The low - temperature circuit is uses in low-boiling				
= 313 k	refrigerants.				
evaporator temperature $(T_L) = 5^{\circ}C = 5 + 273$	111. If the lower temperature fixed by the				
= 278 k	refrigeration application is high, the C.O.P. of				
C.O.P. of air conditioning = $\frac{T_L}{T_H - T_L}$	the Carnot refrigerator will be				
$T_{\rm H} - T_{\rm L}$	(a) the same (b) less				
$=\frac{278}{313-278}$	(c) very less (d) high				
$-\frac{313-278}{313-278}$	SSC JE 09.10.2023 Shift-II				
C.O.P. = 7.94	Ans. (d) : Ideal refrigeration cycle/reverse carnot cycle.				
Heat rejection factor (HRF)= $1 + \frac{1}{\text{C.O.P.}}$ = $1 + \frac{1}{7.94}$	$ \begin{array}{c} P \\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $				
$HRF = 1.12 \simeq 1.25$	Q _{Rej.} Kej.				
109. Which of the following is a suitable for	→v s				
measuring the capacity of refrigeration? (a) TR (b) kW/kg	Processes :				
(a) IK (b) KW/Kg (c) kg (d) kJ	$(4-1) \rightarrow$ Isothermal expansion or heat extraction.				
SSC JE 09.10.2023 Shift-II	$(1-2) \rightarrow$ Reversible adiabatic or isentropic compression.				
Ans. (a) : The capacity of refrigeration is measured in	$(2-3) \rightarrow$ Isothermal compression or heat rejection.				
'TR'. It is an unit of refrigeration.	$(3-4) \rightarrow$ Reversible adiabatic or isentropic expansion.				
1 TR \Rightarrow Refrigeration effect produce by melting 1 ton	COP of refrigerator is ;				
of ice from at 0°C in 24 hrs.	$(COP) = \frac{T_L}{T_L}$				
1TR = 210 kJ/min	$(\text{COP})_{\text{reg}^r} = \frac{T_L}{T_H - T_L}$				
= 50 kcal/min	Where,				
= 200 B.Th.U/min	$T_{\rm H}$ = Temperature of atmosphere				


Ans. (a) : The C.O.P of 1 T.	R ammonia- water	2.	CFCs	R-11		Cl ₃ F	
absorption refrigeration plant = 0.5 1 TR = 3.51 kW		(Chlorofloro carbon's)(tri-chloro-fluor methane)					
$COP = \frac{Q_{out}}{Q_{gen}}$		3.	HFCs	R-32			
			(Hydro floro		(Difluoromethane)		
$Q_{gen} = \frac{Q_{out}}{COP}$		carbon's)					
$Q_{gen} = \frac{3.51}{0.5}$		4.	HCFCs	R-22		HCl F ₂	
			(Hydro chloro flore		`	nlorodi-fluoro	
$\boxed{\begin{array}{ } COP = 7 \text{ KW} \end{array}}$ 117. Which fluid is used to in		carbon's)					
evaporation of the liquid through the evaporator in a refrigeration system?(a) Hydrogen(b)(c) Ammonia(d)	ammonia passing domestic Electrolux Water Mercury	 119. A rectifier is fitted in an ammonia absorption plant to : (a) only remove the unwanted water vapour by cooling the vapour mixture (b) remove the unwanted water vapour by 					
Ans. (a) : Hydrogen is used to it	C 09.10.2023 Shift-II	cooling the vapour mixture and condensing					
evaporation of the liquid ammonia		the water vapour (c) remove the unwanted water vapour by					
evaporator in domestic Electrolux sy		heating the vapour mixture					
• Electrolux Refrigerator works on working on liquid ammonia and	2		(d) superheat an				
system with (H_2) as the third fluid		SSC JE 11.10.2023 Shift-II					
• Liquid ammonia (NH ₃) evaporation in the pressure of Hydrogen (H ₂),	es in the evaporator	 Ans. (b) : A rectifier is fitted in an ammonia absorption plant 					
• Hydrogen is chosen as it is	non-corrosive and	to remove the unwanted water vapour by cooling					
insoluble in water.		the vapour mixture and condensing the water					
• In vapour absorption refrigeration used as absorber.	on system, water is	• The common vapour absorption refrigeration					
Refrigerants & Re	system is based on NH_3 - H_2O where, NH_3 if refrigerant and H_2O is absorbent.						
Properties					frige	rants with their	
118. Match the following.		representations. Type of refrigerant Representation					
Halocarbon Refrigerant	Example	-	I ype of refr1.CFC Refr	0	A.	Representation R-22	
1. Halons 2. CFCs	A. R-32 B. R-22	-	1.CFC Ref2.HFC Refr	0	B.	R-22 R-11	
2. CFCs 3. HFCs	в. к-22 С. к-11	-	3. HC Refrig	0	C.	R-134a	
4. HCFCs	D. R-10	-	4. HCFC	-	D.	R-390	
(a) 1-A, 2-C, 3-D, 4-B (b)	1-A, 2-C, 3-D, 4-B		Refrigera	nts			
	1-D; 2-C, 3-A, 4-B 2 11.10.2023 Shift-II						
	(c) 1-A, 2-D, 3-B, 4-C (d) 1-B, 2-D, 3-C, 4-A						
Ans. (d) :S.N.Halo carbonExampl	Chemical name	A	.). T (P			9.10.2023 Shift-II	
1	and formula of	Ans. (b) : Type of Refrigerant:-					
-	Refrigerant	(1) CFC Refrigerant \rightarrow R-11 (2) HEC Patriceront \rightarrow R 134a					
	CCl ₃	(2) HFC Refrigerant \rightarrow R-134a (3) HC Refrigerant \rightarrow R-390					
	(tri- chloromethane)	(3) HC Refrigerant \rightarrow R-22					
Uichlights SSC IF Machanical Fr	,	$\frac{1}{(4) \text{ HCFC Keingerant} \rightarrow K-22}$					

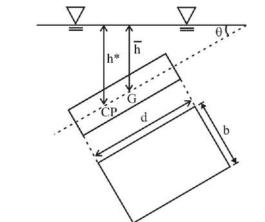
Fuels	Engine Cooling and Lubrication
 131. In an I.C. engine, when the primary circuit in the coil ignition system break, the voltage produced across the secondary terminal is in the rang of (a) 800 V to 1200 V (b) 8000 V to 12,000 V (c) 80 V to 120 V (d) 2000 V to 5000 V 	 134. Which of the following is NOT a component of the water-cooling system with radiator? (a) Thermostat (b) Centrifugal pump (c) Condenser (d) Fan SSC JE 11.10.2023 Shift-II
 SSC JE 11.10.2023 Shift-II Ans. (b) : In an IC engine, when the primary circuit in the coil ignition system break, the voltage produced across the secondary terminal is in the rang of 8000 V-12000 V. 132. In two-stroke petrol engine, the air fuel mixture is prepared : (a) Inside the crank case chamber (b) Inside the carburetor but outside the cylinder (c) Inside the transfer port (d) Inside the carburetor and inside the cylinder 	Ans. (c) : Condenser is not a component of the water- cooling system with radiator.
SSC JE 09.10.2023 Shift-II Ans. (b) : In two- stroke petrol engine, the air fuel mixture is prepared inside the carburetor but outside the cylinder. Carburetor:- The Carburetor is a device used in petropl engines for atomizing and vaporizing the fuel	 (i) Thermostat (ii) Centrifugal pump (iii) Fan (iv) Radiator tubes (v) Upper and lower tanks. 135. In a lubrication method, the oil is kept in the crank case sump and it is splashed by using the end of a connecting rod to various components
 and mixing it with the air in the varying proportions to suit the changing operating conditions of the engine. The process of breaking up and mixing the fuel with the air is called carburetion. 	 of the engine. This method is called (a) Splash lubrication (b) Pump lubrication (c) Sump lubrication (d) Pressure lubrication SSC JE 11.10.2023 Shift-II Ans. (a) : In a lubrication method, the oil is kept in the
Supercharging of SI & CI Engines 133. Scavenging phenomenon occurred in Two- stroke IC engine when :	crank case sump and it is splashed by using the end of connecting rod to various components of the engine. This method is called splash lubrication system.
 (a) Both inlet and outlet vale are opened for a while simultaneously (b) Both transfer port and exhaust port are opened for a while simultaneously (c) Both inlet and outlet valve are fully closed (d) Both transfer port and exhaust port are fully closed SSC JE 09.10.2023 Shift-II 	 136. Which of the following is NOT a type of wet sump lubrication system? (a) Pump lubrication system (b) Splash lubrication system (c) Pressure lubrication system (d) Mist lubricating system SSC JE 11.10.2023 Shift-II Ans. (d) : Types of lubricating system - There are
 Ans. (b) : Scavenging- The scavenging in an IC engine, is the process of removing the burnt gases from the combustion chamber of the engine cylinder. In two-stroke IC engine, at four process take place in one revolution of the crankshaft or two strokes of the piston. During scavenging both transfer port and exhaust port are opened for a while simultaneously. 	 Ans. (d) . Types of hubiteating system - there are mainly 3 types of lubricating system : Mist lubrication system Wet sump lubrication system Wet sump lubrication system— In this type, it contains oil in just the sump, serving as a reservoir and it uses a single oil pump. The oil circulating process seems to be fast in this lubricating system because the oil is pumped directly to the moving parts.



Ans. (a) : Given :- W = 30N V = SL = $5 \times 10^{-3} \text{m}^3$	Pressure and its Measurement
Specific weight, $w = \frac{mg}{V} = \frac{W}{V}$	146. The pressure responsive element in the Bourdon tube pressure gauge is made of
$W = \frac{30}{5 \times 10^{-3}}$	(a) cast iron (b) aluminium (c) inconel (d) bronze
$W = 6000 \text{ N/m}^3$	SSC JE 11.10.2023 Shift-II
143. The unit of density in FPS (Foot Pound System) is given by : (a) lb/ft ³ (b) lb/ft ² (c) lb/ft ¹ (d) Lb ² /ft ³ SSC JE 09.10.2023 Shift-II Ans. (a) : The unit of density in FPS (foot pound)	 Ans. (d) : Bourdon tube pressure gauge:- In this pressure gauge, the pressure responsive element is a tube of steel of bronze which is of elliptical cross-section curved into a circular arc. • one end of the tube is closed and the other end is
system is lb/ft^3 Density = $\frac{Mass}{Volume}$	 connected to the fluid under pressure. The closed end is free to move, where other end is
Unit = $\frac{Kg}{m^3} \text{ or } \frac{g}{cm^3}$ in FPS = $\frac{lb}{Ft^3}$ (Pounds per cubic foot)	rigidly fixed to the frame.
 144. What will be specific weight of one litre of petrol of specific gravity 0.7? (Take g = 9.81 m/sec²) (a) 7286 N/m³ (b) 6256 N/m³ (c) 5436 N/m³ (d) 6867 N/m³ 	Segment Lever
SSC JE 09.10.2023 Shift-II Ans. (d) : Specific gravity (s) = 0.7 Specific weight (weight density) of liquid, = $0.7 \times 1000 \times 9.81$ N/m ³	• When the fluid under pressure enters and fills the Bourdon tube, the elliptical cross-section of the tube tends to become circular due to the increase in internal pressure.
$= 6867 \text{ N/m}^3$	147. The position of centre of pressure depends on
145. The dimensional formula for specific gravity is	which of the following?
given by : $(1 > 1 + 1)^{2\pi 0}$	(a) Surface tension of fluid(b) Velocity of liquid
(a) $M^{1}L^{2}T^{0}$ (b) $M^{0}L^{1}T^{1}$ (c) $M^{0}L^{0}T^{0}$ (d) $M^{1}L^{0}T^{1}$ SSC JE 09.10.2023 Shift-II	(c) Weight of the object immersed in liquid(d) Location of object from the free surface
Ans. (c) : Specific gravity or relative density : -	SSC JE 11.10.2023 Shift-II
specific gravity (s) = Density or weight density of substance Density or weight density of standard substance	 Ans. (d) : The position of centre of pressure depends on location of object from the free surface. For horizontal planner surface- Total hydrostatic
$=\frac{\text{Specific weight of substance}}{Specific metric based on bottom of the second $	pressure force, $F = \rho g A \bar{h}$. Location of centre of
Specific weight of standard substance Weight density of liquid = $S_{\rm ex} \times 1000 \times 0.81 {\rm N/m^3}$	pressure from free surface of the liquid, $y_{cp} = \overline{x}$
Weight density of liquid = $S_p \times 1000 \times 9.81 \text{ N/m}^3$ Density of liquid = $S_p \times 1000 \text{ Kg/m}^3$ (Where, S_p = Specific gravity) Specific gravity is unit less and dimensionless ($M^0L^0T^0$) property.	Inclined planner surface – Total hydrostatic force, $F = \rho g A \overline{h}$ Location of centre of pressure from free surface of the liquid, $y_{cp} = \frac{I_G \sin^2 \theta}{A \overline{x}} + \overline{x}$
 Specific gravity of water is 1.0 at 4°C and for mercury it is 13.6. Specific gravity is measured by hydrometer. 	Where, $\overline{\mathbf{x}}$ = distance of centroid from free surface of liquid

 148. There are two horizontal pipes in which water is flowing. If we have to find the pressure difference between these two horizontal pipes using an inverted manometer, and two manometric fluids with specific gravities of 13.5 and 0.9 are available, then which manometric fluid will be appropriate? (a) Both the Fluids can be used (b) Cannot be predicated (c) Fluid with the specific gravity of 13.5 (d) Fluid with the specific gravity of 0.9 SSC JE 11.10.2023 Shift-II 	 150. Which of the following statements is correct for compressibility? (a) Compressibility is equal to bulk modulus (b) Compressibility is square root of bulk modulus (c) Compressibility is reciprocal of bulk modulus (d) Compressibility is square of bulk modulus SSC JE 11.10.2023 Shift-II Ans. (c) : Compressibility is reciprocal of bulk modulus of elasticity. Bulk modulus The ratio of hydrostatic stress to the volumetric strain within the elastic range is called bulk
 Ans. (d) : Differential manometers- Differential manometer are devices used for measuring the difference of pressure between two points in a pipe or in two different pipes. The most common types of differential manometers are- U-tube differential manometer 	modulus. $K = \frac{dp}{-\frac{dv}{v}}$ • SI unit of bulk modulus is N/m ² Compressibility – The reciprocal of the bulk modulus
 Inverted U-tube differential manometer. Differential inverted U-tube manometer- It consists of an inverted U-tube containing a light liquid. Inverted U-tube manometers only used for measuring liquid pressure. 	of the material of a body is called the compressibility of the material. Compressibility $\propto \frac{1}{\text{Bulk modulus}}$ $\beta = \frac{-\text{dv}}{\frac{\text{v}}{\text{dp}}}$
 It is used in two conditions : (i) In underground pipeline (ii) When the specific gravity of manometric fluid is less than 1. 	Compressibility of water is approximately zero. 151. The value of atmospheric pressure in bar is
 149. Choose the correct mathematical relation of absolute pressure. (a) P_{abs} = P_{atm} + P_{gauge} (b) P_{abs} = P_{atm} + 2P_{gauge} (c) P_{abs} = P_{atm} / P_{gauge} (d) P_{abs} = P_{atm} - P_{gauge} SSC JE 11.10.2023 Shift-II 	(a) 1.5643 (b) 1.01325 (c) 0.9874 (d) 2.01324 SSC JE 11.10.2023 Shift-II Ans. (b) : The value of atmospheric pressure is 1.01325 bar. 1 bar = 10^5 Pa. • Atmospheric pressure, also called barometric
Ans. (a) : Atmospheric pressure (P_{atm}) - The atmospheric air exerts a normal pressure upon all surfaces with which it is in contact, it is known as atmospheric pressure. Standard atmospheric pressure = 101.3 kN/m ² or Pa = 10.3 m of water = 760 mm of Hg.	 pressure, force per unit area exerted by an atmospheric column. Atmospheric pressure measured using an aneroid barometer. 152. A piezometer is connected to a point in a pipe to measure the pressure of water flowing
 Gauge pressure (P_{gauge}) – The pressure measured with the help of a pressure gauge is known as gauge pressure in which atmospheric pressure is taken as datum. Absolute pressure (P_{abs}) – Absolute pressure is the sum of gauge pressure and atmospheric pressure. P_{abs} = P_{atm} + P_{gauge} 	through it. If the piezometer reads 0.4 m, what will be the gauge pressure at that point?Take atmospheric pressure = 101325 pascals and g = 10 m/s².(a) 40 Kilo pascal(b) 97325 pascal(c) 4000 pascal(d) 105325 pascalSSC JE 11.10.2023 Shift-II

157. Which of the following types of simple manometers measures the gauge pressure of	to 750 mm of mercury? (The specific gravity of mercury is 13.6 and density of water is 1000
only incompressible fluids?	kg/m^3 , g = 9.81 m/sec ²)
(a) Differential U-tube manometer	(a) $95,648 \text{ N/m}^2$ (b) $78,560 \text{ N/m}^2$
(b) Single column manometer	(c) $1,00,250 \text{ N/m}^2$ (d) $1,45,090 \text{ N/m}^2$
(c) Piezometer	SSC JE 11.10.2023 Shift-II
(d) U-tube manometer	Ans. (d) : Given,
SSC JE 09.10.2023 Shift-II	$h = 3 m$, $\rho_i = 1530 \text{ kg/m}^3$
Ans. (c) : A piezometer is a simple manometer that	$h_{Hg} = 750 \text{ mm} = 0.75 \text{ m}$
measure gauge pressure.	$S_{Hg} = 13.6, \qquad \rho_{Hg} = 13.6 \times 10^3$
■ It consists of a glass tube that is inserted into the wall	$\rho_{\rm w} = 1000 \text{ kg/m}^3, \text{ g} = 9.81 \text{ m/s}^2$
of a vessel or pipe.	
■ Its one end of the tube is connected to the point where	$P_{abs} = P_{atm} + P_{gauge}$
the pressure will be measured and the other end	$P_{atm} = \rho_{Hg} \times g \times h_{Hg}$
remains open to the atmosphere.	$= 13.6 \times 10^{3} \times 9.81 \times 0.75$
A piezometer can measure moderate pressure of	$P_{atm} = 100,062 \text{ N/m}^2$
liquids.	$P_{gauge} = h. \rho_{i}.g$
■ It measures only positive gauge pressure.	$= 3 \times 1530 \times 9.81$
■ It can not measure very high pressure and the pressure	$P_{gauge} = 45027.9 \text{ N/m}^2$
of gases.	$P_{abs} = P_{atm} + P_{gauge}$
	= 100062 + 45027.9
Hydrostatic Forces on Surfaces	$P_{abs} = 145090 \text{ N/m}^2.$
 158. Which of the following is the correct statement relating to the centre of pressure on an immersed surface? (a) It is the point where the weight of the body and resultant pressure acts (b) it is the point there weight of body the acts (c) It is the point where the resultant pressure acts (d) It is the point where the normal pressure acts SSC JE 11.10.2023 Shift-II Ans. (c) : Centre of pressure (h) – It is the point where the resultant pressure acts.	160. What will be the atmospheric pressure at a location when the barometric reading is 750 mm Hg and the gravitational acceleration is $g = 9.81 \text{ m/s}^2$? Assume the density of mercury to be 13,600 kg/m ³ . (a) 10.006 kPa (b) 100.06 Pa (c) 100.06 kPa (d) 1000.6 Pa (d) 1000.6 Pa SSC JE 09.10.2023 Shift-II Ans. (c) : Given that :- h = 750 mm of Hg $g = 9.81 \text{ m/s}^2$ $\rho = 13600 \text{ kg/m}^3$
For inclined immersed surface-	Atmospheric Pressure (P) = ρgh
The depth of centre of pressure from the liquid surface	$P = 13600 \times 9.81 \times \frac{750}{1000}$
$\overline{\mathbf{h}} = \frac{\mathbf{I}_{\mathrm{G}} \mathbf{sin}^2 \mathbf{\theta}}{\mathbf{A} \overline{\mathbf{x}}} + \overline{\mathbf{x}}$	P = 100062 Pa
	P = 100.6 kPa
Where,	
	161. What will be the ratio of the pressure
from the liquid surface.	intensities of two fluids, one with a liquid
$I_G = Moment of inertia$	column of 0.4 mm of water and the other with a
A = Area of immersed surface	liquid column of 0.2 m of an oil of specific
θ = Angle at which the immersed surface is inclined	gravity 0.8?
with the liquid surface.	(a) $\frac{3}{2}$ (b) $\frac{7}{2}$
159. What will be the absolute pressure	
(approximately) at a point 3 m below the free	(c) $\frac{5}{2}$ (d) 2
surface of a liquid having a density of 1530	2
kg/m ³ , if the atmospheric pressure is equivalent	SSC JE 09.10.2023 Shift-II



Area $= \frac{\pi}{4} d^{2}$ $= \frac{\pi}{4} 3^{2} m^{2}$ Depth of CG, $\overline{x} = 4m$ Total pressure on the disc $= \rho g A \overline{x}$ $= 1000 \times 9.81 \times \frac{\pi}{4} \times 9 \times 4$ $\overline{F_{x} = 277.230 \text{kN}}$

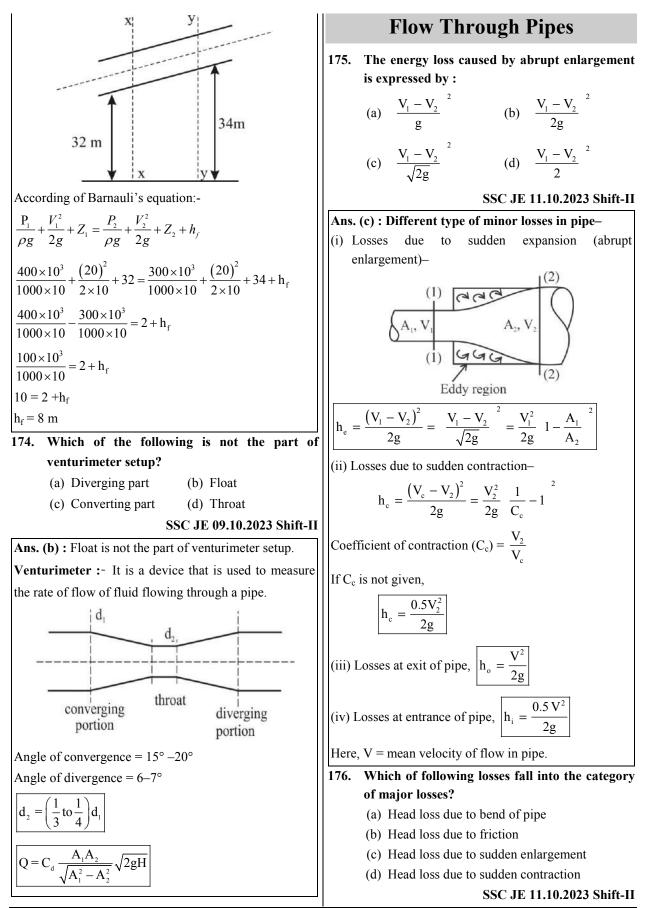
- 167. The point of intersection of the line of action of the resultant hydrostatic force and the submerged surface is called
 - (a) Centre of gravity (b) Centre of mass
 - (c) Centre of pressure (d) Centre of buoyancySSC JE 09.10.2023 Shift-II

Ans. (c) : Centre of Pressure : The point of intersection of the line of action of the resultant hydrostatic force and the submerged surface is called the centre of pressure.

• The centre of pressure is also defined as the point of application of the total pressure on the submerged surface.

■ Cases of hydrostatic force on submerged surface-

Cases	Force	Centre of Pressure (h*)
Horizontal position	ρgAh	$h^* = \overline{h}$
Vertical position	$\rho g A \overline{h}$	$h^* = \overline{h} + \frac{I_G}{A\overline{h}}$
Inclined position	$\rho g A \overline{h}$	$h^* = \overline{h} + \frac{I_G}{A\overline{h}}\sin^2\theta$


Fluid Kinematics $\frac{\partial \mathbf{u}}{\partial \mathbf{x}} + \frac{\partial \mathbf{v}}{\partial \mathbf{v}} = \mathbf{0}$ is valid 168. The continuity equation for a (a) Unsteady, 2D, compressible flow (b) Steady, 2D, incompressible flow (c) Steady, 2D compressible flow (d) Unsteady, 2D, incompressible flow SSC JE 09.10.2023 Shift-II Ans. (b) : Generalized equation of continuity:- $\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial v}(\rho v) + \frac{\partial}{\partial z} + (\rho w) = 0$ case- 1 for steady flow $\left(\frac{\partial \rho}{\partial t} = 0\right)$ then the above equation will become. $\frac{\partial}{\partial x}(\rho u) + \frac{\partial}{\partial v}(\rho v) + \frac{\partial}{\partial z}(\partial w) = 0$ case -2 for incompressible flow, i.e ($\rho = c$) density is constant then the above equation for steady, incompressible and 3-D flow – $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} + \frac{\partial w}{\partial z} = 0$ Steady, incompressible and 2-D flow- $\frac{\partial u}{\partial x} + \frac{\partial v}{\partial y} = 0$ **Fluid Dynamics** The term $\rho V^2/2$ used in Bernoulli theorem is 169. basically : (a) hydrostatic pressure (b) dynamic pressure (c) stagnation pressure (d) static pressure SSC JE 11.10.2023 Shift-II Ans. (b) : Bernoulli's theorem – Assumption : (1) Fluid is ideal i.e. viscosity is zero. (2) Steady flow (3) The flow is incompressible

- (4) The flow is irrotational
- (5) The flow is along the steam line.

Bernoulli's equation is obtained by integrating the Euler's equation,

 $\frac{dp}{\rho} + vdv + gdz = Constant$

If flow is incompressible, $(\rho = C)$	Energy gradient line – The line which joins the total
$\frac{P}{Q} + \frac{V^2}{2} + gz = C$	energy $\left(\frac{P}{\gamma} + \frac{V^2}{2g} + z\right)$ at various points in a flow is
$\frac{1}{\rho} + \frac{1}{2} + gz = C$	$\left(\gamma + 2g\right)^{\mu}$
ρV^2	known as energy gradient line (EGL).
$\Rightarrow P + \frac{\rho V^2}{2} + \rho gz = C$	Hydraulic gradient line– The line which joins the
\Rightarrow P = Pressure head	piezometric head $\left(\frac{P}{\gamma} + z\right)$ at various point in a flow is
$\Rightarrow \frac{\rho V^2}{2} = Dynamic \text{ pressure head/ K.E. head/}$	known as hydraulic gradient line (HGL).
Velocity head	172. A Kaplan turbine has an outside diameter of
$\Rightarrow \rho g z = Potential head.$	runner and hub diameter as 4 m and 2 m,
170. Pressure head of a fluid represents.	respectively. If the velocity of flow at inlet is 8
(a) energy per unit mass	m/s, then what will be the discharge passing
(b) energy per unit weight	through the turbine?
(c) energy per unit length	(a) $68 \text{ m}^3/\text{s}$ (b) $7.536 \text{ m}^3/\text{s}$
(d) energy per unit volume	(c) $75.36 \text{ m}^3/\text{s}$ (d) $6.8 \text{ m}^3/\text{s}$
SSC JE 11.10.2023 Shift-II	SSC JE 09.10.2023 Shift-II
Ans. (b) : Bernoulli's equation – Assumption	Ans. (c) : Given:- outside diameter of runner $(D) = 4m$
(i) Steady flow (ii) Non viscous fluid	hub diameter $(d) = 2m$
(ii) Incompressible flow (iv) irrotational fluid.	At Inlet, velocity of flow $(v) = 8 \text{ m/s}$
	The discharge passing through the turbine
$\frac{P}{\rho} + \frac{V^2}{2} + gz = Constant \frac{Energy}{Mass}$	Q = A.V
	$=\frac{\pi}{(D^2-d^2)} \times 8$
$P + \frac{\rho V^2}{2} + \gamma z = Constant \frac{Energy}{Volume}$	$=\frac{\pi}{4}(D^2-d^2)\times 8$
2 Volume	3.14(1(-1))
$P V^2$ Energy	$=\frac{3.14}{4}(16-4)\times 8$
$\frac{P}{\rho g} + \frac{V^2}{2g} + z = Constant \frac{Energy}{Weight}$	$Q = 75.39 m^3 / s$
Where,	173. Water is flowing steadily at a velocity of 20 m/s
$\frac{P}{P}$ = Pressure head	through a pipe of diameter 0.2 m. The pressure
$\frac{P}{\rho g}$ = Pressure head	and elevation at point X are 400 kN/m ² and 32
\mathbf{V}^2	m, respectively, while those at another point Y
$\frac{v}{2g}$ = Velocity head	are 300 kN/m ² and 34m, respectively. What will
z = Potential head.	be the head loss between the point X and Y?
171. The Energy Gradient line will	$(g = 10 \text{ m/sec}^2)$
(a) Coincide with Hydraulic Gradient line	(a) 4 m (b) 10 m
(b) Coincide with pipe axis	(c) 8 m (d) 6 m
(c) Lie above the Hydraulic Gradient line	SSC JE 09.10.2023 Shift-II
(d) Lie below the Hydraulic Gradient line	Ans. (c) : Given-
SSC JE 11.10.2023 Shift-II	Diameter of Pipe = $(a) = 0.2m$
Ans. (c) : The energy gradient line will lie above the	Velocity of water (v) = 20 m/s
hydraulic gradient line and they are separated from each	Elevation as point x is $z_1 = 32$ m and pressure 400
other by a vertical distance equal to the velocity head.	kN/m ²
Thus, energy gradient line is always above the hydraulic	The pressure and elevation at point 'Y'
gradient line and difference between them is equal to	respectively 300kN/m ² and 34 m.
the velocity head of fluid.	gravitational force (g) = 10m/s^2

Ans. (b) : Energy (or Head) losses		$\rightarrow ds \leftarrow \overrightarrow{v}$
Major Energy Losses	Minor Energy Losses	Let us consider a small displacement vector (ds) on a
This is due to friction and	This is due to	flow field.
it is calculated by the	(i) Sudden enlargement	$d\vec{s} = dx\hat{i} + dy\hat{j} + dz\hat{k}, \vec{v} = u\hat{i} + v\hat{j} + w\hat{k}$
following formula-	of pipe	
(i) Darcy-Weisbach	(ii) Sudden Contraction	$\vec{v} \times d\vec{s} = 0$
Formula	of pipe	$\begin{bmatrix} \hat{i} & \hat{i} & \hat{k} \end{bmatrix}$
(ii) Chezy's Formula	(iii) Bend in pipe	$\begin{vmatrix} \mathbf{y} & \mathbf{y} \\ \mathbf{y} & \mathbf{y} \end{vmatrix} = 0\hat{\mathbf{i}} + 0\hat{\mathbf{j}} + 0\hat{\mathbf{k}}$
	(iv) Pipe fittings etc.	$\begin{bmatrix} \hat{i} & \hat{j} & \hat{k} \\ u & v & w \\ dx & dy & dz \end{bmatrix} = 0\hat{i} + 0\hat{j} + 0\hat{k}$
	ving is used to calculate	
major losses in pipes		$\hat{j}(vdz - wdy) - \hat{j}(udz - wdx) + \hat{k}(udy - vdx)$
(a) Continuity equation		$=0\hat{i}+0\hat{j}+0\hat{k}$
(b) Reynold's equatio		
(c) Darcy Weisbach e	•	comparing both side unit vector
(d) Momentum equat		$\frac{dx}{u} = \frac{dy}{v} = \frac{dz}{w}$ (stream-line eq ⁿ in 3D flow)
	SSC JE 09.10.2023 Shift-II	u v w
Ans. (c) : There are mainly t		$\frac{dx}{u} = \frac{dy}{v}$ (stream line eq ⁿ in 2D flow)
(1) Major loss :- It occurs d	-	u v (or the transformed and the transformed an
(2) Minor loss:- It depends		dy v
Major Loss:- Major loss in		Slope of steam line in x-y plane $\frac{dy}{dx} = \frac{v}{u}$
calculated by the Darcy- We	isbach equation -	
$h_{\rm f} = \frac{fLV^2}{2gD}$		Boundary Layer Theory
$r_{f}^{T} = 2gD$		
Where, $L = Length of pipe$		179. Vapour pressure is primarily associated with
D = Diameter of pip	e	which phenomenon?
V = Mean velocity		(a) Capillarity (b) Cavitation
	0.02 to 0.04 for metals)	(c) Surging (d) Water hammering
$h_{\rm f}$ = head loss due to	· · · · · · · · · · · · · · · · · · ·	SSC JE 11.10.2023 Shift-II
• The minor loses occurs		Ans. (b) : Cavitation- The formation, growth and
	tion losses at the exit of	collapse of vapour filled cavities or bubbles in a flowing
pipe, losses due to bend.	tion losses at the exit of	inquia due lo iocai fair in fiuta pressure is caned
	w hetween two adjacent	cavitation.
178. The velocity of flow between two adjacent streamlines is inversely proportional to the :		• Vapour pressure is primarily associated with
(a) Specific weight		cavitation phenomenon.
(b) Volume flow rate		• The cavitation in a hydraulic machine affects in the
(c) Circulation		following ways-
(d) Spacing of the streamlines		(i) It causes noise and vibration of various parts.
	SSC JE 09.10.2023 Shift-II	(ii) It makes surface rough
		(iii) It reduces the discharge of a turbine.
Ans. (d) : Stream line : It is an imaginary line or curve in a flow field such that the tangent drawn at particular		(iv) It causes sudden drop in power output and
point gives the direction of instantaneous velocity at		efficiency.
that particular point.		180. What is the hydraulic radius for a circular pipe
	v between two adjacent	running full?
streamlines is inversely proportion to the spacing of		(a) d (b) $0.25d$
the streamlines.		(c) 0.5d (d) 0.75d
		SSC JE 11.10.2023 Shift-II