SSC JE ENGLISH MEDIUM PLANNER ELECTRICAL ENGINEERING

Chapterwise & Sub-topicwise SOLVED PAPERS

Chief Editor A. K. Mahajan

Compiled by Er. Santosh Kumar Yadav, Er. Anil Kumar Yadav

> Computer Graphics Balkrishna, Charan Singh *Editorial Office*

12, Church Lane Prayagraj-211002

S Mob. : 9415650134

Email : yctap12@gmail.com

website : www.yctbooks.com/www.yctfastbook.com

© All rights reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by R.A. Security Printers, Prayagraj. In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the Judicial area will be Prayagraj.

Rs. : 895

INDEX

■ 1.	Highlights of SSC JE Electrical Engineering-2023 Exam BASIC CONCEPTS AND NETWORK THEORY	
	i. Basic Concept & Ohm's Law	8
	ii. Network Theorems	
	iii. Electrostatics and Capacitor	
	iv. Electromagnetic Induction & Magnetism	
	v. AC Circuit, Resonance, Steady State and Transient State Analysis	
	vi. Polyphase System	
2	Flectrical Machine_I	221-287
2.	i. General Concepts of Rotating Electrical Machine.	
	ii. DC Generator	
	iii. DC Motor	
	iv. Transformer (Single Phase and Three Phase)	
	v. Alternator (Synchronous Generator)	
3.	Electrical Machine–II	
	i. Three Phase Induction Machine	
	11. AC Single Phase Induction Motor and Special Type of Motor	
4.	ELECTRICAL INSTRUMENTS AND MEASUREMENTS	
	1. Introduction of Instruments and Measurement System	
	11. Errors Analysis	
	111. Analog Ammeters and Voltmeters	
	iv. Measurement of Power and Wattmeters	
	v. Measurement of Energy and Industrial Metering	
	vi. Measurement of Resistance	
	vii. AC Bridges	
	viii. Cathode Ray Oscilloscope (CRO)	
	ix. Transducers	
	x. Miscellaneous Measuring Instruments	
5.	POWER PLANT	
	i. Thermal Power Plant	
	ii. Hydro Power Plant	
	iii. Nuclear Power Plant	
	iv. Diesel Engine Power Plant	
	v. Gas Turbine Power Plant	
	vi. Combined Working of Power Plant	
	vii. Non-conventional Sources of Energy	
	viii. Economics of Power Generation	

6.	TR	ANSMISSION AND DISTRIBUTION OF ELECTRICAL POWER	
	i.	Design of Electrical Lines	
	ii.	Parameters & Performance of Transmission Lines	
	iii.	Constructional Features of Transmission Lines	
	iv.	Mechanical Design of Lines	
	v.	Underground Cables	
	vi.	Economic Principle of Transmission	
	vii.	Distribution System	
	viii	Power Factor Improvement	
	ix.	Construction of Distribution Lines	
	X.	Voltage Control	
	xi.	Bus Bar and Load Flow Analysis	
	xii.	Substation	
	xiii	Electric Power System Management	
7	EL	ECTRICAL SWITCHGEAR AND PROTECTION	
	i.	Electrical Faults	
	ii.	Switches and Isolators	
	iii.	Fuse	
	iv.	Circuit Breaker	
	V.	Introduction of Protective Relays	
	vi.	Construction and Operating Principle of Relays	
	vii.	Electrical Protecting Schemes	
	viii	Protection of Power Transformers	
	ix.	Protection of Feeders	
	X.	Protection Against Overvoltage	
8	UTI	LIZATION OF ELECTRICAL ENERGY	
	i Il	lumination	
	11 E	lectric Welding	
	III E	lectric Heating.	
	IV E	lectrochemical Processes and Batteries	
	V E	finite and Carling	
~	VI K	errigeration and Cooling	
9.	ELF	CTRICAL AND ELECTRONIC ENGINEERING MATERIALS	
10	EST.	IMATION AND COSTING	
11	.ELE		
	1. .:	EDC & Analog Electronics	
	11 iii	Digital Electronics	

SSC Junior Engineer Paper Syllabus

ELECTRICAL ENGINEERING

The Examination will be conducted in two stages:

- A. Paper-I (Pre) (200 marks)
- B. Paper-II (Mains) (300 marks)
- **Total Written Test (500 marks)**

Written Test :

Paper	Mode of Examination	Subject	Number of Questions/Max. Marks	Duration & Timing
Paper-I Objective type	Computer Based Examination	 (i) General Intelligence & Reasoning (ii) General Awareness (iii) General Engineering (Electrical) 	50/50 50/50 100/100	2 Hours
Paper-II Objective Type	Computer Based Examination	General Engineering (Electrical)	100/300	2 Hours

There will be **negative marking equal to one-third (1/3) of the marks** alotted to the question for each wrong answer in Paper-I & Paper-II.

SSC JE Syllabus of Examination:

Indicative Syllabus: The standard of the questions in Engineering subjects will be approximately of the level of Diploma in Engineering (Civil/ Electrical/ Mechanical) from a recognized Institute, Board or University recognized by All India Board of Technical Education. All the questions will be set in SI units. The details of the syllabus are given below.

Paper-I

- General Intelligence & Reasoning: The Syllabus for General Intelligence would include questions of both verbal and non-verbal type. The test may include questions on analogies, similarities, differences, space visualization, problem solving, analysis, judgement, decision making, visual memory, discrimination, observation, relationship concepts, arithmetical reasoning, verbal and figure classification, arithmetical number series etc. The test will also include questions designed to test the candidate's abilities to deal with abstract ideas and symbols and their relationships, arithmetical computations and other analytical functions.
- General Awareness: Questions will be aimed at testing the candidate's general awareness of the environment around him/her and its application to society. Questions will also be designed to test knowledge of current events and of such matters of everyday observations and experience in their scientific aspect as may be expected of any educated person. The test will also include questions relating to India and its neighbouring countries especially pertaining to History, Culture, Geography, Economic Scene, General Polity and Scientific Research, etc. These questions will be such that they do not require a special study of any discipline.

■ General Engineering Electrical

Basic concepts, Circuit law, Magnetic Circuit, AC Fundamentals, Measurement and Measuring instruments, Electrical Machines, Fractional Kilowatt Motors and single phase induction Motors, Synchronous Machines, Generation, Transmission and Distribution, Estimation and Costing, Utilization of Electrical Energy, Basic Electronics.

Detailed Syllabus (JE Electrical Engineering)

Basic concepts:

Concepts of resistance, inductance, capacitance, and various factors affecting them. Concepts of current, voltage, power, energy and their units.

<u>Circuit law :</u>

Kirchhoff's law, Simple Circuit solution using network theorems.

<u>Magnetic Circuit :</u>

Concepts of flux, mmf, reluctance, Different kinds of magnetic materials, Magnetic calculations for conductors of different configuration e.g. straight, circular, solenoidal, etc. Electromagnetic induction, self and mutual induction.

AC Fundamentals :

Instantaneous, peak, R.M.S. and average values of alternating waves, Representation of sinusoidal wave form, simple series and parallel AC circuits consisting of R.L. and C, Resonance, Tank Circuit. Poly Phase system – star and delta connection, 3 phase power, DC and sinusoidal response of R-Land R-C circuit.

Measurement and measuring instruments :

Measurement of power (1-phase and 3-phase, both active and reactive) and energy, 2 wattmeter method of 3 phase power measurement. Measurement of frequency and phase angle. Ammeter and voltmeter (both moving coil and moving iron type), extension of range wattmeter, Multimeters, Megger, Energy meter AC Bridges. Use of CRO, Signal Generator, CT, PT and their uses. Earth Fault detection.

Electrical Machines :

(a) D.C. Machine – Construction, Basic Principles of D.C. motors and generators, their characteristics, speed control and starting of D.C. Motors. Method of motor's braking, Losses and efficiency of D.C. Machines. (b) 1-phase and 3-phase transformers – Construction, Principles of operation, equivalent circuit, voltage regulation, O.C. and S.C. Tests, Losses and efficiency. Effect of voltage, frequency and wave form on losses. Parallel operation of 1 phase / 3-phase transformers. Auto transformers. (c) 3-phase induction motors, rotating magnetic field, principle of operation, equivalent circuit, torque-speed characteristics, starting and speed control of 3-phase induction motors. Methods of braking, effect of voltage and frequency variation on torque-speed characteristics.

Fractional Kilowatt Motors and Single Phase Induction Motors : Characteristics and applications.

Synchronous Machines –

Generation of 3-phase e.m.f. armature reaction, voltage regulation, parallel operation of two alternators, synchronizing, control of active and reactive power. Starting and applications of synchronous motors.

Generation, Transmission and Distribution –

Different types of power stations, Load factor, diversity factor, demand factor, cost of generation, interconnection of power stations. Power factor improvement, various types of tariffs, types of faults, short circuit current for symmetrical faults. Switchgears – rating of circuit breakers, Principles of arc extinction by oil and air, H.R.C. Fuses, Protection against earth leakage / over current, etc. Buchholtz relay, Merz-Price system of protection of generators & transformers, protection of feeders and bus bars. Lightning arresters, various transmission and distribution system, comparison of conductor materials, efficiency of different system. Cable – different type of cables, cable rating and derating factor.

Estimation and costing :

Estimation of lighting scheme, electric installation of machines and relevant IE rules. Earthing practices and IE Rules.

Utilization of Electrical Energy :

■ Illumination, Electric heating, Electric welding, Electroplating, Electric drives and motors.

Basic Electronics :

■ Working of various electronic devices e.g. P-N Junction diodes, Transistors (NPN and PNP type), BJT and JFET. Simple circuits using these devices.

S.L.	Exam NAME	EXAM DATE/TIME	No. of Questions		
	Staff Selection Commission (SSC JE)				
1.	SSC JE Shift-III	09.10.2023	100		
2.	SSC JE Shift-II	10.10.2023	100		
3.	SSC JE Shift-III	11.10.2023	100		
4.	SSC JE	16.11.2022	100		
5.	SSC JE	15.11.2022	100		
6.	SSC JE	14.11.2022	100		
7.	SSC JE Shift-I	24.03.2021	100		
8.	SSC JE Shift-II	24.03.2021	100		
9.	SSC JE Shift-II	29.10.2020	100		
10.	SSC JE Shift-II	10.12.2020	100		
11.	SSC JE Shift-I	28.10.2020	100		
12.	SSC JE Shift-I	26.09.2019	100		
13.	SSC JE Shift-II	26.09.2019	100		
14.	SSC JE Shift-I	29.01.2018	100		
15.	SSC JE Shift-II	29.01.2018	100		
16.	SSC JE Shift-I	27.01.2018	100		
17.	SSC JE Shift-II	27.01.2018	100		
18.	SSC JE Shift-I	25.01.2018	100		
19.	SSC JE Shift-II	25.01.2018	100		
20.	SSC JE Shift-I	24.01.2018	100		
21.	SSC JE Shift-II	24.01.2018	100		
22.	SSC JE Shift-I	23.01.2018	100		
23.	SSC JE Shift-II	23.01.2018	100		
24.	SSC JE Shift-I	22.01.2018	100		
25.	SSC JE Shift-II	22.01.2018	100		
26.	SSC JE Shift-I	04.03.2017	100		
27.	SSC JE Shift-II	04.03.2017	100		
28.	SSC JE Shift-I	03.03.2017	100		
29.	SSC JE Shift-I	03.03.2017	100		
30.	SSC JE Shift-II	02.03.2017	100		
31.	SSC JE Shift-II	02.03.2017	100		
32.	SSC JE Shift-II	01.03.2017	100		
33.	SSC JE Shift-I	01.03.2017	100		
34.	SSC JE	2015	100		
35.	SSC JE Shift-I	2014	100		
36.	SSC JE Shift-II	2014	100		
37.	SSCJE	2013	100		
38.	SSU JE	2012	100		
39.	SSC JE Shift-I	2011	50		
40.	SSC JE Shift-II	2011	50		
41.	SSC JE	2010	50		
42.	SSC JE	2009	40		
43.	SSC JE	2008	44		
44.	SSC JE	2007	38		
		Total	4072		

SSC JE Electrical Engineering Previous Papers Analysis Chart

52. In electromagnetic induction, according to	56. In electromagnetism, the pattern of the		
Fleming's right-hand rule, the forefinger	magnetic field in a solenoid is		
represents	(a) of curved lines		
(a) Direction of the motion of the conductor	(b) circular		
(b) Direction of the magnetic field	(c) of parallel straight lines		
(c) Direction of the induced EMF	(d) of perpendicular lines		
(d) Direction of the induced current	SSC JE 11.10.2023, Shift-III Paper-I (Pre)		
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	Ans. (c) : The magnetic field lines inside a current		
Ans. (b) : In electromagnetic induction according to	carrying solenoid are in the form of parallel straight		
Fleming's right-hand rule, the fore-finger represents	lines. This pattern of field line is indicating that the		
direction of magnetic field, the thumb represents the	strength of the magnetic field is the same at all the		
direction of the motion of the conductor, and the middle	points inside the current carrying solenoid. That is, the		
finger represents the direction of the induced currents.	field is uniform inside the current - carrying solenoid.		
53. In electromagnetic induction, Lenz's law	57. If 15A current is flowing through a solenoid of		
directly follows	inductance 4H, find the magnetic energy stored		
(a) The law of conservation of energy	in the solenoid.		
(b) Faraday's second low	(a) 450 J (b) 540 J		
(c) Laplace's law	(c) 100 J (d) 1000 J		
(d) Faraday's first law	SSC JE 11.10.2023, Shift-III Paper-I (Pre)		
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	Ans. (a) : Given,		
Ans. (a) : In electromagnetic induction, Lenz's law	I= 15 A, L= 4H		
directly follows the law of conservation of energy.	then,		
• This law states that the induced current always tends	Energy stored in the solenoid-		
to oppose the cause which produces it.	$E_{-}^{1} I_{1} I_{2}^{2}$		
54. In a series connection of inductances, L ₁ and L ₂	$E = \frac{1}{2}$		
are inductances and M is the mutual	1 4 (15) 1 4 555		
inductance. Find the total inductance.	$= \frac{-1}{2} \times 4 \times (15)^{2} = \frac{-1}{2} \times 4 \times 225$		
(a) $L_1 + L_2 - 2M$ (b) $L_1 + L_2 + 2M$	F = 450 Joule		
(c) $L_1 + L_2 - M$ (d) $L_1 + L_2 + M$			
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	58. In case of electromagnetic induction, two coils		
Ans. (b): Given that, Self inductances L. L.	are arranged in such a way that a change in		
In series connection if mutual inductances M(+Ve)-	one coil causes an EMF to be induced in the		
Total inductance $[L_{1} = L_{1} + L_{2} + 2M]$	other coil. This is called		
$\frac{1}{2} \frac{1}{2} \frac{1}$	(a) self-inductance (b) parallel inductance		
In series connection if mutual inductance M(–Ve)-	(c) series inductance (d) inductance SSC JF 11 10 2023 Shift-III Paper-J (Pre)		
Total inductance $L_{eq} = L_1 + L_2 - 2M$	Ans. (d) : When two coils are arranged in such a way		
55. In Electromagnetism, the field pattern of a	that a change of current in one coil causes an emf to be		
magnetic field inside the toroid is	induced in the other coil, then this phenomenon is called		
(a) Uniform (b) Hyperbolic	mutual inductance, it is denoted by (M).		
(c) Parabolic (d) Non-uniform	$N_2\phi_1$		
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	$M = \frac{-2 + 1}{I_1}$		
Ans. (d) : In electromagnetism, the field pattern of a	50 The total inductance of two coupled soils in the		
magnetic field inside the toroid is non-uniform. A toroid	59. The total inductance of two coupled cons in the		
can be considered as a circular solenoid that is used in	are 4 H and 2 H respectively. The value of		
electric circuit.	mutual inductance will be		
u. NI	(a) $0.2 H$ (b) $0.5 H$		
$B = \frac{r_0 \cdot r_1}{2\pi r}$	(c) 0.33 H (d) 0.75 H		
	SSC JE 11.10.2023, Shift-III Paper-I (Pre)		

Ans. (b) : Given,

$$L_{eq} = 4H \rightarrow \text{ for series aiding}$$

$$L_{eq} = 2H \rightarrow \text{ For series opposing}$$
then,

$$L_{eq} = L_1 + L_2 + 2M \qquad(i)$$
and

$$L_{eq} = L_1 + L_2 - 2M \qquad(ii)$$
Putting values and subtracting (i) & (ii)

$$4 = L_1 + L_2 + 2M$$

$$2 = L_1 + L_2 - 2M$$

$$2 = 4M$$

$$\therefore M = \frac{1}{2} = 0.5 \text{ H}$$

60. Find the value of the equivalent inductance as seen from the open terminal for the diagram shown below.

dt

(b) 1440 H

(d) 100 H

Apply KVL in the circuit-

$$V = 4\frac{di}{dt} + 3\frac{di}{dt} + 5\frac{di}{dt}$$
$$V = 12\frac{di}{dt}$$
$$V = L\frac{di}{dt}$$

 $L_{eq} = 12H$

current?

(a) 4 H

(c) 0.4 H

...

61.

Ans. (b) :
$$W = 2kWh = 2\times 3.6 \times 10^{6}$$
 Joure

$$W = \frac{1}{2}LI^{2}$$

$$2 \times 3.6 \times 10^{6} = \frac{1}{2} \times L \times 100 \times 100$$

$$7.2 \times 10^{2} = \frac{1}{2} \times L$$

$$\therefore L = 1440 \text{ H}$$

2 C 106 T

v. AC Circuit, Resonance, Steady **State and Transient State**

Analysis

A1 11 71

62. The admittance of an electric is represented by Y = (3+j4). What is the value of resistance in this circuit?

(a)
$$\frac{2}{25}\Omega$$
 (b) $\frac{3}{25}\Omega$
(c) $\frac{1}{25}\Omega$ (d) $\frac{4}{25}\Omega$

SSC JE 09.10.2023, Shift-III Paper-I (Pre)

Ans. (b) : Admittance (Y) = 3+j4
Impedance (Z) =
$$\frac{1}{Y} = \frac{1}{3+j4} \times \frac{3-j4}{3-j4}$$

 $= \frac{3-j4}{9+16} = \frac{3}{25} - \frac{j4}{25}$
Compare- Z = R -jX
 $\boxed{R = \frac{3}{25}\Omega}$

63. For an AC circuit, the voltage and the current are given as V = (100 + j10) V and I = (20 - j10)A, respectively. The active power of the circuit is:

(a)
$$P = 1900 W$$
 (b) $P = 1500 W$
(c) $P = 1800 W$ (d) $P = 1000 W$

SSC JE 09.10.2023, Shift-III Paper-I (Pre)

Ans. (a) : Given, V = (100 + j10)VI = (20 - j10)AWhat inductance would be needed to store Apparent power $(S) = VI^* =$ 2kWh of energy in a coil carrying a 100 A =(100 + j10)(20 + j10)= 2000 - 100 + j(1000 + 200)= 1900 + j 1200 = P + jQActive power (P) = 1900 watt SSC JE 11.10.2023, Shift-III Paper-I (Pre)

64. A voltage of $230 \angle 60^{\circ}$ is applied to a current **Ans.** (d) : In electrical circuit, the current that changes offering an impedance of $10 + j10 \Omega$. Find the periodically both in magnitude and direction at regular expression for the current flowing through the intervals of time is called alternating current. circuit in polar form. $V = V_m \sin \omega t$ (a) $23 \angle 45^{\circ}$ leading (b) 16.3∠15° lagging (c) 23∠45° lagging (d) $16.3 \angle 15^{\circ}$ leading SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (d) : Given, $V = 230 \angle 60^{\circ}$ 68. An LC circuit with inductance L=2H and $Z = 10 + i10 = 10\sqrt{2} \angle 45^{\circ}$ capacitance $C = 8 \mu F$ is connected to an AC $Z = \sqrt{(10)^2 + (10)^2} = 10\sqrt{2}$ source. Find the value of the power factor of combination. $\cos\phi = \frac{R}{Z} = \frac{10}{10\sqrt{2}}$ (a) 10 (b) 0 (d) 2 (c) 8 $\phi = 45^{\circ}$ SSC JE 09.10.2023, Shift-III Paper-I (Pre) $Z = 10\sqrt{2} \angle 45^{\circ}$ Ans. (b) : $I = \frac{V}{Z} = \frac{230\angle 60^{\circ}}{10\sqrt{2}\angle 45^{\circ}}$ $C=8\mu F L= 2H$ $= 16.3 \angle 15^{\circ}$ (Leading) In an electrical signal waveform, if each value **65**. $\mathbf{R} = \mathbf{0}$ on the curve is proportional to sine of the angle Power factor $(\cos \phi) = \frac{R}{7}$ of rotation of the coil, then such a wave is called..... $= \cos \phi = 0$ (a) Ramp wave (b) Square wave (c) Triangular wave (d) Sine wave In a pure inductive circuit, if the frequency of 69. SSC JE 09.10.2023, Shift-III Paper-I (Pre) the AC source is doubled, then its inductive Ans. (d) : In an electrical signal waveform, if each reactance will: value on the curve is proportional to sine of angle or (a) Become zero (b) Be halved rotations of the coil, then such a wave is called sine (d) Be doubled (c) Remain the same wave. SSC JE 09.10.2023, Shift-III Paper-I (Pre) **66**. Calculate the apparent power of a circuit if the Ans. (d) : Inductive reactance $(X_L) = 2\pi f L$ circuit has a power factor of 0.8 and the active $X_{I} \propto f$ power of the circuit is 40 W. (a) 100 VA (b) 40 VA if the frequency of AC source is doubled then its (c) 75 VA (d) 50 VA inductive reactance will be doubled. SSC JE 09.10.2023, Shift-III Paper-I (Pre) 70. The expression for the RMS value of the Ans. (d) : Power factor = 0.8current of a triangular wave form is: Active power (P) = 40W(a) $\frac{I_{max}}{\sqrt{2}}$ (b) $\frac{I_{max}}{2}$ Active power = Apparent power \times power factor $40 = \text{Apparent power} \times 0.8$ (d) $\frac{I_{max}}{\sqrt{3}}$ (c) $\sqrt{31}_{max}$ Apparent power = 50 VA67. In an electrical circuit, the current that changes SSC JE 10.10.2023, Shift-II Paper-I (Pre) periodically, both in magnitude and direction, Ans. (d) : The expression for the RMS value of the at regular intervals of time is called..... current of a triangular waveform is: (a) Direct current (b) Phase current (c) Leading current (d) Alternating current $\left| \mathbf{I}_{\text{rms}} = \frac{\mathbf{I}_{\text{m}}}{\sqrt{3}} \right| \quad \left| \mathbf{I}_{\text{avg}} = \frac{\mathbf{I}_{\text{m}}}{2} \right|$ SSC JE 09.10.2023, Shift-III Paper-I (Pre)

WaveformRMS valueAverage
values
$$\sqrt{\frac{1}{\sqrt{2}}}$$
 $\frac{\sqrt{n}}{\sqrt{2}}$ $\frac{2\sqrt{n}}{\pi}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\frac{\sqrt{n}}{\sqrt{2}}$ $\frac{2\sqrt{n}}{\pi}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\frac{\sqrt{n}}{\pi}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\frac{\sqrt{n}}{\pi}$ $\sqrt{\frac{1}{\sqrt{2}}}$ $\sqrt{\frac{1}{\sqrt{2}}}$

Chapter-2 Electrical Machine-I	Ans. (b) : In motor applications efficiency of the motor is always less than 100% due to conversion of the input
i. General Concepts of Rotating	energy into heat. Efficiency(n) = $\frac{\text{Output}}{\text{Output}} = \frac{\text{Output}}{\text{Output}}$
Electrical Machine	Input Output + loss
1. Which of the following is the correct expression	Output is less than input due to losses (Heat).
for eddy current (W_e) loss if $B_{max} = Maximum$	4. How much torque will be produced by the
flux density, f = Frequency of magnetic	armature of a DC shunt machine if the
reversal, $t = Thickness of each lamination and V = V_0 lymposite corrections corrections corrections corrections the second s$	machine generates 10,000 W of mechanical
$\mathbf{v} = \mathbf{v}$ on the armature core:	power in the armature and rotates at the speed
(a) $W_e = KB_{Max} + V$ watts	of 1500 revolutions per minute?
(b) $W_e = kB_{Max}^2 tt^2 V^2$ watts	(a) $\frac{20}{10}$ N - m (b) $\frac{200}{10}$ N - m
(c) $W_e = kB_{Max}^2 f^2 t^2 V^2$ watts	ππ
(d) $W_e = kB_{Max}^2 f^2 t^2 V$ watts	(c) $0N-m$ (d) $\frac{2}{2}N-m$
SSC JE 09.10.2023, Shift-III Paper-I (Pre)	(c) or m (a) π
Ans. (d) : Eddy current loss $(W_e) = KB_{mu}^2 f^2 t^2 V$ Watt	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
$B_{max} \rightarrow Maximum flux density (Wb/m2)$	Ans. (b) : Given that,
$f \rightarrow$ Frequency of magnetic reversal	P = 10,000 watt
$t \rightarrow$ Thickness of each lamination	N = 1500 rpm, T = ?
$v \rightarrow Volume of the armature core (m3)$	Torque,
Hysteresis loss (W_h) = $\eta B_{max}^{1.6}$ fV Watt	$T = P$ $\begin{bmatrix} 2\pi N \\ rad / sec \end{bmatrix}$
η = Steinmetz's constant	$\begin{bmatrix} 1 - \frac{1}{\omega} \\ 0 \end{bmatrix}$ $\begin{bmatrix} 1 & 0 - \frac{1}{60} & 1 & 0 \end{bmatrix}$
$B_{max} \rightarrow Maximum$ flux density	P×60
$f \rightarrow Supply frequency$	$T = \frac{1 \times 60}{2\pi N}$
ii. DC Motor	2/11
2. Why is the hold-on coil connected in series with the shunt field in a three-point starter of a DC motor?	$T = \frac{10,000 \times 60}{2\pi \times 1500} = \frac{200}{\pi} N - m \Longrightarrow \boxed{T = \frac{200}{\pi} N - m}$
(a) To prevent the motor from running away in	5. Which of the following quantities can be
case of an open-field circuit	changed to control the speed of the brushless
(b) To provide the lubricant for the motor	DC motor?
(c) To disconnect the supply when the motor is in	(a) Wind pressure
normal operation	(b) wind direction
(d) To control the speed of the motor $SSC(\mathbf{H}, \mathbf{P}, \mathbf{Q}) = 0.10(2022)$ Shift $\mathbf{H} \mathbf{P}$ and $\mathbf{L} (\mathbf{P}, \mathbf{Q})$	(c) Temperature (d) Applied DC source voltage
SSC JE 09.10.2023, Shitt-III Paper-I (Pre)	(u) Applied DC source voltage SSC IE 10 10 2023 Shift II Papar I (Pro)
Ans. (a): The hold on coll connected in series with the shunt field in a three-point starter of a DC motor to	Ans (d) : The speed of the brushless DC motor can be
prevent the motor from running away in case of an open	controlled if the applied DC source voltage across the
field circuit.	motor is changed.
Hold on coil also known as NVC hold.	6 Which of the following statements about the
NVC is designed in such a way that it holds the handle	losses in a DC motor is INCORRECT?
in 'RUN' position against the force of the spring as long	(a) In series motors, the field ohmic loss forms a
as supply is given to the motor.	part of the armature circuit loss.
3. In motor applications, efficiency of the motor is always less than 100% due to conversion of the	(b) Stray load losses are produced due to the distortion of the air gap flux due to armature
	reaction.
(a) Output energy into heat	(c) The no load rotational loss is made up of iron
(b) Input energy into heat	loss and mechanical loss.
(c) Input energy into voltage	(d) Brush losses forms a part of mechanical
(a) Output energy into current SSC IF 00 10 2022 Shift III Doney I (Dro)	losses.
55C JE 09.10.2025, Shint-III Faper-I (Pre)	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
	2

This transformer connection is generally employed at beginning of the transmission line as a step up transformer. 15. A supply of 200 V can be obtained from a source of 600 V by means of a two-winding transformer or an auto transformer. The ratio of weights of conductor material in the auto transformer is carried out to find	Ans. (b) : Output load = 120 kWh loss (W) = 5kWh all day Efficiency $(\eta) = \frac{Output in kWh for 24 hours}{Input in kWh for 24 hours}$ $= \frac{120}{120+5} \times 100$ $= \frac{120}{125} \times 100 = 96\%$ 14. Which of the following connections is used as distribution transformer? (a) Star-star (b) Star-delta (c) Delta-star (d) Delta-delta SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : Delta-star connections is used as distribution transformer because neutral point on secondary side is maintained stable and the transformer can able to supply	17. The following test results were obtained from a 6 kVA, 200/400 V. 50 Hz single-phase transformer: Data for no-load low-voltage side: 200 V, 0.5 A and 50 W. At normal voltage and frequency, determine the magnetizing current of the transformer. (a) 0.569 A (b) 0.236 A (c) 0A (d) 0.433 A SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (d) : Given, P_0 = 50W, I_0 = 0.5A V_1 = 200V No load power P_0 = V_1 I_0 cos \phi_0 P_0 = V_1 I_w I_w = $\frac{P_0}{V_1} = \frac{50}{200} = 0.25$ $I_0^2 = I_m^2 + I_w^2$ $I_w^2 = (0.5)^2 - (0.25)^2$
 Instantion of the transmission line as a step up transformer. A supply of 200 V can be obtained from a source of 600 V by means of a two-winding transformer or an auto transformer. The ratio of weights of conductor material in the auto transformer with respect to the two-winding transformer is	$1-\phi$ and $3-\phi$ loads perfectly. This transformer connection is generally employed at	$\boxed{I = 0.433A}$
transformer.15. A supply of 200 V can be obtained from a source of 600 V by means of a two-winding transformer or an auto transformer. The ratio of weights of conductor material in the auto transformer with respect to the two-winding transformer is	beginning of the transmission line as a step up	18 The phasing out test on a three-phase
 15. A supply of 200 V can be obtained from a source of 600 V by means of a two-winding transformer or an auto transformer. The ratio of weights of conductor material in the auto transformer with respect to the two-winding transformer is	transformer.	transformer is carried out to find
$(Cu - weight)_{auto} = \left(1 - \frac{1}{a_{auto}}\right) (Cu - weight)_{2-wdg}$ $\frac{(Cu - weight)_{auto}}{(Cu - weight)_{2-wdg}} = \left(1 - \frac{1}{3}\right) = \frac{2}{3}$ $\frac{(Cu - weight)_{auto}}{(Cu - weight)_{2-wdg}} = \left(1 - \frac{1}{3}\right) = \frac{2}{3}$ $(Cu - weight)_{2-wdg} = \frac{1}{1.5}$ $\frac{(Cu - weight)_{auto}: (Cu - weight)_{2-wdg}}{(Cu - weight)_{auto}: (Cu - weight)_{2-wdg}} = 1:1.5$ 16. Which of the following types of steel is used to make the core of a transformer? (a) Tool steel (b) Stainless steel (cu - weight)_{auto}: (cu - weight)_{2-wdg} = 1:1.5 (cu - weight)_{auto}: (cu - weight)_{2-wdg} = 1:1.5	15. A supply of 200 V can be obtained from a source of 600 V by means of a two-winding transformer or an auto transformer. The ratio of weights of conductor material in the auto transformer with respect to the two-winding transformer is	 (a) Secondary winding belonging to a different phase (b) Primary winding belonging to the same phase (c) Primary and secondary winding belonging to the same phase (d) Primary and secondary windings belonging to a different phase SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : The phasing out test on a three phase transformer is carried out to find primary and secondary winding belonging to the same phase. This test carried out only on 3 phase transformers to indentify primary and secondary winding belonging to the same phase.
$\frac{(Cu - weight)_{auto}}{(Cu - weight)_{2-wdg}} = \left(1 - \frac{1}{3}\right) = \frac{2}{3}$ $= \frac{1}{1.5}$ (Cu-weight)_{auto}: (Cu-weight)_{2-wdg} = 1:1.5 16. Which of the following types of steel is used to make the core of a transformer? (a) Tool steel (b) Stainless steel (c) Reduced loss	$(Cu - weight)_{auto} = \left(1 - \frac{1}{a}\right) (Cu - weight)_{2-wdg}$	19. Which of the following is NOT an advantage of shell type transformers over core type
	$\frac{(Cu - weight)_{auto}}{(Cu - weight)_{2-wdg}} = \left(1 - \frac{1}{3}\right) = \frac{2}{3}$ $= \frac{1}{1.5}$ (Cu-weight)_{auto}: (Cu-weight)_{2-wdg} = 1:1.5 16. Which of the following types of steel is used to make the core of a transformer? (a) Tool steel (b) Stainless steel	transformers? (a) Less copper requirement (b) Easy maintenance (c) Reduced loss (d) High mechanical strength SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (b) : Advantage of shell type transformer over core type transformer- (i) Less copper requirement (ii) Reduced loss
(c) Silicon steel (d) High-carbon steel (iii) High mechanical strength	(c) Silicon steel (d) High-carbon steel	(iii) High mechanical strength
 SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : Silicon steel is used to make the core of a transformer. Silicon steel is a ferromagnetic material. This has superior magnetic property. It has low hysteresis coefficient x = 1.6 20. Find the estimated current taken by primary side if a single-phase transformer a voltage ratio of 440/110 V takes a no current of 5 A at 0.2 power factor lagging the secondary supplies a current of 120 A power factor of 0.8 lagging. Given cos(41°36') = 0.748. 	 SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : Silicon steel is used to make the core of a transformer. Silicon steel is a ferromagnetic material. This has superior magnetic property. It has low hysteresis coefficient x = 1.6 	20. Find the estimated current taken by the primary side if a single-phase transformer with a voltage ratio of 440/110 V takes a no-load current of 5 A at 0.2 power factor lagging and the secondary supplies a current of 120 A at a power factor of 0.8 lagging. Given that cos(41°36') = 0.748.

Ans. (d) : All day efficiency is also known as	(a) tertiary winding only (b) cacendary winding only
operational efficiency on the basis of usable energy, we estimate the all day efficiency for a specific time	(c) primary winding only
(during the 24 hour) and it can be calculated by-	(d) both primary and secondary winding
	SSC JE 11.10.2023. Shift-III Paper-I (Pre)
All day efficiency = $\frac{Output (III KWI)}{V}$	Ans (b) · In a phasing out test a voltmeter connected
Input (in kWh)	to the winding shows deflection when the supply is
• All day efficiency primarily depends on the duration	given, this indicates that this is secondary winding.
of load and amount of load. Due to load varies	31. Which of the following information is NOT
throughout the day, the all day efficiency will be lower	present on the nameplate of a transformer?
than commercial efficiency	(a) Rated frequency
27. What is the reason for providing corrugated or	(b) Insulation class
radiators on the sides of transformer tanks ?	(c) kVA or MVA rating
(a) To increase the dielectric strength of the oil	(d) Frame size
(b) To provide very small surface area to	SSC JE 11.10.2023, Shift-III Paper-I (Pre)
(a) To reduce the size of the transformer tenk	Ans. (d) : Frame size is not mentioned on the name
(d) To provide sufficient cooling area	plate of a transformer.
(u) To provide sufficient cooling area SSC IE 11 10 2023 Shift III Danan I (Dra)	Important data that is mentioned on name plate is as
Ans (d) + To provide sufficient cooling groups the	10110WS-
reason for providing corrugated or radiators on the sides	• Manufacturer name and year of manufacturing.
of transformer tanks	• Rated frequency
28 What is the magnetizing current of a	• Insulation class
transformer?	• K V A OF M V A rating
(a) The current flowing through the	• Number of Phases
ferromagnetic core.	• Connection diagram
(b) The current flowing through the insulation	• Voltage fattings
between the primary and secondary windings.	
(c) The current drawn by the secondary winding	32. What is the purpose of interleaving the windings in a transformer 2
when a load is connected.	(a) To reduce the efficiency of the transformer
(d) The current drawn by the primary winding	(b) To increase the leakage flux
SSC IF 11 10 2023 Shift III Paper I (Pre)	(c) To reduce the leakage flux
Ans (d) \cdot It is the current that flows in the primary	(d) To increase the inductance of the transformer
winding of a transformer to establish the magnetic flux	SSC JE 11.10.2023, Shift-III Paper-I (Pre)
in the transformer core. It is also known as the exciting	Ans. (c) : When AC supply is given to the primary of
current and it is required to create a magnetic field in	transformer flux is developed in the core, in this
the transformer that will induce the voltage in the	magnetic flux there is some flux linked with air that is
secondary winding.	known as leakage flux. To reduce this leakage flux
29. What is core-stepping in core-type	Interleaving of the transformer winding is done.
transformers ?	55. Which of the following types of cooling is more
(a) A method to reduce the length of the mean turn	rating 100 MVA?
(b) A method to increase the length of the mean	(a) Oil forced water forced
(c) A method to increase the R loss	(b) Oil forced air forced
(d) A method to reduce the space factor	(c) Oil natural air forced
(d) A method to reduce the space factor SSC JE 11 10 2023 Shift-III Paper-I (Pre)	(d) Oil natural air natural
Ans (a) • The diameter of the circumscribing circle for	SSC JE 11.10.2023, Shift-III Paper-I (Pre)
square/rectangular coil is larger than the diameter of	Ans. (a) : When transformer is in working condition it
stepped core of same area of cross section therefore the	heats up, as the rating of transformer increases it
length of mean turns of winding is reduced in the	requires more effective cooling methods to maintain
stepped core. Therefore the length of mean turns in the	the temperature of the transformer. When rating is 100
stepped core reduced which result in reduction of	MVA, oil forced water forced types of cooling method
copper winding cost and copper losses.	be used up to 60 MVA Oil natural and air natural
30. In a phasing out test, a voltmeter connected to	method of cooling is used up to 30 MVA. Air blast
the winning snows deflection when the supply is given: this indicates that this is	methods is used up to 15 MVA.
15 given, this multates that this is	

iv.	Alterr	nator (Synch	ronous	(b) The voltage drop due to armature leakage reactance is independent of the load
Generator)				(c) The voltage drop due to armature leakage
 34. What type of rotor is used in alternators driven by hydro-turbines? (a) Smooth extindeined type 			n alternators driven	(d) The voltage drop due to armature leakage reactance decreases with increasing load SSC IF 09 10 2023 Shift-III Paper-I (Pre)
	(b) Non (c) Shao (d) Salio	-salient pole type ded pole type ent pole type C JE 09.10.2023, SI	nift-III Paper-I (Pre)	Ans. (c) : Whenever the load on the alternator is varied, the terminal voltage will also vary this variation in terminal voltage is mainly due to three reasons-voltage dran due to armsture resistence IP. the voltage dran
Ans driv	. (d) : Sali en by hydr The salien	ent pole type rotor i o-turbines. t pole type rotor	is used in alternators s are suitable for	due to armature leakage reactance IX_a , the voltage drop due to armature leakage reactance IX_a , and voltage drop due to armature reaction. The voltage drop due to armature leakage reactance
• Cy	ylindrical r	ower station and die otor is used in altern	ator driven by steam	increases with increasing load.38. Which of the following statements is NOT
35.	At the reaction (a) Part	leading power fa of an alternator is: ially cross magnet	ctor, the armature	(a) The armature windings can be braced better mechanically against the high
	dem (b) Who (c) Who (d) Part	agnetising olly demagnetising olly magnetising	tising and partially	electromagnetic force. (b) The output current can be easily taken from rotor winding
	(u) Fait mag	netising JE 09.10.2023. Shi	ft-III Paner-I (Pre)	 (c) The rotating field type alternator has a smaller size than the rotating armature type (d) The armature windings of the rotating field
An rea	s. (d) : A ction of an	alternator is partiall	actor, the armature y cross magnetizing	alternator are not subjected to centrifugal forces. SSC JE 09.10.2023, Shift-III Paper-I (Pre)
anc	l partially n	nagnetizing.	Motor	Ans. (b) : Significance of stationary armature
fac	tor	Alternator	MOLOF	(i) Armature winding can be braced better
Un	ity	Purely cross magnetizing	Purely cross magnetizing	(i) Thinkking the high electromagnetic force. (ii) The rotating field type alternator has a smaller
ZP:	F lag	Purely demagnetizing	Purely magnetizing	(iii) The armature winding of the rotating field
Las	r leau	magnetizing Partially	demagnetizing Partially	(iv) The output current can be easily taken from stator winding
	566	demagnetizing + partially cross magnetizing	magnetizing + partially cross magnetizing	 39. Calculate the line value of induced emf of a 10-pole, 3-phase, 60 Hz star-connected alternator with 60 slots and 4 conductors per slot. The
Lea	ading	Partially magnetizing +partially cross magnetizing	Partially demagnetizing + partially cross magnetizing	value of the pitch factor is 0.966, the distribution factor is=0.966, the flux per pole is 0.12 Wb and it is sinusoidally distributed.
36.	What is winding	s the main reaso on the stationary r	n of placing field otor?	(c) 688.92 V (d) 927.36 V SSC JE 10.10.2023, Shift-II Paper-I (Pre)
 (a) Stator is associated with more power (b) Field circuit possesses less power (c) Stator is associated with more current (d) Insulation of high voltage is made easy on 			more power ss power more current ge is made easy on	Ans. (b) : Given that, $P = 10, f = 60 \text{ Hz}, k_p = 0.966, k_d = 0.966$ $\phi = 0.12 \text{ Wb}$
stator than on rotor SSC JE 09.10.2023, Shift-III Paper-I (Pre)			nift-III Paper-I (Pre)	No. of turn per phase = $\frac{60\times4}{2\times3}$ = 40
Ans. (d) : Reasons for placing field winding on the rotor, not on the stator- Armature winding deals with the high levels of voltages, hence it is easier to insulate a stationary winding as compared to rotating winding. The			the high levels of nsulate a stationary ting winding. The	$E_{ph} = 4.441 \text{ N}_{ph} \phi \text{ K}_{p} \text{K}_{d}$ $E_{ph} = 4.44 \times 60 \times 40 \times 0.12 \times 0.966 \times 0.966$ $E_{ph} = 1193.24 \text{V}$ $E_{\text{Line}} = \sqrt{3} \text{E}_{ph}$
stationary 3-phase armature can be directly connected to load without slip rings and brushes.			directly connected to	$\frac{ E_{\text{Line}} = \sqrt{3 \times 1193.24} = 2066.76\text{V} }{40. \text{ Which of the following statements is NOT}}$
5/.	37. Which of the following statements accurately describes voltage drop due to armature leakage reactance in an alternator on load?			correct about generation of alternating voltage?
(a) The voltage drop due to armature leakage			to armature leakage	(a) An increase in the number of poles, increases the frequency.
reactance only occurs when the alternator is operating at no load.			when the alternator is	(b) A 4-pole generator completes four cycles per revolution.

7

(c) For the production of voltage, either the Ans. (d) : In an alternator, the voltage drop decrease armature or the field rotates. with an increase in power factor (for leading power (d) The number of times the armature rotates per factor). second, the same number of cycles will be From the V- curve and inverted V- curveproduced by the armature voltage. Unity SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : For synchronous machine-Lagging Leading $N_s = \frac{1\overline{20f}}{1}$ In synchronous machine speed always constant $P \propto f$ 44. A 3-phase star-connected alternator is rated at 1.3 MVA, 11 KV, The armature effective For p = 4 $\theta_{e} = \frac{p}{2}\theta_{m}$ $\theta_{e} = \frac{4}{2}\theta_{m} = 2\theta_{m}$ resistance and synchronous reactance are 1.3 Ω and 20 Ω , respectively. Calculate voltage drop due to synchronous reactance. (b) 2363 V (a) 930.77 V (c) 1364.6 V (d) 842.24 V SSC JE 11.10.2023, Shift-III Paper-I (Pre) $\theta_{a} = 2\theta_{n}$ Ans. (c) : Given that, If number of the pole is four, it means two cycles S = 1.3 MVA, V = 11 KV, $(r_a)_{eff} = 1.3 \Omega$ $X_s = 20\Omega$ induced voltage in one revolution. Then, $S = \sqrt{3} VI$ Which of the following statements is true 41. regarding the voltage drop due to armature $I = \frac{1.3 \times 10^6}{\sqrt{3} \times 11 \times 10^3}$ reaction for unity power factors in an alternator? (a) The voltage drop is maximum for unity power factors. I = 68.23 Amp(b) The voltage drop is zero for unity power factors. Voltage drop due to synchronous reactancevoltage drop remains (c) The constant $V = I.\bar{X}_s$ irrespective of the power factor. V=68.Ž3×20 (d) The voltage drop is minimum for unity power V = 1364.6 V factors. SSC JE 10.10.2023, Shift-II Paper-I (Pre) 45. The type of armature winding used in large Ans. (d) : The voltage drop is minimum for unity power high-voltage alternators is: factors. (a) wave winding (b) two layer winding At the unity power factor, the armature reaction voltage (c) concentric winding (d) lap winding drop E_{ar} leads the armature current I_a which produced it, and is therefore always in phase with the armature SSC JE 11.10.2023, Shift-III Paper-I (Pre) reactance voltage drop (I_aX_a) Ans. (c) : concentric winding is that kind of winding 42. The armature reaction effect is high in which generates maximum emf. In this winding poles (a) Series parallel control method and number of slots are equal that means one coil side is (b) Both the armature and field control methods placed under one pole and other coil side is placed in (c) Field control method next slot under next pole. (d) Armature control method SSC JE 10.10.2023, Shift-II Paper-I (Pre) 46. As the leading power factor of the load of an Ans. (c) : The armature reaction effect is high in field alternator decreases, the magnitude of control method because commutation becomes generated voltage required to give rated unsatisfactory. Field control method is economical, terminal voltage more efficient and convenient and it can gives speeds (a) remains unchanged above the normal speed. (b) increases 43 Which of the following statements is true (c) first increases and then decreases regarding the voltage drop due to armature (d) decreases reaction for leading power factors in an SSC JE 11.10.2023, Shift-III Paper-I (Pre) alternator? Ans. (b) : The voltage drop of an alternator depends (a) The voltage drop increases with an increase in on following factorspower factor. (i) Armature reaction (b) The voltage drop remains constant (ii) Armature circuit voltage drop irrespective of the power factor. (iii) Armature reactance (c) The voltage drop is not affected by the power The nature of the load affects the voltage regulation of factor. the alternator. When the leading power factor of the (d) The voltage drop decreases with an increase load of an alternator decreases, the magnitude of in power factor. generated voltage required to given rated terminal SSC JE 11.10.2023, Shift-III Paper-I (Pre) voltage increases.

Chapter-3 Electrical Machine-II	ii.AC Single Phase Induction
	Niotor and Special Type of
i. Three Phase Induction	Motor
 Machine 1. Which of the given statements is NOT true about the double layer winding in the electrical machine? (a) Easier to manufacture and lower cost of the coils (b) Improved emf waveform will be there. (c) Fractional slot winding can be possible. (d) Leakage reactance will be more as more winding is there 	 4. The shaded-pole induction motors have
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	may not be suitable for applications with heavy loads or
 Ans. (d) : Advantage of double layer winding in the electrical machine- Easier to manufacture and lower cost of the coils 	 where precise speed control is necessary. Shaded pole induction motor is a low cost, small size motor which is mainly used in toys and hair dryers etc. 5. What is the use of encoder in the DC commenter?
• Improved emi waveform will be there.	(a) Determines the temperature of the windings
Lower leakage reactance	of the motor
2. Power factor of an IM is low at (a) half load (b) no load (c) full load (d) quarter load	(b) Determines the input voltage of the motor(c) Determines the magnetic field strength inside the motor(d) Determines the rotational speed of the motor
SSC JE 11.10.2023, Shift-III Paper-I (Pre)	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
Ans. (b) : At no load, an induction motor draws a large magnetizing current and a small active component to meet the no-load losses. Therefore, the induction motor takes a high no- load current lagging the applied voltage by a large angle. Hence the power factor of an induction motor at no load	 Ans. (d) . The use of encoder in the DC servolution is determines the rotational speed of the motor. A servomotor is an electric motor used in a servomechanism, a device that uses a closed loop control circuit to automatic mechanical motion. Components-servo amplifier (driver), encoder, controller. 6. The split-phase induction motor is NOT used
Is low (Approx 0.2 to 0.4)	for drives that require more than
5. Select the INCORRECT statement(s) regarding squirrel-cage induction generators used in wind power plants.	(a) 10 kW (b) 1 kW (c) 100 kW (d) 1000 kW SSC JE 09.10.2023, Shift-III Paper-I (Pre)
A) They can be used in both constant-speed and variable-speed applications.B) They work within a narrow speed range, which is slightly above the synchronous speed.	Ans. (b) : The split phase induction motor is not used for drives that require more than 1kW because of the low starting torque. It is suitable for easily starting loads where the foremany of starting is limited.
C. Squirrel-cage induction generators are more expensive than wound-rotor induction generators. (a) Only C (b) Only A (c) A and B (d) Only B	For same weight, its rating is about 60% that of the poly-phase motor. The split phase induction motor has lower power factor and lesser efficiency. 7. Repulsion start induction run motors are used
(c) A and B (c) Only B SSC JE 11.10.2023. Shift-III Paner-I (Pre)	in applications such as
Ans. (a) : Squirrel- cage induction generator-	(c) vacuum cleaners (d) hair drvers
 This generator is simple in construction generator. This generator is simple in construction and coupled to the turbine through gear box. It is a constant speed generator. It can be used in both constant - speed and variable - speed application. Squirrel-case induction generators are less expensive than wound - rotor induction generator. 	SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (a) : Repulsion start induction run motor are used in applications such as compressors. The motor is started as a repulsion motor with a corresponding high-starting torque. At some predetermined speed a centrifugal switch short-circuits the commutator segments so that the motor operates as a 1-phase induction motor.

8.	Consider the following statements about the working of a hysteresis motor and choose the suitable combination for correct choices	Ans. (d) : In ac series motor, power factor is low because of high inductance of the field and armature circuit.
	a. The stator of the hysteresis motor has a	12. In the split-phase induction motor, both main
	main winding along with an auxiliary	winding and starting winding are displaced
	winding.	in space.
	b. When the stator winding is fed from a	(a) 360 degrees (b) 180 degrees
	single phase supply, it produces a	(c) 90 degrees (d) 270 degrees
	synchronously revolving magnetic field.	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
	c. The rotor material has low retentivity so	Ans (c) : In the split-phase induction motor, both main
	hysteresis loss is low.	winding and starting winding are displaced 90 degree in
	d. The rotor of the hysteresis motor consists	space
	of a smooth cylinder of magnetically hard	The main winding has very low resistance and a high
	steel, without winding	inductive resistance whereas the starting winding has
	(a) Only c is correct	inductive reactance whereas the starting winding has
	(c) Only b c and d are correct	nigh resistance and low inductive reactance.
	(d) Only a b and d are correct	Split phase motor is also known as a resistance start motor.
	SSC JE 09 10 2023 Shift-III Paner-I (Pre)	13. Which of the following materials is used to
Ans	(d) • Hysteresis motor-	construct the rotor of variable reluctance
(i)	The stator of hysteresis motor has a main winding	stepper motor with salient poles?
(-)	along with an auxiliary winding.	(a) Ferromagnetic (b) Paramagnetic
(ii)	When the stator winding is fed from a single	(c) Diamagnetic (d) Nonmagnetic
	phase supply, it produces a synchronously	SSC JE 10 10 2023, Shift-II Paner-I (Pre)
	revolving magnetic field.	Ang (a) a Formant and the sound to construct
(iii)	The rotor of hysteresis motor consists of a smooth	Ans. (a) : Ferromagnetic material is used to construct
	cylinder of magnetically hard steel without	the rotor of variable reluctance stepper motor with
	winding.	salient poles.
(iv)	The rotor material has high retentivity and	• Variable reluctance stepper motor has motion in steps
	because of this it is very difficult to change the	with respect to increase in time and constructed of
	magnetic property once they are caused by the	ferromagnetic material with salient poles.
	revolving flux of the rotor.	14. Which of the following is a desirable
9.	A switched reluctance motor can produce	characteristic of a DC servomotor?
	(a) Double than synchronous speed	(a) Slow response
	(b) Triple than synchronous speed	(b) Big size of the machine
	(c) Equal to synchronous speed	(c) Less robust
	(d) Less than synchronous speed	(d) Less inertia
	SSC JE 09.10.2023, Shift-III Paper-I (Pre)	SSC IF 10 10 2022 Shift II Danon I (Dro)
Ans.	(c) : A switched reluctance motor (SRM) can	55C JE 10.10.2023, Sint-II Paper-I (FTe)
produ	ice torque at a speed equal to synchronous speed.	Ans. (d) : Servomotor: The motors which respond to
Reluc	ctance motor cannot accelerate high inertia load to	the error signal abruptly and accelerate the load quickly
the sy	/nchronous speed.	are called the servomotor.
10.	In a capacitor-start capacitor-run induction	These motors have following features:
	motor, under standstill condition forward and	(i) They are capable of developing high torque and
	(a) Equal in magnitude (b) Infinite	hold a static position.
	(a) Equal in magnitude (b) finance (c) Zero (d) Unequal in magnitude	(ii) Because of low inertia, they are able to accelerate,
	SSC JE 09.10.2023. Shift-III Paper-I (Pre)	de-accelerate and reverse its direction of rotation
Ans.	(a) : In a capacitor start capacitor run induction	quickly.
moto	r, under standstill condition forward and backward	Hence low inertia, high torque & high acceleration are
volta	ge are equal in magnitude.	desirable characteristics of a dc servomotor.
11.	In AC series motor, power factor is low	15 How many terminals does a servo-motor
	because of	contain?
	(a) High resistance of the field and armature circuit	(2) 2 (b) 2
	(b) Low inductance of the field and armature	$ \begin{array}{c} (a) \ 5 \\ (b) \ 1 \\ (c) \ 1 \\ (c) \ 1 \\ (c) \ c $
	(c) High capacitance of the field armature circuit	(0) 1 (0) 4
	(d) High inductance of the field and armature	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
	circuit	Ans. (a) : Servomotor has three terminals.
	SSC JE 09.10.2023, Shift-III Paper-I (Pre)	(i) Phase wire (ii) Ground wire (iii) control terminal.
		· · · · · · · · · · · · · · · · · · ·

Consider the following statements about damper winding used to start a synchronous motor and choose the suitable combination of 33. Ans. (d) : Significance of stationary armature in synchronous machine-• The stationary armature is typically housed in a stationary frame, which provides a large surface for efficient cooling this allows the armature to operated at correct choices. a) When a motor is overloaded it does not stop. b) Synchronous motor made self-starting by high temperatures without overheating resulting in providing damper winding. higher efficiency and longer lifespan. c) Damper winding consists of short-circuited copper bars embedded in the face of the field • The stationary armature is responsible for producing the stator magnetic field in a synchronous machine. The poles. magnetic field produced by the armature interacts with the magnetic field produced by the rotor to generate the d) Since damper winding resistance is high so it takes a small current from the supply mains. torque necessary to turn the machine. (a) All a, b, c, d are true. • The stationary armature is stationary component that (b) Both b and c are true. does not rotate, making is less prone to wear and tear this results in a machine that is highly reliable and (c) Both b and d are true. (d) Only a, b and c are true. SSC JE 10.10.2023, Shift-II Paper-I (Pre) requires minimal maintenance. • Only two slip rings are required for dc supply to the Ans. (d) : Damper winding: field winding on the rotor. Since the exciting current is Damper winding is made with low resistance copper, small, the slip rings and brush gear required are of light aluminium, or brass. They are inserted in the slots construction. made under the pole shoe. Synchronous motor made self starting by providing The permanent magnet synchronous motor has 36. a configuration almost identical to the conventional synchronous machine with the damper winding. Damper winding consists of short circuited copper bars embedded in the face of the field poles. Damper absence of (a) field winding and rotating magnetic field winding in synchronous motor prevents hunting, so (b) field winding and slip ring when a motor is overloaded it does not stop. (c) stationary magnetic field Which option is INCORRECT in relation to (d) air gap between stator and rotor SSC JE 11.10.2023, Shift-III Paper-I (Pre) the applications of synchronous motors? (a) They are used to regulate the voltage at the **Ans. (b) :** The permanent magnet synchronous motor (PMSM) has a configuration almost identical to the end of transmission line. (b) They are used in power house and substation in parallel to the bus bar to improve the power conventional synchronous machine with the absence of field winding and slip ring factors. (c) They are used in factories having a large Which option among the following is correctly associated with the 'Auxiliary motor starting'? number of induction motors operated at leading power factor. (a) A squirrel cage winding is used for the (d) The are used in large loads where constant starting purpose of the starting of the synchronous motor. speed is required. SSC JE 10.10.2023, Shift-II Paper-I (Pre) (b) A damper winding is used for the starting Ans. (c) : They are used in factories having large number of induction motor operated at leading power They are used in factories having large purpose of the starting of the synchronous motor. (c) A small direct-coupled induction motor, factor is false. called pony motor, is used for the starting • A synchronous motor operated unity power factor for (d) A DC supply and DC compound motor is normal excitation. A synchronous motor operated lagging power factor used for the starting purpose of the starting of for under excitation. the synchronous motor. A synchronous motor operated leading power factor SSČ JE 11.10.2023, Shift-III Paper-I (Pre) for over excitation. Ans. (c) : Synchronous motors are not self- starting. Identify the FALSE statement associated with the significance of stationary armature in synchronous machine. Some additional devices should be used to start the motor. Basically, there are two method for starting the (a) The stationary armature is typically housed in a stationary frame, which provides a large surface area for efficient cooling. This allows synchronous motors. (i) Damper winding starting. the armature to operate at high temperatures (ii) Auxiliary motor starting. without overheating, resulting in higher efficiency and longer lifespan. Auxiliary Motor Starting: The auxiliary motor may be (b) The stationary armature is responsible for producing the stator magnetic field in a a dc shunt motor or an induction motor having the same number of poles as the synchronous motor or two poles synchronous machine. The magnetic field produced by the armature interacts with the less as compared to synchronous motor. The job of the magnetic field produced by the rotor to auxiliary motor is to bring the synchronous motor to generate the torque necessary to turn the synchronous speed or near the synchronous speed. machine. Because of their high efficiency and high speed, <u>38</u>. (c) The stationary armature is a stationary synchronous motors are well suited for component that does not rotate, making it less prone to wear and tear. This results in a (a) ceiling fans (b) electric tractions (d) blowers machine that is highly reliable and requires (c) mixer grinders minimal maintenance. SSC JE 11.10.2023, Shift-III Paper-I (Pre) (d) In stationary armature configuration, the Ans. (d) : Because of their high efficiency and high exciting current is relatively high; therefore, speed, synchronous motors are well suited for blowers. the slip rings and brush gear need to be heavy Synchronous motor is a constant speed motor, it runs at construction. constant speed from no load to full load SSC JE 10.10.2023, Shift-II Paper-I (Pre)

Chapter-4 ELECTRICAL INSTRUMENTS AND MEASUREMENTS	 A moving coil inst deflection of 10 difference across i Calculate the shun deflection which cor (a) 50.02 mΩ (c) 50.02 μΩ SSC JE 10.10. 	rument gives a full scale mA when the potential ts terminals is 100 mV. t resistance for full scale responds to 200 A? (b) 500.02 $\mu\Omega$ (d) 500.02 m Ω 2023, Shift-II Paper-I (Pre)
i.Analog Ammeters and Voltmeters	Ans. (b) : Given, $I_m = 10mA$, I $V_m = 100mV$, R	= 200A sh=?
 For providing controlling torque to a horizontally mounted MI instrument, which of the following methods is used? (a) Water control (b) Eddy current (c) Spring control (d) Electrostatic field SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : For providing controlling torque to a horizontally mounted MI instrument spring control 	$R_{sh} = \frac{R_m}{(m-1)}$ Multiplying factor (m) = $\frac{I}{I_m}$ $m = \frac{2}{10x}$	$\frac{1}{600}$ = 20000
 methods is used. Spring control is the most common method of providing controlling torque in electrical instrument. It is a universal instrument which can be used for the measurement of AC and DC quantities. The deflecting torque in a PMMC instrument 	$R_{m} = \frac{V_{l}}{I_{n}}$ $R_{sh} = \frac{100}{(200)}$	$\frac{10}{10} = \frac{100}{10} = 10\Omega$ $\frac{10}{0000-1} = 500.02\mu\Omega$
is proportional to (a) The area of the coil	$R_{sh} = 50$	00.02μΩ
 (b) The current flowing through the coil (c) The resistance of the coil (d) The square of the current flowing through the coil SSC JE 09.10.2023, Shift-III Paper-I (Pre) 	5. The range of a more extended by using a (a) Shunt connected (b) Multiplier connected	ving iron ammeter can be in parallel with an ammeter ected in parallel with an
Ans. (b) : The deflecting torque in a PMMC instrument is proportional to the current flowing through the coil. $T_d = NBAI$ $T_d \propto I$	ammeter (c) Multiplier connect (d) Shunt connected SSC JE 10.10.	ted in series with an ammeter in series with an ammeter 2023, Shift-II Paper-I (Pre)
N = number of turns B = Flux density A = Area of core L = current to be measured	Ans. (a) : The range of a mextended by using a shunt cammeter	noving iron ammeter can be connected in parallel with an measure both $AC \notin DC$
3. Which of the following statements are INCORRECT about PMMC instruments? I. The torque-to-weight ratio is high, which gives a high accuracy.	 woving non-instrument quantities Scale is non linear Moving iron instrument r of current or voltage for f 	not suitable for measurement frequency above 125Hz.
different current voltage ranges by using the	6. Which of the	following measurement
instrument transformer. III The scale is uniformly divided	instruments consum	nes the least amount of
IV. The cost of PMMC instruments is lower than that of moving iron instruments. (a) Only II and III (b) Only I and III	(a) Induction type (c) PMMC type	(b) Dynamometer type (d) Moving iron type
Ans. (d) : Following statements are correct about PMMC instruments:	Ans. (c) : The power instruments is typically	consumption in PMMC about 25µW to 200µW
• The torque to weight ratio is high, which gives a high	Instrument	Power Consumption
• The scale is uniformly divided because the response	Moving Iron	Less (mW)
of the instrument is directly proportional to the deflection of the pointer.	Hotwire	High
• The cost of PMMC instruments is higher than that of moving iron instruments	Induction type	Very high
 It has the least power consumption (25μW to 200μW) among all kinds of analog instruments. PMMC is suitable for direct current measurement only. 	7. What will be the direction of deflecting torque in a moving iron instrument if the direction of current in the coil is reversed at the same magnitude ? (a) Reverse direction (b) Reduced by half	
instruments.	(c) Reduced to zero SSC JE 11.10.2	(d) Same direction 2023, Shift-III Paper-I (Pre)
	2	

Ans. (d) : In moving iron instrument deflecting torque works in the same direction whatever be the direction of current because the deflecting torque is directly proportional to the square rms value of the current	(ii) An auto transformer should have small transformation when used in transmission and distribution application.
$T_{\rm T} = \frac{1}{12} \frac{dL}{dL}$	(iii) An auto transformer is used to raise the
as $I_d = \frac{1}{2}I_d \frac{1}{d\theta}$	voltage in an AC feeder and is known as
8. In a PMMC instrument, if the controlling torque is too high, what effect will it have on the accuracy of the instrument?	(a) Only (i) (b) Only (ii) (c) (i) and (iii) (d) (i), (ii) and (iii) SSC JE 10.10.2023, Shift-II Paper-I (Pre)
 (a) The instrument will stop working. (b) The accuracy of the instrument will increase. (c) The accuracy of the instrument will decrease 	 Ans. (d) : Following statements are true in regard to auto transformers- A commonly known auto transformer, variac is used
unaffected. SSC JE 11.10.2023, Shift-III Paper-I (Pre)	 in laboratories and science labs. An auto transformer should have small transformation when used in transmission and
Ans. (c) : In a PMMC instrument, if the controlling torque is too high, accuracy of the instrument will decrease	An auto transformer is used to raise the voltage in ac
9. An electrodynamometer is widely used as a	feeder and is known as booster.
$\frac{1}{\sqrt{2}}$	iii. Measurement of Energy and
(a) calibration instrument (b) transfer instrument	Industrial Metering
(c) low impedance circuit	12. The compensation for light load is done by using a metallic strip provided between the —
(d) calibration instrument and transfer instrument SSC JE 11.10.2023. Shift-III Paper-I (Pre)	(a) Central limb of shunt magnet and disc
Ans. (b) : An electrodynamometer is widely used as a	(b) Permanent magnet and disc (c) Disc and the pointer
transfer instrument. A transfer instrument is that instrument which is used on $AC \& DC$ both with DC calibration	(d) Central limb of series magnet and disc
ii Massuramant of Power and	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
Wattmatars	using a metallic strip provided between the central limb
10. The deflection produced by a half wave	of shunt magnet and disc due to this strip an additional
rectifier type AC voltmeter is how much times	disc in the direction of rotation. This compensates for
the deflection produced by the DC of equal magnitude voltage?	the friction and meter can be made to read accurately.
(a) 0.90 times (b) 0.80 times	13. Which of the following is used with the pressure coil to bring the flux produced by the
(c) 0.40 times (d) 0.45 times SSC JE 10.10.2023. Shift-II Paper-I (Pre)	shunt magnet exactly in quadrature with the
Ans. (d) : Half wave rectifier type AC voltmeter-	(a) Aluminium shading bands are provided on the central limb
$V_{sc} \Theta$ $R_{s} $ (PMMC)	 (b) Copper shading bands are provided on the central limb (a) Aluminium shading hands are provided on
V _m	the U limb
$V_{ac} = V_{rms} = \frac{1}{\sqrt{2}}$	(d) Copper shading bands are provided on the U limb
$V_{\rm m} = \sqrt{2} V_{\rm rms}$	Ans. (b) : The copper shading are provided on the
• $V_{avg} = V_{dc} = \frac{V_m}{\pi}$	central limb of the shunt magnet and they are position- adjustable.
$V_{dc} = \frac{\sqrt{2} V_{rms}}{\pi} \Rightarrow \boxed{V_{dc} = 0.45 V_{ac}}$	with the applied voltage.
• $I_{avg} = I_{dc} = 0.45 I_{rms}$	IV. Measurement of Resistance
$S_{ac} = 0.45 S_{dc}$	of-potential method, how many auxiliary
Hence, the sensitivity of half-wave rectifier instrument	electrodes are used?
deflection is 0.45 times that produces with dc and the magnitude V.	(a) 4 (b) 2 (c) 1 (d) 3 SSC IE 00 10 2023 Shift III Papar I (Pra)
11. Which of the following statements is/are true in	Ans. (b) : The 3-point method called the "fall of
regard to auto transformers?	potential" method, comprises the ground electrode to be
(1) A commonly known auto transformer,	measured and two other electrically independent test
variac is used in laboratories and science	incustried and two other electrically independent test

Chapter-5 POWER PLANT	ii.Hydro Power Plant
	4. Which of the following statements regarding
i.Thermal Power Plant	the spinning reserve is/are true?
$1 \qquad A and find thermal newsr plant generates 750$	A) It is the reserve capacity which is in
1. A coal-fifed thermal power plant generates 750 MW of electricity with a thermal efficiency of	D) It gate as a sushian in case of amanganay
30%. The coal has a heating value of 30.000	b) It acts as a cusmon in case of emergency requirements
k.J/kg. Find the mass flow rate of the coal	C) It is a capacity which is always connected
required to generate the required electricity.	to the bus and is used in case of need.
(a) 0.0833 kg/s (b) 0.833 kg/s	(a) A and C (b) Only B
(c) 83.33 kg/s (d) 8.33 kg/s	(c) A and B (d) B and C
SSC JE 09.10.2023, Shift-III Paper-I (Pre)	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
Ans. (c) : Output power = 750MW	Ans. (d) : Spinning reserve, It is a capacity which is
n = 30%	always connected to the bus and is used in case of need:
E/m = 30,000 KJ/kg	• It acts as a cushion in case of emergency
750	requirements.
\therefore Input power = $\frac{100}{30} \times 100 = 2500$ MW	Hence option (d) is the correct answer.
	Note-
$P_{in} = \frac{E}{L} = \frac{F \times X}{L} = \frac{max}{L}$	Hot reserve: It is the reserve capacity which is in
t t t	operation, but not available for service.
$\therefore \frac{E}{E} = ax = 30 \times 10^6 \text{ J/kg}$	Cold reserve: It is the generating capacity which is
m	available for service but not normally ready for
then $m = P_{in} = 2500 \times 10^6 = 83.33 kg/s$	immediate loading.
$\frac{1}{t} = \frac{1}{ax} = \frac{1}{30 \times 10^6} = \frac{33.53 \text{ kg/s}}{30 \times 10^6}$	5. Select the correct statement(s) with respect to
2. In case of thermal efficiency, by using which of	the Francis turbine.
the following relations can 1 kWh of electrical	A) It is used in medium heads and for
energy be converted into joules?	moderate discharges.
(a) $1 \text{kWh} = 3.6 \times 10^5 \text{ joules}$	B) It is an axial-in radial-out type of turbine. C) It is an axial-in radial-out type of turbine.
(b) $1 \text{kWh} = 36 \times 10^5 \text{ joules}$	(a) A and P (b) A and C
(c) 1 kWh = 1.6×10^3 joules	(a) A and B (b) A and C (c) Only A (d) B and C
(d) $1 \text{kWh} = 36 \times 10^6 \text{ joules}$	SSC IF 11 10 2023 Shift-III Paner-I (Pre)
SSC JE 09.10.2023, Shift-III Paper-I (Pre)	Ans (b) • The Francis turbine is a reaction turbine
Ans. (b) : $1 \text{kWh} = 10^{3} \text{Wh}$	which is used in medium heads and for moderate
$= 10^{3} \times 60 \times 60 $ W.S	discharges. It is an example of a mixed flow turbine.
$= 36 \times 10^{5}$ Joule	
3. A power system consists of a coal-fired power	iii.Non-conventional Sources of
plant of 800 MW with the availability factor of	Energy
0.8 and a wind farm of 400 MW with the	
availability factor of 0.5. Find the firm power	6. In the wind power plant, which of the following
(a) 1800 MW (b) 400 MW	features differentiates the wound rotor
(a) 1300 MW (b) 400 MW (c) 1200 MW (d) 840 MW	synchronous generator from squirrei cage
SSC JE 10 10 2023 Shift-II Paner-I (Pre)	(a) A genthalf is not required in the wound rotor
Ans (d) · Given	synchronous generator
Coal fired nower plant capacity = 800 MW	(b) The wound rotor synchronous generator
availability factor = 0.8	includes an external mechanism to control
wind farm capacity = 400 MW	(c) The wound rotor synchronous generator
availability factor = 0.5	includes an external mechanism to control the
Firm power, $P = 800 \times 0.8 + 400 \times 0.5$	rotor output.
P = 640 + 200 = 840	(d) A reactive power compensation unit is not
$\boxed{\mathbf{P} - 840 \text{MW}}$	needed in wound rotor synchronous generators.
	SSC JE 10.10.2023, Shift-II Paper-I (Pre)

 Ans. (c) : In the wind power plant the wound rotor synchronous generators includes an external mechanism to control the rotor output this features differentiate the wound rotor synchronous generator from squirrel cage induction generators. 7. Choose the most efficient generator for wind power generation. (a) Induction generators (b) Permanent magnet synchronous generator (c) Squirrel cage induction generators (d) Doubly-fed induction generator 	 Ans. (d) : The actual efficiency of a solar power plant is lower than its theoretical efficiency. The following reason for this- (i) Recombination of electrons and holes. (ii) Internal resistance of the cell. 10. Arrange the following in the increasing order of energy released during their processing as a biomass. (A) Bagasse (B) Municipal solid waste
Ans. (d) : The most efficient generator for wind power generation is doubly-fed induction generator. It is based on an induction generator with a multiphase wound rotor and a multiphase slip ring assembly with	(D) Wood pellets (a) A-B-C-D (b) C-A-B-D (c) D-B-C-A (d) B-D-A-C SSC JE 10.10.2023, Shift-II Paper-I (Pre)
 8. Which of the following points clearly describe the need for a back-to-back converter connected to the rotor of a doubly fed induction generator [DFIG] used in wind power plants ? 	Ans. (a) : Increasing order of energy released during their processing as a biomass is given as- Bagasse < Municipal solidwaste < Wheat and rice straw < wood pellets hence option (a) is the correct answer.
 (i) It feeds the rotor with currents of fixed frequency and thus, helps in achieving a fixed range of speed. (ii) It feeds the rotor with currents of varying frequency and thus, helps in the second sec	 11. Which type of generator is used in a large wind power plant? (a) Induction generator (b) Three phase alternator (c) DC generator
 achieving various ranges of speed. (iii) It helps in power factor correction by adjusting the active power output of the DFIG. (iv) It helps in power factor correction by 	(d) Slip ring motor SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (a) : Induction generator is used in a large wind power plant and some micro hydro installation due to
adjusting the reactive power output of the DFIG. (a) (i) and (iii) (b) (i) and (iv) (c) (ii) and (iii) (d) (ii) and (iv) SSC JE 11.10.2023, Shift-III Paper-I (Pre)	their ability to produce useful power at varying rotor speeds. Induction generators are mechanically and electrically simpler than other generator types. They are also more rugged, requiring no brushes or commutators.
 Ans. (d) : There are following two points which clearly describe the need for a back to back converter connected to the rotor of a doubly fed induction generator (DFIG) used in wind power plants. It feeds the rotor with current of varying frequency and thus helps in achieving various ranges of speed. It helps in power factor correction by adjusting the reactive power output of the DFIG. 9. The actual efficiency of a solar power plant is lower than its theoretical efficiency. Which of the following can be reasons for this? I) Recombination of electrons and holes II) Internal resistance of the cell (a) Only I (b) Only II (c) Neither I nor II (d) Both I and II 	 12. which of the following components are connected to the gearbox and generator box, respectively, in a horizontal-type wind turbine? (a) High speed shaft and low speed shaft (b) Low speed shaft and accelerometer (c) Low speed shaft and accelerometer (d) High speed shaft and accelerometer SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (c) : Low speed shaft and high speed shaft are connected to the gearbox and generator box respectively in a horizontal type wind turbine. 13. A wind turbine with a rotor diameter of 60 m is installed in an area with an average wind speed of 4 m/s. Find the wind power density in watts per square metre, assuming that the air density in the area is 1.5 kg/m³.

(a) 135.67 KW/m^2 (b) 736.45 KW/m^2 (c) 271.3 KW/m^2 (d) 542.6 KW/m^2 SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (*) : We know that power of wind $P = \frac{1}{2}\rho A v^3$ then using given values A= $\pi \left(\frac{60}{2}\right)^2 = \pi \times 900 = 900\pi$ $= 2827.43 \text{m}^2$ $\rho = 1.5 \text{kg/m}^3$ v = 4m/sthen, 16. $P = \frac{1}{2} \times 1.5 \times 2827.43 \times 64$ = 135716.16 W then power density $P_d = \frac{P}{A} = \frac{135716.61}{2827.43}$ $= 48 W/m^{2}$ $= 0.048 \text{ kW/m}^2$ iv. Economics of Power Generation 14. If a power station supplies 1000 MWh of electricity to its consumers for a period of two months, then the average demand during the period will be: (b) 1.39 kW (a) 0.694 kW (c) 1.39 MW (d) 0.694 MW SSC JE 09.10.2023, Shift-III Paper-I (Pre) **Ans.** (d) : Power station supplies energy (E) = 1000MWh Time (t) = 2month = 60 day $= 60 \times 24$ hours 17. Avg demand = $\frac{\text{Energy supplied by power station}}{\text{Energy supplied by power station}}$ Total duration $=\frac{1000}{60\times 24}=0.694\,\mathrm{MW}$ 15. Which of the following statements is true about selection of the size of units in electrical energy generation? (a) The size of units must match both the maximum demand curve and the load curve (b) The size should be selected independent of both the maximum demand curve and the load curve

- (c) The size must be selected such that the unit operates close to the maximum demand curve of the station
- (d) The size should be selected such that the unit operates close to the load curve of the station

SSC JE 09.10.2023, Shift-III Paper-I (Pre)

Ans. (d) : Selection of the size of units in electrical energy generation is that the size should be selected such that the unit operates close to the load cure of the station.

Load curve decide the installed capacity of a power station. It is helpful in choosing the most economical size of the various generating units.

6. Which of the following expressions clearly indicates determination of the diversity factor in a power system ?

(a)	Average demand	
(a)	Maximum demand of the whole system	

- (b) $\frac{\text{Sum of Individual maximum demand}}{\text{Maximum demand of the whole system}}$
- (c) $\frac{\text{Maximum demand}}{\text{Sum of individual maximum demand}}$
- (d) $\frac{\text{Maximum demand of the whole system}}{\text{Sum of individual maximum demand}}$

SSC JE 11.10.2023, Shift-III Paper-I (Pre)

Ans. (b) : Diversity factor is defined as the ratio of the sum of the maximum demands of the various part of a system to the maximum demand of the whole system. The diversity factor can be equal or greater than 1. If the value of the diversity factor is greater than 1 then it is a good diversity factor, and 1 represents a poor diversity

factor. 17. The ratio of the area under the load curve to the total area under the rectangle in which it is

- the total area under the rectangle in which it is contained gives the value of _____.
 - (a) utilization factor (b) diversity factor
 - (c) load factor (d) average demand

SSC JE 11.10.2023, Shift-III Paper-I (Pre)

Ans. (c) : The ratio of the area under the load curve to the total area under the rectangle in which it is contained gives the value of load factor.

Load Factor = $\frac{\text{Average load}}{\text{Peak load}}$

Load factor is always less than.

Ans. (b) : Sag is defined as the difference in level	Ans. (d) : Mechanical protection is not required in any
between points of supports and the lower point on the	under ground cable as given in option is not a desirable
Span	criteria for an underground cable.
	Desirable Criteria for an underground cable-
Sag	• Conductors used in the cable should be stranded.
Conductor	• Proper insulation thickness should be taken care of in order to provide greater degree of safety.
We know that,	• Conductors should be used such that heating loss is
WI ²	minimum.
$S = \frac{HE}{gT}$	13. Which of the following statements is accurate
Where, S is the sag of conductor	regarding wires and cables?
L = Length of span	(a) Cables are made by stranding together many
W = Weight per unit length of the conductor	wires
T = tension of conductor	(b) Wires and cables are hever insulated
• Sag is inversely proportional to the tension of the conductor	(d) Wires are made by stranding together many
• Sag is directly proportional to the weight per unit	cables
length of the conductor	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
• Sag is directly proportional to the square of the	Ans. (a) : Cables are made by stranding together many
length of the conductor span.	wires. Electrical wire consist of a single conductor and
Hence sag does not depend on height of the supporting	14 If the frequency of supply in a three core
tower.	underground cable is doubled, the charging
11. A overhead transmission line is supported by	current will be
supports at equal levels. If the length of the	(a) four times (b) double
conductor span is increased by two times, the	(c) half (d) Three times
sag will (Given, weight per unit length	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
and tension in the conductor are constant.)	Ans. (b) : Charging current in three core underground
(a) decrease by four times	$L = 2\pi f V \cdot (C + 2C)$
(\mathbf{b}) increases by two times	IC = AIL V rh IV (r + V)C I
(b) increase by two times	$I_C = 2\pi I V_{ph} (C_e^{-5}C_C)$
 (b) increase by two times (c) decrease by two times (d) increase by four times 	$\frac{I_{\rm C} - 2\pi I_{\rm C} v_{\rm ph} (C_{\rm e} + 3C_{\rm C})}{[I_{\rm C} \propto f]}$
 (b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) 	$\frac{I_{\rm C} - 2\pi I_{\rm V} v_{\rm ph} (C_{\rm e} + 5C_{\rm C})}{[I_{\rm C} \propto f]}$ if frequency is doubled then charging current doubled.
 (b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that	$I_{C} = 2\pi I v_{ph} (C_{e} + 3C_{C})$ $I_{C} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $\omega \ell^2$	 IC = 2MT V_{ph} (Ce⁺SCC) I_C ∞ f if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$	 IC = 2MT V_{ph} (C_e+3C_c) I_c ∝ f if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed 50√2 kV/cm.
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$	$I_{C} = 2\pi i v_{ph} (C_{e} + 5C_{C})$ $I_{C} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} kV/cm$. (a) 8 cm (b) 4 cm
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}, Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then $S \propto (2\ell)^2$	$I_{C} = 2kT v_{ph} (C_{e} + 3C_{C})$ $I_{C} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$	$I_{C} = 2\pi I v_{ph} (C_e^{+3}C_c^{-3})$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} kV/cm$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre)
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$	$I_{C} = 2\pi I v_{ph} (C_e^{+3}C_c^{-3})$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} kV/cm$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given,
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times.	$I_{C} = 2\pi I v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} kV/cm$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100kV, E_{max} = 50\sqrt{2}kV/cm$
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv. Underground Cables	$I_{C} = 2\pi I v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} kV/cm$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm <u>SSC JE 10.10.2023, Shift-II Paper-I (Pre)</u> Ans. (b) : Given, $V = 100kV, E_{max} = 50\sqrt{2}kV/cm$ For most economical size of the conductor-
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables	$I_{C} = 2NI \ v_{ph} (C_e^{+SC_c})$ $I_c \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} \text{ kV/cm}$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100 \text{kV}, E_{max} = 50\sqrt{2} \text{kV/cm}$ For most economical size of the conductor- $E = \frac{2V_{max}}{2}$
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable 2	$I_{C} = 2kT v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100kV, E_{max} = 50\sqrt{2}kV/cm$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken	$I_{C} = 2 k I v_{ph} (C_{e} + 3 C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} \text{ kV/cm}$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm <u>SSC JE 10.10.2023, Shift-II Paper-I (Pre)</u> Ans. (b) : Given, $V = 100 kV, E_{max} = 50\sqrt{2} kV/cm$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of	$I_{C} = 2 \times I v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} \text{ kV/cm}$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100 \text{kV}, E_{max} = 50\sqrt{2} \text{kV/cm}$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d}$ [$\because V_m = \sqrt{2}V_{ms}$]
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety	$I_{C} = 2kT v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed 50 $\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, V = 100kV, E _{max} = 50 $\sqrt{2}$ kV/cm For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d}$ [$\because V_m = \sqrt{2}V_{ms}$]
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety (b) Conductors should be used such that heating	$I_{C} = 2 \times I V_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} \text{ kV/cm}$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100 \text{kV}, E_{max} = 50\sqrt{2} \text{kV/cm}$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d} \qquad [\because V_m = \sqrt{2}V_{ms}]$ $\overline{d} = 4\text{cm}}$
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety (b) Conductors should be used such that heating loss is minimum	$I_{C} = 2kT v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed 50 $\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, V = 100kV, E _{max} = 50 $\sqrt{2}$ kV/cm For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d}$ [$\because V_m = \sqrt{2}V_{ms}$] $d = 4$ cm 16. The cable rating suitable for connecting the
(b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that $Sag(S) = \frac{\omega \ell^2}{8T}$, $Sag(S) \propto \ell^2$ Given, length of conductor span $(\ell) = 2\ell$ then, $S \propto (2\ell)^2$ $S \propto 4\ell^2$ Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety (b) Conductors should be used such that heating loss is minimum (c) Conductors used in the cable should be stranded	$I_{C} = 2 k I \ v_{ph} (C_{e} + 3 C_{c})^{2}$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2} \text{ kV/cm}$. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100 \text{kV}, E_{max} = 50\sqrt{2} \text{kV/cm}$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d} \qquad [\because V_m = \sqrt{2}V_{rms}]$ $\overline{d} = 4 \text{cm}$ 16. The cable rating suitable for connecting the load of 3 kW to a single phase supply of 230 V is — .
 (b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that Sag(S) = ^{ωℓ²}/_{8T}, Sag(S) ∝ ℓ² Given, length of conductor span (ℓ) = 2ℓ then, S ∝ (2ℓ)² S ∝ 4ℓ² Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety (b) Conductors should be used such that heating loss is minimum (c) Conductors used in the cable should be stranded (d) Mechanical protection is not required in any 	$I_{C} = 2kT v_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100kV, E_{max} = 50\sqrt{2}kV/cm$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d} \qquad [\because V_m = \sqrt{2}V_{ms}]$ $\overline{d} = 4cm$ 16. The cable rating suitable for connecting the load of 3 kW to a single phase supply of 230 V is (a) 5A (b) 15A
 (b) increase by two times (c) decrease by two times (d) increase by four times SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : We know that Sag(S) = ^{ωℓ²}/_{8T}, Sag(S) ∝ ℓ² Given, length of conductor span (ℓ) = 2ℓ then, S ∝ (2ℓ)² S ∝ 4ℓ² Then, the sag(S) will be increased by four times. iv.Underground Cables 12. Which of the following is NOT a desirable criteria for an underground cable ? (a) Proper insulation thickness should be taken care of in order to provide greater degree of safety (b) Conductors should be used such that heating loss is minimum (c) Conductors used in the cable should be stranded (d) Mechanical protection is not required in any underground cable 	$I_{C} = 2 \times I V_{ph} (C_{e} + 3C_{C})$ $I_{c} \propto f$ if frequency is doubled then charging current doubled. 15. Find the most economical size of a single core cable working on a 100 kV single phase system and the maximum permissible stress in the dielectric is not to exceed $50\sqrt{2}$ kV/cm. (a) 8 cm (b) 4 cm (c) 0 cm (d) 10 cm SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : Given, $V = 100kV, E_{max} = 50\sqrt{2}kV/cm$ For most economical size of the conductor- $E_{max} = \frac{2V_{max}}{d}$ $50\sqrt{2} = \frac{2 \times 100\sqrt{2}}{d} \qquad [\because V_m = \sqrt{2}V_{rms}]$ $d = 4cm$ 16. The cable rating suitable for connecting the load of 3 kW to a single phase supply of 230 V is —. (a) 5A (b) 15A (c) 10A (c) 20A

Ans. (b) : The power rating,	Ans. (a) : We know that
$P = VI \cos \phi$	$I = V_{ph} = \infty C V$
$3000 = 230 \times I \times 1$ [Let $\cos \phi = 1$]	$\mathbf{I}_{\rm C} = \frac{1}{X_{\rm C}} = \omega C \mathbf{V}_{\rm ph}$
$I = \frac{3000}{230} = 13.043A$	$I_{\rm C} = 2\pi f C V_{\rm ph}$
Therefore the cable rating suitable for connecting a load	From question
of 3kW to a single phase supply of 230V is 15A.	$V_{\rm ph} = \frac{V_{\rm L}}{\sqrt{3}} = \frac{22 \times 10^3}{\sqrt{3}} = 12701.70 \mathrm{V}$
17. The method of creating uniform electrostatic	then
stress in the dielectric of underground cables is	
known as of cables.	$I_{\rm C} = 2 \times \pi \times 50 \times 18 \times 10^{-5} \times 12^{-7} / 01^{-7} / 0$
(a) Armouring (b) Grading	= 71.82 A
(c) Jointing (d) Laying	v.Distribution System
SSC JE 10.10.2023, Shift-II Paper-I (Pre)	
Ans. (b) : The method of creating uniform electrostatic	20. A substation is a facility that transmits and
stress in the dielectric of underground cable is known as	distributes electricity. It serves as an
grading of cables.	intermediary between electricity plants and
The electrostatic stress in a single core cable has	end users. Which of the following statements
maximum value $\left(g_{max}\right)$ at the conductor surface and	about substation is INCORRECT?
decreases going towards sheath.	(a) Domestic consumers may also connect directly to the main transmission notwork
The method of equalizing the stress in the dielectric of	directly to the main transmission network
the cable is known as grading of cable.	(b) All of the options
18. Which of the following is the outermost layer of	(c) Rotary converters are also used in railway
an underground cable ?	substations
(a) Serving (b) Armour	(d) At the point of interconnection between two distinct transmission voltages transformers
(c) Insulation (d) Sheath	may be installed in a substation.
SSC JE 11.10.2023, Shift-III Paper-I (Pre)	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
Ans. (a) : Serving is the outermost layer of an	Ans. (a) : A substation is a facility that transmits and
underground cable. Serving is the layer of fibrous	distributes electricity. It serves as an intermediary
materials like jute which protects armouring from	The following statements about substation is correct-
atmospheric conditions.	(i) Domestic consumers may also connect directly to the
Different layers of cables are-	main transmission network.
(i) Conductor or core (ii) Insulation	(ii) Rotary converters are also used in railway
(iii) Metallic sheath (iv) Bedding (v) Armouring	substations.
(vi) Serving	(iii) At the point of interconnection between two
19. What is the charging currant per phase of a	distinct transmission voltages, transformers may be
three-core underground cable connected to 22	installed in substation.
kV, 50 Hz three phase supply ? Given that the	21. According to IS (Indian Standard) specification
capacitance of each phase to neutral is 18 µF.	1180-1964 for outdoor type distribution
(Given the connection is star connected.)	transformer, the tapings shall be provided on
(a) 71.82 A (b) 84.45	hv side in
(c) 82.13 A (d) 50 A	(a) 3 steps (b) 6 steps
SSC JE 11.10.2023, Shift-III Paper-I (Pre)	(c) 5 steps (d) 2 steps SSC JF 10 10 2023 Shift-II Paner J (Pro)
	550 512 10.10.2023, Shint-11 1 apti-1 (1 10)

Ans. (c) : According to IS (Indian standard)	(b) Neither copper nor aluminium
specification 1180-1964 for outdoor type distribution	(c) Plastic
transformer, the tapings shall be provided on hv side in	(d) Copper or aluminium
5 steps.	SSC JE 11.10.2023, Shift-III Paper-I (Pre)
 22. Which of the following CANNOT be caused due to excessive voltage drop in an electric distribution system ? (a) Electric lights to burn dimly (b) Electric lights to flicker (c) Electric motors to run colder than normal 	Ans. (d) : Busbars are solid metal bars used to carry current. Typically made from copper or aluminum, busbars are rigid and flat-wider than cables but up to 70% shorter in height. They can also carry more current that cables with the same cross sectional area.
(d) Electric heaters to heat poorly	vi.Electric Power System
SSC JE 11.10.2023, Shift-III Paper-I (Pre)	Management
 Ans. (c) : Electric motors to run colder than normal cannot be caused due to excessive voltage drop in an electric distribution system. 23. The standard voltage between any two phases 	26. Which of the following statements is/are correct regarding black liquor?A) It retains more than 50% of the biomass energy of wood.
in three-phase four-wire secondary distribution	B) It is a non-toxic substance produced when
system nave (b) 400 V	wood is burned into paper.
(a) 35 KV (b) 400 V	C) Tall oil is an important by-product
(c) 250 V (d) 11 KV SSC IF 11 10 2023 Shift III Damar I (Dro)	separated from black liquor by skimming.
SSC JE 11.10.2023, Sint-III Faper-I (FTC)	(a) B and C (b) A and B
Ans. (b): The standard voltage between any two phases	(c) Only C (d) A and C
have near about 400 Volt and voltage between any line	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
and the neutral conductor have near about 240 Volt.	Ans. (d) : Regarding black liquor-
24. In radial distribution system, separate feeder	(1) It retains more than 50% of the blomass energy of
radiates from single substation and feeds the	(ii) Tall oil is an important by product separated from
distributors at	(ii) Tail on is an important by-product separated from
(a) one end only (b) two ends	(iii) It is a toxic substance produced when wood is
(c) three ends (d) four ends	hurned into paper
SSC JE 11.10.2023, Shift-III Paper-I (Pre)	27 Which phase of the project management
Ans. (a) : In radial distribution system separate feeder radiates from single substation and feeds the distributors	(a) Estimation (b) Execution
at one end only. The main characteristic of radial	(c) Planning (d) Conceptualisation
distribution is that the power now is only in one	SSC JE 09.10.2023, Shift-III Paper-I (Pre)
	Ans. (b) : Execution phase of the project management
vi.Bus Bar and load Flow	life cycle often takes the longest to wrap up.
Analysis	The project management life cycle steps- (1) Initiating
25. What kind of metal does continuous bus bar	(2) Planning
wire typically consist of ?	(3) Execute and complete task
(a) Iron	(4) Closed project.

Chapter-7	UTILIZATION OF ELECTRICAL ENERGY	 On giving supply, the neon gas ionizes and emits lights which is reddish (orange-red) in color. Application- Voltage tester, Night lamps, Indicator lamp, For advertisement purpose.
i Illuminatia	 \n	5. Which of the following lamps is well suited for
1. The menule	JII nath af a cadium manann lann	street lightning in terms of high luminous
1. The wavelet	agtn of a socium vapour lamp	(c) Element lever
(a) 326 nm	(b) 254 nm	(a) Fluorescent lamp
(c) 520 nm	(d) 673 nm	(b) Compact fluorescent lamp
SSC JE	2 09.10.2023. Shift-III Paper-I (Pre)	(c) Sodium vapour lamp
Ans. (c) : A sodiu	im vapour lamp is a gas-discharge	(d) Incandescent lamp
lamp that uses sod	tium in an excited state to produce	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
light at characteristi	c wavelength near 589 nm.	Ans. (c) : Sodium vapour lamp is well suited for street
2. Three-point	lighting is usually employed in film	lighting in terms of high luminous efficiency.
lighting sche	emes. Which of the following does	Low-pressure sodium lamps are highly efficient
NOT form a	part of the scheme?	electrical light sources, but their vellow light restricts
(a) Key light	ting (b) Back lighting	applications to outdoor lighting such as a street lamp.
(c) Bounce l	ighting (d) Fill lighting	6 The candle nower of a lamp placed normal to a
SSC JE	2 09.10.2023, Shift-III Paper-I (Pre)	working plane is 40 candle power Find the
Ans. (c) : Three-po	bint lighting is usually employed in	distance if the illumination is 10 lux?
film lighting schem	ie. The following form a part of the	(a) 25 m (b) 2 m
(i) Key lighting (ii	i) Back lighting (iji) Fill lighting	(a) 2.5 m (b) 2 m
(1) Key lighting (1)	be following lighting calculation	(c) 5 m (d) 1.414 m
methods is h	andy and quick?	SSC JE 10.10.2023, Shift-II Paper-I (Pre)
(a) Flux met	hod	Ans. (b) : Given that,
(b) Lumen m	nethod	Candle power = 40
(c) Point by	point method	Illumination (I) = 10 lux
(d) Watts per	r square metre method	Candle neuror = $F\ell ux$
SSC JE	2 09.10.2023, Shift-III Paper-I (Pre)	$\frac{1}{4\pi}$
Ans. (d) : Watts p	er square metre lighting calculation	Fℓux
methods is handy ar	nd quick.	$40 = \frac{40}{4\pi}$
Methods for calcul	ating the illumination of light-	$F_{\rm hux} = 40 \times 4\pi$
(i) Watt per square i	meter method	$\Gamma u x = 40 \land 4 h$
(ii) Lumen or light f	flux method	Illumination (I) = $\frac{Flux}{1}$
(iii) Point to point o	r inverse-square law method.	Area of the surface
4. Choose the c	correct alternative regarding Neon	$10-\frac{4\pi\times40}{2}$
Lamps.	lamp normally amits green colour	$10 - \frac{1}{4\pi r^2}$
(a) The helium	n gas is used instead of neon	2 40
greenish	red colour is obtained	$r^2 = \frac{1}{10}$
(c) The neon	lamp consists of neon and argon gas.	$r^2 = 4$
(d) The powe	er factor of the neon tube is higher.	r = 2m
SSC JI	E 10.10.2023, Shift-II Paper-I (Pre)	
Ans. (c) : Neon lam	np:	7. Select the light bulb that uses the least amount
• It is a cold catho	de lamp and consists of a glass bulb	of energy while yet producing an adequate
filled with neon a	and argon gas.	amount of light.
• In this lamp, two	o electrodes are kept close to each	(a) Neon lamps (b) LED lamp
other so that less	s voltage is required for starting the	(c) Incandescent lamp (d) Fluorescent lamp
ionization of neor	n gas (110V ac or 150V dc).	SSC JE 10.10.2023, Shift-II Paper-I (Pre)

 Ans. (b) : LED lamp that uses the least amount of energy while yet producing an adequate amount of light. LED lamp efficiency is high because the lamp waste very little energy on heat. 8. Which of the following lamps are used in searchlights? (a) Neon lamps (b) Fluorescent lamps (c) Sodium vapour lamp (d) Arc lamps SSC JE 11.10.2023, Shift-III Paper-I (Pre) 	 Ans. (d) : Sodium vapour light lamp is suitable for highway lighting. Sodium vapour lamp is a gas-discharge lamp that uses sodium (Na) in exciting condition to generate light. These lamps are mostly used in street lights and industrial purposes. 13. Which of the following lamps is used for the determination of polarity of DC mains ? (a) Sodium vapour lamp (b) Carbon arc lamp (c) Mercury vapour lamp (d) Neon discharge lamp
 9. Which of the following options shows the correct proportion of helium and neon gases in the mixture for helium neon laser ? (a) 10% of helium and 90% of neon (b) 80% of helium and 20% of neon 	SSC JE 11.10.2023, Shift-III Paper-I (Pre) Ans. (d) : Neon discharge lamp is used for the determination of polarity of DC mains. Neon discharge lamp is made of a discharge tube fitted with two electrodes. These electrodes are supplied with AC or DC supply. Neon gas is filled inside the tube when supply is given discharge takes place through neon gas that emits reddish light in the form of electromagnetic radiation.
 (c) 20% of helium and 20% of neon (d) 90% of helium and 10% of neon SSC JE 11.10.2023, Shift-III Paper-I (Pre) 	 ii.Electric Heating 14. Which of the following defines the use of a thermostat in an electric kettle?
Ans. (d) : The correct proportion of helium and neon gases in the mixture for helium neon laser are 90% of helium and 10% of a neon. 10. In electrical applications, the coil of an infrared lamp is made up of (a) copper (b) tungsten (c) nichrome (d) iron SSC JE 11.10.2023, Shift-III Paper-I (Pre)	 (a) It is used to reduce the temperature in case of overheating of the heating element. (b) It is used to compare the ambient temperature with the temperature inside the kettle. (c) It is used to maintain the temperature inside the kettle. (d) It is used to stop the flow of electricity through the heating element once the appropriate temperature is reached.
 Ans. (b) : In electrical application, the coll of an infrared lamp is made up of tungesten. 11. In a metal filament bulb, the filament used as a heating coil is tungsten due to its (a) high melting point and low resistivity (b) low melting point and high resistivity (c) high melting point and high resistivity (d) low melting point and low resistivity 	Ans. (d) : It is used to stop the flow of electricity through the heating element once the appropriate temperature is reached. A thermostat is a regulating device component which senses the temperature of a physical system and performs actions so that the system temperature is maintained near a desired set point. iii.Refrigeration and Cooling
 Ans. (c) : In a metal filament bulb, the filament used as a heating coil is tungsten due to its high melting point and high resistivity, it does not burn at room temperature but the bulb glows at high temperature. 12. Which of the following lamps is suitable for highway lighting ? (a) Neon lamp (b) Fluorescent lamp (c) Incandescent lamp (d) Sodium vapour light SSC JE 11.10.2023, Shift-III Paper-I (Pre) 	15. A 2500 watts refrigerator works for 4 hours per day. Find the total unit of electricity used in 40 days (a) 10 units (b) 40 units (c) 400000 units (d) 400 units SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (d) : Given, P = 2500 watts t = 40×4 = 160 hours E = p ×t = 2500 × 160 E = $\frac{400,000 \text{ kW}}{1000}$ E = 400 unit

Chapter-8 ELECTRICAL AND ELECTRONIC ENGINEERING MATERIALS	 5. In the application of electrical and magnetic circuits, the heater element in an electric iron is manufactured by using—. (a) Tungsten (b) Nichrome (c) Iron (d) Copper SSC JE 10 10 2023 Shift-II Paper-I (Pre)
 In the application of electrical circuits, the nichrome that is used to make the heating element in an electric cooker has (a) 40% nickel and 60% chromium (b) 80% nickel and 20% chromium (c) 50% nickel and 50% chromium (d) 20% nickel and 80% chromium (d) 20% nickel and 80% chromium (e) 20% nickel and 80% chromium (f) 20% nickel and 80% chromium (h) 20% nickel and 20% chromium (h) 20% nickel and 20% chromium (h) 20% nickel and 20% chromium Ans. (b) : In the application of electrical circuits, the nichrome that is used to make the heating element in an electric cooker has 80% nickel and 20% chromium. Which of the following overhead conductor material is preferred for the harmful gas (like ammonia) atmosphere? (a) Aluminium (b) Galvanized steel 	 Ans. (b) : In the application of electrical and magnetic circuits, the heater element in an electrical iron is manufactured by using nichrome. Nichrome is an alloy of manganese 1.5%, Ni 75% to 78%, chromium 20% to 23% and a little percentage of Iron. The melting point of nichrome is 1400°C with high resistance which makes this element best for use as a heating element. In electrical applications, electric geyser coils are made up of a (a) low-inductance metal (b) high-resistance metal (c) high-inductance metal
 (a) Animitum (b) Galvanized steel (c) Phosphor bronze (d) Cadmium copper SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (c) : Phosphor bronze overhead conductor materials is preferred for the harmful gas (like) 	 (d) low-resistance metal SSC JE 10.10.2023, Shift-II Paper-I (Pre) Ans. (b) : In electrical applications, electric geyser coils are made up of a high resistance metal.
ammonia) atmosphere. 3. A permanent magnetic material has retentivity. (a) Zero (b) High (c) Constant (d) Low SSC JE 09.10.2023, Shift-III Paper-I (Pre)	 7. Which of the following is the application of soft magnetic materials? (a) Electromagnets (b) Microphones (c) Speakers (d) Permanent magnets SSC JE 11.10.2023, Shift-III Paper-I (Pre)
 Ans. (b) : A permanent magnetic material has high retentivity. And permanent magnets should have high coercivity so that external magnetic fields in opposite directions can not easily demagnetize the magnet. 4. Which of the following is NOT a desirable 	 Ans. (a) : Electromagnets are made from soft magnetic materials. Properties of soft magnetic materials. (i) High permeability (ii) Slight coercive force (iii) Low hysteresis loss (iv) High saturation magnetism
 property for the insulating materials used in an underground cable? (a) High insulation resistance (b) High dielectric strength (c) Non-inflammable (d) Hygroscopic SSC JE 09 10 2023 Shift-III Paper-I (Pre) 	8. Which of the following is a ferromagnetic material? (a) Oxygen (b) Water (c) Gold (d) Nickel SSC JE 09.10.2023, Shift-III Paper-I (Pre) Ans. (d) : Nickel is a ferromagnetic material.
 Ans. (d) : Desirable property for insulating materials used in an underground cable- (i) High insulating resistance (ii) High dielectric strength (iii) Non-inflammable. Hygroscopic substance is an ionic compounds can easily become hydrate by absorbing water molecules from water vapour in the air. 	Ferromagnetic materials exhibit parallel alignment of moments resulting in large net magnetization even in the absence of magnetic field. Ex- Fe, Ni, Co $\hat{\Phi} \hat{\Phi} \hat{\Phi} \hat{\Phi}$ $\hat{\Phi} \hat{\Phi} \hat{\Phi} \hat{\Phi}$ Parallel alignment