ALL INDIA TECHNICIAN EXAMINATION ELECTRICIAN TRADE

VOLUME-II

(English Medium)

Previous Year Chapterwise Solved Papers

<u>Useful for</u>: DUPPCL TG-2 DUPRVUNL TG-2 DRRB LOCO PILOT DRRB TECHNICIAN DISRO NPCIL DBIHAR TECHNICIAN DKPSC LINEMAN DKPSC INSTRUCTOR DWBPSC ELECTRICIAN CPRI DVS DKVS DPUNJAB ELCTRICIAN INSTRUCTOR DJVVNL ELECTRICIAN HELPER-III HSSC DGAIL GSSSB TECHNICIAN INSTRUCTOR DORDNANCE FACTORY DMETRO MAINTAINER DMRC/LMRC/NMRC/BMRC/JMRC DHAL ELECTRICIAN DNPCIL DTSSPDCL ISRO TECHNICIAN DHAL DTHDC DCRPF CONSTABLE DINDIAN ARMY DUPSSSC DUBEWELL OPERATOR CRPF TRADESMAN DUKSSSC ELECTRICIAN INSTURCTOR

> **Chief Editor** A. K. Mahajan

Written & Complied by

Er. Santosh Kumar Yadav

Computer Graphics By

Balkrishna Tripathi & Charan Singh

Editorial Office

12, Church Lane Prayagraj-211002

SMob. : 9415650134

Email : yctap12@gmail.com

website : www.yctbooks.com / www.yctfastbook.com / www.yctbooksprime.com

© All Rights Reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and E:Book by APP YCT BOOKS In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

Direct Current Generator	
Direct Current Motor	66-135
Transformers	136-252
3-Phase Induction Motor	253-301
Synchronous Motor	
Alternator	
Single-Phase Motors	
Electrical AC and DC Winding	
Machine Control Panel	
Electrical Wiring	401-449
Speed Control and Maintenance of Electric Machines	450-452
Converter	453-466
Semiconductor Physics	467-483
Semiconductor Diode	484-517
Rectifier	518-529
Transistor	530-562
Amplifiers	563-596
Oscillators	597-606
Specific Solid State Devices	607-653
Digital Electronics	654-698
Electronics Theory and Communication System	699-718
Computer	

Note : Occupational Safety and Health, Tools for An Electrician, Basic Electricity, Conductor, Semiconductor, Insulator and Electrical Material, Soldering, Electrical Accessories, Electrochemical Effect and Cell- Battery, Magnetism and Electromagnetism, Alternating Current Theory, Earthing, Electrical Instruments & Measurement, Utilization, Domestic Electrical Appliances, Electrical Power Generation, Electrical Power Transmission, Electrical Power Distribution, Underground Cables. **(Study Volume-I)**

RRB ALP Techenician (Electrician) Syllabus ELECTRICIAN

■ Occupational Safety & Health- Basic safety introduction, Personal protection:- Basic injury prevention, Basic first aid, Hazard identification and avoidance, safety signs for Danger, Warning, caution & personal safety message. Use of Fire extinguishers. Visit & observation of sections. Various safety measures involved in the Industry. Elementary first Aid. Concept of Standard.
Soft Skills- its importance and Job area after completion of training.Introduction of First aid. Operation of electrical mains. Introduction of PPEs. Introduction to 5S concept & its application. Response to emergencies eg; power failure, fire, and system failure. Identification of Trade-Hand tools-Specifications. Fundamental of electricity. Electron theory- free electron, Fundamental terms, definitions, units & effects of electric current. Solders, flux and soldering technique. Resistors types of resistors & properties of resistors. Introduction of National Electrical Code 2011 Explanation, Definition and properties of conductors, insulators and semi-conductors. Voltage grading of different types of Insulators, Temp. Rise permissible Types of wires & cables standard wire gauge Specification of wires & Cablesinsulation & voltage grades -Low, medium & high voltage Precautions in using various types of cables / Ferrules Ohm's Law - Simple electrical circuits and problems. Reading of simple Electrical Layout.
Resistors -Law of Resistance. Series and parallel circuits. **Kirchoff's** Laws and applications. Wheatstone bridge principle And its applications. Effect of variation of temperature on resistance. Different methods of measuring the values of resistance. Common Electrical Accessories, their specifications in line with NEC 2011-Explanation of switches lamp holders, plugs and sockets. Developments of domestic circuits, Alarm & switches, with individual switches, Two way switch .Security surveillance, Fire alarm, MCB, ELCB, MCCB.
Chemical effect of electric current-Principle of electrolysis. Faraday's Law of electrolysis. Basic principles of Electro-plating and Electro chemical equivalents. Explanation of Anodes and cathodes. Lead acid cell-description, methods of charging-Precautions to be taken & testing equipment, Ni-cadmium & Lithium cell, Cathodic protection. Electroplating, Anodising. Different types of lead acid cells. Rechargeable dry cell, description advantages and disadvantages. Care and maintenance of cells Grouping of cells of specified voltage & current, Sealed Maintenance free Batteries, Solar battery. Inverter, Battery Charger, UPS-Principle of working. Lead Acid cell, general defects & remedies. Nickel Alkali Cell-description charging. Power & capacity of cells. Efficiency of cells.
ALLIED TRADES-Introduction of fitting trade. Safety precautions to be observed Description of files, hammers, chisels hacksaw frames & blades-their specification & grades. Care & maintenance of steel rule try square and files. Marking tools description & use. Description of carpenter's common hand tools such as saws planes, chisels mallet claw hammer, marking, dividing & holding tools-their care and maintenance. **Types of drills** description & drilling machines- proper use, care and maintenance. Description of taps & dies, types in rivets & riveted joints. Use of thread gauge. Description of marking & cutting tools such as snubs shears punches & other tools like hammers, mallets etc. used by sheet metal workers. Types of soldering irons-their proper uses. Use of different bench tools used by sheet metal worker. Soldering materials, fluxes and process.
Magnetism - Classification of magnets, methods of magnetising, magnetic materials. Properties, care and

maintenance. Para and Diamagnetism and Ferro magnetic materials. Principle of electro-magnetism, Maxwell's corkscrew rule, Fleming's left and right hand rules, Magnetic field of current carrying conductors, loop and solenoid. MMF, Flux density, reluctance. B.H. curve, Hysteresis, Eddy current. Principle of electro-magnetic Induction, Faraday's Law, Lenz's Law. Electrostatics: Capacitor- Different types, functions and uses. **Alternating Current** -Comparison and Advantages D.C and A.C. Related terms frequency Instantaneous value, R.M.S. value Average value, Peak factor, form factor. Generation of sine wave, phase and phase difference. Inductive and Capacitive reactance Impedance (Z), power factor (p.f). Active and Reactive power, Simple problems on A.C. circuits, single Phase and three-phase system etc. Problems on A.C. circuits. Power consumption in series and parallel, P.F. etc. Concept three-phase Star and Delta connection. Line and phase voltage, current and power in a 3 phase circuits with balanced and unbalanced load.

Earthing- Principle of different methods of earthing. i.e. Pipe, Plate, etc Importance of Earthing. Improving of earth resistance Earth Leakage circuit breaker (ELCB). In absence of latest revision in respective BIS provision for Earthing it is recommended to follow IEC guidelines. Basic electronics- Semiconductor energy level, atomic structure 'P' type and 'N' type. Type of materials -P-Njunction. Classification of Diodes - Reverse and Forward Bias, Heat sink. Specification of Diode PIV rating. Explanation and importance of D.C. rectifier circuit. Half wave, Full wave and Bridge circuit. Filter circuits-passive filter.

■ Working principle and uses of an oscilloscope-Explanation of principle of working of a transistor & configuration. Types of transistors & its application. Specification and rating of transistors. Explanation of transistor Amplifiers, Amplifiers. – class A,B and C Power amplifier ■ Explanation of oscillator-working principle Explanation of stages and types. Multivibrator - applications. Introduction of basic concept of ICs, U.J.T., F.E.T. Basic concept of power electronics devices e.g. S.C.R., Diac, Triac, power MOSFET, G.T.O and I.G.B.T. **Digital Electronics** -Binary numbers, logic gates and combinational circuits, Electric wirings-I.E. rules. Types of wirings both domestic and industrial. Specifications for wiring. Grading of cables and current ratings. Principle of laying out in domestic wiring. Voltage drop concept. ■ Wiring system– P.V.C., concealed system. Maintenance and Repairing data sheet preparation. Specifications, standards for conduits and accessories - Power Wiring - Control Wiring - Information Communication -Entertainment Wiring. Testing of wiring installation by meggar. Study of Fuses, Relays, Miniature circuit breakers (MCB), ELCB, etc. ■ D.C. Machines- General concept of Electrical Machines.
Principle of D.C. generator- Use of Armature, Field Coil, Polarity, Yoke, Cooling Fan, Commutator, slip ring Brushes, Laminated core. Explanation of D.C. Generators-types, parts. E.M.F. equation-self excitation and separately excited Generators-Practical uses. Brief description of series, shunt and compound generators. Explanation of Armature reaction, inter poles and their uses, connection of inter poles, Commutation. Losses & Efficiency of D.C.Generator, Parallel Operation of D.C.Generator. Application of D.C. generators. Care, Routine & preventive maintenance. ■ DC Motors- Termsused in D.C. motor-Torque, Brake Torque, speed, Back-e.m.f. etc. and their

Related problems Characteristics of D.C.Motor, Losses & Efficiency, Application of D.C. motors. Care, Routine & preventive maintenance. Types of speed control of DC motors in industry. Control system. AC-DC, DC-DC control. Working principle of Transformer- classification C.T., P.T. Instrument and Auto Transformer(Variac), Construction, Single phase and Poly phase. E.M.F. equation, parallel operation of transformer, their connections. Regulation and efficiency. Type of Cooling for transformer. Protective devices. Specifications, simple problems on e.m.f. Equation, turn ratio, regulations and efficiency. Special transformers. Transformer -Classification of transformer. Components, Auxiliary parts i.e. breather, Conservator, buchholze relay, other protective devices. Transformer oil testing and Tap changer (off load and on load). Dry type transformer. Bushings and termination. Measuring Instruments- -types, indicating types. Deflecting torque, Controlling torque and Damping torque, PMMC & MI (Ammeter, Voltmeter) -Range extension meter Multimeter(Digital/Analog) -Wattmeter - P.F. meter - Energy meter (Digital/analog) -Insulation Tester (Megger), Earth tester. -Frequency meter -Phase Sequence meter -Multimeter -Analog and Digital -Tong tester -Techometer.

■ Three phase Induction motor –Working principle Production of rotating magnetic field, Squirrel Cage Induction motor, Slip-ring induction motor. Construction, characteristics and Speed control, Slip & Torque . Control & Power circuit of starters D.O.L Starter, Star /Delta starter, Autotransformer starter, Rotor resistance starter, etc Single phasing preventer. Losses & efficiency. Application of Induction Motor Care, Routine & preventive maintenance.
Single phase induction motor- Working principle, different method of starting and running (capacitor start, permanent capacitor, capacitor start & run, shaded pole technique). FHP motors, Repulsion motor, stepper motor, Hysteresis motor, Reluctance motor. Application of Single phase induction motor **Universal** motor-advantages, Principle, characteristics, applications in domestic and industrial appliances, Fault Location and Rectification. Braking system of motor. Application of Universal motor.
Alternator-Explanation of alternator, types of prime mover, efficiency, regulations, phase sequence, Parallel operation. Specification of alternators and Brushless alternator. Verify the effect of changing the field excitation and factor correction of Industrial Power load SYNCHRONOUS MOTOR- Working principle, effect of change of excitation and load. V and anti V curve. Cause of low power factor. Method of power factor improvement. Converter- Inverter, M.G. Rotary Set description, Characteristics, specifications- running and Maintenance. Solid state controller and Invertors.
TRANSFORMER Winding-Small Transformer winding techniques **DC machine** Winding-- Armature winding terms, pole pitch, coil pitch, back pitch, front pitch , Lap and Wave winding , Progressive and retrogressive Winding, developed diagram. Growler ACmachine construction, working & application. ■ Winding-Motor winding terminology- classification of conducting and insulating materials used in winding - Types and methods of winding in single and three phase motors. Stator winding terms, coil side, end coil and grouping of coils. Connection to adjacent poles, connected stator winding, alternate pole connection, developed diagram.

■ Illumination- Laws of Illuminations, terminology used , Illumination factors, intensity of light –importance of light, human eye factor, , units. Types of illumination Type of lamps -Neon sign Halogen, Mercury vapour, sodium vapour, Fluorescent tube, CFL, LED, Solar lamp & photo cell applications, Decoration lighting, Drum Switches, efficiency in

relations, Types of D.C.Motor. Starters used in D.C. motors Related problems Characteristics of D.C.Motor, Losses & Efficiency, Application of D.C. motors. Care, Routine & preventive maintenance. Types of speed control of DC motors in industry. Control system. AC-DC, DC-DC control. • Working principle of Transformer- classification C.T., P.T. Instrument and Auto Transformer(Variac), Construction, Single phase and Poly phase. E.M.F. equation, parallel operation of transformer, their connections. Regulation and efficiency. Type of Cooling for transformer. Protective devices. Specifications, advantages of system. Fault finding and trouble shooting.

> ■ Machine control cabinet /Control Panel Layout, Assembly & Wiring:- Layout of Control cabinet & control panel Study & Understand Layout drawing of control cabinet , panel, power & control circuits. ■ Control Elements:-Isolator, pushbutton switches, Indicating lamps, MCB, Fuse, Contactor, Relays, Overload Relay, Timers, Rectifier, Limit switches, control transformers. Wiring Accessories: Race ways/ cable channel, DIN Rail, Terminal Connectors, Thimbles, Lugs, Ferrules, cable binding strap & buttons, nylon cable ties, sleeves, Gromats& clips ■ Domestic Appliances:- Working principles and circuits of common domestic equipment and appliances. - Calling Bell, Buzzer, Alarms, Electric Iron, Heater, Light. Electric Kettle, Heater / Immersion Heater, Hot Plate, Oven, Geyser, Cooking range, Mixer, Washing machine, , Motor Pump set, etc. Concept of Neutral and Earth.

> ■ POWER GENERATION :- Generation sources of energy, Comparison of energy resources. Types of fuels. Advantages of liquid fuel & solid fuel. Various ways of electrical power generation. • Thermal • Hydro electric • Nuclear • Non-Conventional Thermal Coal based, diesel based & Gas based Turbine. Constituents in steam power station. ■ Hydro Electric:- Schematic arrangement of Hydro-Electric Power Station. Constituents of Hydro Electric Plant. Types of Hydro Electric Power station. Advantages & disadvantages.

> ■ Nuclear:- Schematic arrangement of Nuclear Power Station. Composition of an atomic Nucleus. Advantages & disadvantages. Comparison of above Power Plant. ■ Non-Conventional- An introduction to Power generation through non-conventional power generation such as Solar, Bio-Gas, Wind energy and Micro-hydel, Tidal waves, etc. Basic principal, Advantages & disadvantages of each.

> ■ TRANSMISSION OF ELECTRICAL POWER– Electrical Supply System : Comparison of AC and DC transmission. Advantages of High transmission voltage. Introduction to Single phase , three phase-3 wire system in transmission lines Overhead Lines: Main components of overhead lines-Types of power line Low voltage line medium Voltage line & high voltage line Voltage standard Conductor materials, line supports, Insulators, types of Insulators

> ■ Under Ground Cable : Construction of cables. Material for cables, its insulation. Classification of cables, cables for 3phase service, Laying of underground cable. Types of cable faults and their location.
> DISTRIBUTION OF POWER-Function and equipment used in substation. Classification of distribution system-AC distribution, Overhead v/s underground distribution system. Essential features of switchgears. Isolator, Switch gear equipments, bus-bar arrangement, Short circuit, faults in power system.
> Circuit breakers- Introduction & Classification of circuit breakers lightening arrestors used in HT lines. Introduction, Construction & Working of power transistor, thyristor. Introduction, Construction, Working, Parameters & application of DC drive. Speed control of 3 phase induction motor by using VVVF/AC Drive. Introduction, Construction, Working, Parameters & application of AC drive Schedule of electrical preventive maintenance. Break down, Routine & Preventive maintenance of DC/AC machines, Voltage stabilizer, U.P.S. & Equipments.

UPPCL/UPRVUNL Technician Grade-2 Exam Syllabus

UPPCL TECHNICAL SUBJECTS SYLLABUS

Technical Subject (Electrician):

- 1. Various safety measures involved in the Industry. Elementary first Aid. Concept of Standard.
- 2. Identification of Trade-Hand tools-Specifications.
- 3. Fundamental of electricity. Electron theory-free electron. Fundamental terms, definitions, units and effects of electric current.
- 4. Solders, flux and soldering technique. Resistors types of resistors and properties of resistors.
- 5. Explanation, Definition and properties of conductors, insulators and semi-conductors. Voltage grading of different types of Insulators, Temp. Rise permissible. Types of wires and cables standard wire gauge Specification of wires and Cables-insulation and voltage grades-Low, medium and high voltage Precautions in using various types of cable.
- 6. Ohm's Law-Simple electrical circuits and problems.
- 7. Resistors-Law of Resistance. Series and parallel circuits.
- 8. Kirchhoff's Laws and applications. Wheatstone bridge principle and its applications.
- 9. Common Electrical <u>Accessories</u>, their specifications-Explanation of switches lamp holders, plugs and sockets. Developments of domestic ckts, Alarm and switches, lamp, fan with individual switches, Two way switch.
- Chemical effect of electric current-Principle of electrolysis. Faraday's Law of electrolysis. Basic principles of Electro-plating and Electro chemical equivalents. Explanation of Anodes and cathodes. Lead <u>acid</u> celldescription, methods of charging-precautions to be taken and testing equipment, Ni-cadmium and Lithium cell, Cathodic protection. Electroplating, Anodising.

UPRVUNL TECHNICAL SUBJECT SYLLABUS

<u>Technical Subject (Electrician) :</u>

- 1. Various safety measures involved in the Industry. Elementary first Aid. Concept of Standard.
- 2. Identification of Trade-Hand tools-Specifications.
- 3. Fundamental of electricity. Electron theory-free electron Fundamental terms, definitions, units & effects of electric current.
- 4. Solders, flux and soldering technique. Resistors of resistors & properties of resistors.
- 5. Explanation, Definition and properties of conductors, insulators and semi-conductors. Voltage grading of different types of Insulators, Temp. Rise permissible. Types of wires & cables standard wire gauge Specification of wires & Cables-insulation & Cables-insulation & voltage grades-Low, medium & high voltage Precautions in using various types of cable.
- 6. Ohm's Law –Simple electrical circuits and problems.
- 7. Resistors –Law of Resistance. Series and parallel circuits.
- 8. Kirchhoff's Laws and applications. Wheatstone bridge principle and its applications.
- 9. Common Electrical Accessories, their specifications-Explanation of switches lamp holders, plugs and sockets. Developments of domestic ckts, Alarm & switches, lamp, fan with individual switches, Two way switch.
- Chemical effect of electric current-Principle of electrolysis. Faraday's Law of electrolysis. Basic principles of Electro-plating and Electro chemical equivalents. Explanation of Anodes and cathodes. Lead acid celldescription, methods of charging-Precautions to be taken & testing equipment, Ni-cadmium & Lithium cell, Cathodic protection. Electroplating Anodising.

S.L.	EXAM NAME	EXAM DATE/TIME	No. OF QUESTIONS	
	Uttar Pradesh Powe	er Corporation Limited (UPPCL)	
1.	UPPCL TG-2	03.11.2023 Shift-I	1×150	
2.	UPPCL TG-2	03.11.2023 Shift-II	1×150	
3.	UPPCL TG-2	07.11.2023 Shift-I	1×150	
4.	UPPCL TG-2	07.11.2023 Shift-II	1×150	
5.	UPPCL TG-2	08.11.2023 Shift-I	1×150	
6.	UPPCL TG-2	08.11.2023 Shift-II	1×150	
7.	UPPCL TG-2	09.11.2023 Shift-I	1×150	
8.	UPPCL TG-2	09.11.2023 Shift-II	1×150	
9.	UPPCL TG-2	10.11.2023 Shift-I	1×150	
10.	UPPCL TG-2	10.11.2023 Shift-II	1×150	
11.	UPPCL TG-2	17.11.2023 Shift-I	1×150	
12.	UPPCL TG-2	17.11.2023 Shift-II	1×150	
13.	UPPCL TG-2	19.03.2021 Shift-I	1×150	
14.	UPPCL TG-2	19.03.2021 Shift-II	1×150	
15.	UPPCL TG-2	20.03.2021 Shift-I	1×150	
16.	UPPCL TG-2	20.03.2021 Shift-II	1×150	
17.	UPPCL TG-2	27.03.2021 Shift-I	1×150	
18.	UPPCL TG-2	27.03.2021 Shift-II	1×150	
19.	UPPCL IG-2	28.03.2021 Shift-I	1×150	
20.	UPPCL IG-2	28.03.2021 Shift-II	1×150	
21.	UPPCL TG-2	24.01.2019 Shift-I	1×150	
22.	UPPCL IG-2	24.01.2019 Shift-II	1×150	
23.	UPPCL IG-2	25.01.2019 Shift-I	1×150	
24.	UPPCL IG-2	25.01.2019 Shift-II	1×150	
25.	UPPCL IG-2	16.10.2016	1×100	
26.	UPPCL IG-2	11.11.2016	1×100	
27.	UPPCL TG-2	20.00.2010	1×100	
28.	UPPCL TG-2	02.08.2013	1×150	
29.	UPPCL TG-2	09.03.2013	1×150	
50.	UffCL 10-2 Litter Dradesh Daiya Vidhy	ut Utnadan Nigam Limit	d (UDDVUNI)	
31	Uttar Frauesh Kajya viuny UPRVINI TG-2	122 12 2022 (Shift - II)		
32	UPRVINI TG-2	22.12.2022 (Shift – I)	1×150	
32.	UDDVINI TG 2	21.12.2022 (Sint – I)	1×150	
33.	UPRVINI TG-2	14.07.2021 Shift-I	1×150	
35	UPRVINI TG-2	14.07.2021 Shift-II	1×150	
36	UPRVINI TG-2	15.07.2021 Shift-I	1×150	
37	UPRVINI TG-2	15.07.2021 Shift-II	1×150	
38	UPRVINL TG-2	17.07.2021 Shift-I	1×150	
39	UPRVINL TG-2	09.11.2016	1×150	
40	UPRVUNL (Electrical)	22.09.2015	1×150	
41	UPRVUNL TG-2	22.09.2015	1×150	
Riber State Power Holding Company Limited (RSPHCL)				
42	BIHAR TG-2	03 11 2018 (Batch-1)	1×50	
43.	BIHAR TG-2	03.11.2018 (Batch-2)	1×50	
44.	BIHAR TG-2	03.11.2018 (Batch-3)	1×50	
45.	BIHAR TG-2	03.11.2018 (Batch-4)	1×50	
46.	BIHAR TG-2	04.11.2018 (Batch-1)	1 × 50	
47.	BIHAR TG-2	04.11.2018 (Batch-2)	1×50	
48.	BIHAR TG-2	04.11.2018 (Batch-3)	1 × 50	
49.	BIHAR TG-2	27.11.2018 (Batch-1)	1 × 50	
50.	BIHAR TG-2	27.11.2018 (Batch-2)	1×50	
51.	BIHAR IG-2	28.11.2018 (Batch-2)	1×50	

Analysis Chart of Previous Year Electrician TG-2 and Other Technician Exams.

ISRO (Technician-B)			
52.	ISRO (SDSC) (Technician-B)	04.06.2022 (4.30–6.30)	1×80
53.	ISRO (URSC) (Technician-B)	03.11.2022 (12.0–1.30)	1×60
54.	ISRO (VSSC) (Technician-B)	14.07.2021 (4:30-6:30)	1×80
55.	ISRO (VSSC) (Technician-B)	02.06.2019	1×80
56.	ISRO (VSSC) (Technician-B)	10.02.2019	1×50
57.	ISRO (Technician-B)	02.06.2019	1×80
58.	ISRO (Technician-B)	24.03.2019	1×60
59.	ISRO (SDSC) (Technician-B)	10.02.2019	1×80
60.	ISRO (SDSC) (Technician-B)	29.04.2018 (2:30-4:0)	1×50
61.	ISRO (SAC Ahmedabad) (Technician-B)	01.07.2018	1×100
62.	ISRO (SAC Ahmedabad) (Technician-B)	18.11.2018	1×90
63.	ISRO (Technician-B) Ahmedabad	29.04.2018	1×90
64.	ISRO (Technician-B) Sriharikota	29.04.2018	1×50
65.	ISRO (VSSC) (Technician-B)	10.12.2017	1×80
66.	ISRO Satelite Centre Bengluru	2016	1×60
67.	ISRO Electronic Mechanic	2016	1×60
	Technician-B		
68.	ISRO Electroplating Technician-B	2016	1×60
69.	ISRO (URSC) (Technician-B)	27.11.2016 (9:30–11:00)	1×60
70.	ISRO (VSSC) (Technician-B)	25.09.2016	1×80
71.	ISRO (VSSC) (Technician-B)	06.11.2016	1×80
72.	ISRO (SAC Ahmedabad) (Technician-B)	06.11.2016	1×100
73	ISRO (VSSC) (Technician-B)	21.02.2015	1×60
	D	elhi (DSSSB)	
74.	DSSSB Electric Driver Motor Man	11.07.2023	1×100
75.	DSSSB Craft instructor	18.08.2019	1×100
76.	DSSSB Instructor Electrician	06.10.2019	1×100
77.	DSSSB Craft instructor wireman	01.09.2014	1×100
78.	DSSSB Craft instructor	10.02.2014	1×100
	Delhi Metro Ra	il Corporation (Maintain	ler)
79.	DMRC Maintainer (Electrician)	17.02.2020 (9.00 to 10.30)	1×75
80.	DMRC Maintainer (Electrician)	18.02.2020 (9.00 to 10.30)	1×75
81.	DMRC Maintainer (Electrician)	19.02.2020 (9.00 to 10.30)	1×75
82.	DMRC Maintainer (Electrician)	20.02.2020 (9.00 to 10.30)	1×75
83.	DMRC Maintainer (Electrician)	09.04.2018 (9.00 to 10.30)	1×75
84.	DMRC Maintainer (Electrician)	10.04.2018 (9.00 to 10.30)	1×75
85.	DMRC Maintainer (Electrician)	11.04.2018 (9.00 to 10.30)	1×75
86.	DMRC Maintainer (Electrician)	13.04.2018 (9.00 to 10.30)	1×75
87.	DMRC Maintainer (Electrician)	17.04.2018 (9.00 to 10.30)	1×75
88	DMRC Maintainer (Electrician)	18.04.2018 (9.00 to 10.30)	1×75
89.	DMRC Maintainer (Electrician)	15.02.2017	1×75
90.	DMRC Maintainer (Electrician)	21.02.2017	1×75
91.	DMRC Maintainer (Electrician)	13.07.2014	1×75
92.	DMRC Maintainer (Electrician)	15.04.2014	1×75
93.	DWIKC Maintainer (Electronic)	20.07.2014	1×75
UP/Lucknow Metro Rail Corporation (Maintainer)			
94.	UPWIKU (Electrician)	28.09.2021	1×/5
95.	LIVIKC Maintainer (Electrical)	10.03.2018	1×/5
90.	LIVIKC Maintainer (Electrical)	12.03.2018 (SnIII-2)	1×/5
97. 09	LIVINC Maintainer (Electrical)	16.02.2016	1×/3
70.	LIVING Wannahier (Electronic)	10.05.2010	1×/5

Noida, Jaipur & Bangalore Metro Rail Corporation (NMRC/JMRC/BMRC)			
99.	JMRC Maintainer (Electrician)	12.09.2022	1×45
100.	JMRC Maintainer (Electrician)	11.06.2021	1×55
101.	Noida Metro Maintainer (Electrician)	14.09.2019	1×45
102.	Noida Metro Maintainer (Electrician)	07.03.2017 (8.30 to 10.45)	1×75
103.	Noida Metro Maintainer (Electrician)	07.03.2017 (12.00 PM)	1×75
104.	Noida Metro Maintainer (Electrician)	2017	1×75
105.	Jaipur Metro Maintainer (Electrician)	2016	1×45
106.	Bangalore Matro Maintainer (Electrician)	2016	1×47
-	(Dicenteral)	Kerala PSC	L
107.	KPSC Electrician	07.05.2022	1×100
108.	KPSC Lineman	19.01.2021	1×100
109.	KPSC Lineman	19.02.2021	1×100
110.	KPSC Electrician	30.09.2020	1×100
111.	KPSC Lineman Instructor Electrician	16.09.2020	1×100
112.	KPSC Junior Instructor	19.08.2019	1×80
113.	KPSC Junior Instructor	19.08.2019	1×80
114.	KPSC Lineman	07.02.2018	1×80
115.	KPSC Electrician Instructor	16.01.2017	1×80
116.	KPSC Wireman Instructor	26.02.2016	1×80
117.	KPSC Lineman	21.04.2016	1×100
118.	KPSC Instructor wireman	30.08.2016	1×80
119.	KPSC Lineman	05.05.2016	1×80
120.	KPSC Electrician Instructor	22.07.2015	1×80
121.	KPSC Electrician	2015	1×80
122.	KPSC Lineman	10.12.2015	1×100
123.	KPSC Instructor Electronics	25.06.2014	1×80
124.	KPSC Instructor Electronics	15.09.2014	1×80
125.	KPSC Junior Instructor	09.07.2014	1×80
126.	KPSC Junior Instructor electronic mechanics	04.10.2010	1×80
	Rajasthan (JV	VNL) Electrician Helper	III
127.	JVVNL Electrician Helper III	02.11.2022	1×100
128.	JVVNL Electrician Helper III	27.08.2022	1×100
129	IVVNL Electrician Helper III	23 08 2018 (8:30)	1×100
130	IVVNL Electrician Helper III	23.08.2018 (12:00)	1×100
130.	IVVNI Electrician Helper III	23.08.2018 (3:30)	1×100
131.	IVVNI Electrician Helper III	24.08.2018 (8:30)	1×100
132.	IVVNL Electrician Helper III	24.08.2018 (12:00)	1×100
133.	IVVNL Electrician Helper III	24.08.2018 (12.00)	1×100
134.	IVVNL Electrician Helper III	25.08.2018 (8:30)	1×100
136	IVVNL Electrician Helper III	25.08.2018 (12:00)	1×100
130.	IVVNL Electrician Helper III	25.08.2018 (3:30)	1×100
138	IVVNL Electrician Helper III	27 08 2018 (8:30)	1×100
139	IVVNL Electrician Helper III	27.08.2018 (12.00)	1×100
140	JVVNL Electrician Helper III	27.08.2018 (3.30)	1×100
141.	JVVNL Electrician Helper III	29.08.2018 (8:30)	1×100
142.	JVVNL Electrician Helper III	29.08.2018 (12:00)	1×100
143.	JVVNL Electrician Helper III	29.08.2018 (3:30)	1×100
Rajasthan			
144.	RSMSSB Instructor (Electrician)	24.03.2019	100
145.	RSMSSB Instructor (Wireman)	24.03.2019	100

Madhya Pradesh			
146.	MPESB Electrician	22.12.2022	1×75
147.	MPESB Electrician	21.12.2022 (Morning)	1×75
148.	MPESB Electrician	21.12.2022 (Evening)	1×75
149.	MP Line Attendant	24.12.2018	1×75
150.	MP Line Attendant	24.08.2018	1×75
151.	MP Line Attendant	24.07.2018	1×75
152.	MP Line Attendant	23.07.2018	1×75
153.	MP Line Attendant	26.07.2017	1×75
154.	MP Line Attendant	26.08.2017	1×75
155.	MP Electrician instructor	07.11.2016 (Morning)	1×50
156.	MP Electrician Instructor	07.11.2016 (Evening)	1×50
		Guiarat	
157.	GSSSB Technical Instructor	01.01.2022	1×150
158.	GSSSB Supervisor Instructor	15.09.2019	1×150
159	GSSSB Electronics instructor	22.01.2017	1×150
160	GSSSB Instructor electrical	15 01 2016	1×150
161	GSSSB Instructor electrician	27.03.2016	1×150
162	GSSSB Instructor grade B	30.12.2016	1×150
102.		Maharashtra	1/100
163	MAHA TRANSCO Electrician		1×80
105		Jharkhand	1×00
164	JSSC Technician	20.10.2023	1×120
165	JSSC Technician	19.09.2023	1×120
		Uttarakhand	
166.	UKSSSC Electrician instructor	16.09.2021	1×100
167.	UKSSSC Electrician instructor	16.06.2019	1×100
168.	UKSSSC Tech. Electrical instructor	21.11.2017	1×100
		Puniab	
169.	Chandigarh Assistant Lineman	09.04.2023	1×100
170.	Punjab Electrical instructor	07.07.2013	1×60
171.	Punjab Wireman instructor	07.07.2013	1×60
	Hir	nachal Pradesh	
172.	HPSSC Hamirpur electrician instructor	13.10.2019	1×120
173	HP SSC Wireman Instructor	15.07.2018	1×120
		Harvana	
174	HSSC (ALM) Shift-I	14 03 2020	1×40
175	HSSC (ALM) Shift-II	14 03 2020	1×40
176.	HSSC (ALM) Shift-III	14.03.2020	1×40
177.	HSSC electrician instructor	12.12.2019	1×40
178.	HSSC Electronics Mechanic instructor	17.12.2019	1×40
179.	Haryana Shifting Assistant Shift-I	2016	1×32
180.	Haryana Shifting Assistant Shift-II	2016	1×32
Arunachal Pradesh			
181.	APSSB Instructor electrician	18.09.2021	1×50
182.	ITI supervisor Instructor electrical	27.03.2011	1×150
183.	Electrical instructor	13.04.2005	1×70
Telangana			
184.	TSSPDCL junior lineman Telangana	2022	1×80
185.	TS TRANSCO junior lineman	10.07.2020	1×70
	Telangana		

West Bengal			
186.	WBSETCL Electrician	2023	1×120
187.	WBPSC Electrician Instructor	23.05.2021	1×150
188.	WBPSC Electrician Instructor	18.09.2021	1×150
		NVS	
189.	NVS Electrician cum plumber	08.03.2022 (12:30-3:00)	1×60
190.	NVS Electrician cum plumber	08.03.2022 (12:30-3:00)	1×60
		GAIL	
191.	GAIL – Technician (Telecom & Telemetry)	21.11.2022	1×50
192	GAIL – Technician (Telecom & Telemetry)	19.12.2022	1×40
	Or	dnance Factory	
193.	Ordnance factory ITI Technician	17.01.2022	1×50
194.	Ordnance Factory	2017	1×80
		CPRI	
195.	CPRI Technician Trade I	31.07.2023 (12:00-1:30 PM)	1×40
196.	CPRI-ITI-Electrician	09.12.2022 (1:00- 2:30 PM)	1×40
197.	CPRI-ITI-Electrician	09.12.2022(9:00-10:30 AM)	1×40
198.	CPRI Technician Trade	05.02.2021	1×55
	RAILWAY RECRUIT	TMENT BOARD ALP/T	echnician
199.	Assistant Loco pilot (ALP)	21.01.2019 (12.30 to 3.00)	1×75
200.	Assistant Loco pilot (ALP)	22.01.2019 (8.30 to 11.00)	1×75
201.	Assistant Loco pilot (ALP)	22.01.2019 (4.30 to 7.00)	1×75
202.	Assistant Loco pilot (ALP)	23.01.2019 (8.30 to 11.00)	1×75
203.	Assistant Loco pilot (ALP)	23.01.2019 (12.30 to 3.00)	1×75
204.	Assistant Loco pilot (ALP)	23.01.2019 (4.30 to 7.00)	1×75
205.	R.R.B. Mumbai Asst. Loco Pilot	03.06.2001	1×13
206.	R.R.B. Gorakhpur Asst. Loco Pilot	21.10.2001	1×14
207.	R.R.B. Secunderabad Asst. Loco Pilot	11.11.2001	1×12
208.	R.R.B. Patna Asst. Loco Pilot	11.11.2001	1×13
209.	R.R.B. Gorakhpur Asst. Loco Pilot	14.04.2002	1×12
210.	R.R.B. Kolkata Asst. Loco Pilot	29.09.2002	1×12
211.	R.R.B. Chennai/Bangalore Asst. Loco Pilot	27.10.2002	1×14
212.	R.R.B. Mumbai/Bhopal Asst. Loco Pilot	05.01.2003	1×13
213.	R.R.B. Ranchi Asst. Loco Pilot	19.01.2003	1×13
214	R.R.B. Chandigarh Asst. Loco Pilot	25.05.2003	1×14
215.	R.R.B. Ranchi Asst. Loco Pilot	21.09.2003	1×12
216.	R.R.B. Gorakhpur Asst. Loco Pilot	12.10.2003	1×11
217.	R.R.B. Bangalore Asst. Loco Pilot	25.01.2004	1×13
218.	R.R.B. Ajmer Asst. Loco Pilot	23.05.2004	1×10
219.	R.R.B. Trivandrum Asst. Loco Pilot	20.06.2004	1×14
220.	R.R.B. Ajmer Asst. Loco Pilot	10.10.204	1×14
221.	R.R.B. Ahmadabad Asst. Loco Pilot	17.10.2004	1×13
222.	R.R.B. Kolkata Asst. Loco Pilot	06.02.2005	1×13
223.	R.R.B. Mumbai Asst. Loco Pilot	05.06.2005	1×12
224.	R.R.B. Ajmer Asst. Loco Pilot	05.06.2005	1×12
225.	R.R.B. Ranchi Asst. Loco Pilot	04.09.2005	1×14
226.	R.R.B. Guwahati Asst. Loco Pilot	22.01.2006	1×14
227.	R.R.B. Kolkata Asst. Loco Pilot	16.07.2006	1×14

229. R.R.B. Malda Asst. Loco Pilot 16 07.2006 1×11 230. R.R.B. Orathpur Asst. Loco Pilot 08 10.2007 1×11 231. R.R.B. Bangalore Asst. Loco Pilot 08 07.2007 1×12 233. R.R.B. Manchi Asst. Loco Pilot 09 12.2007 1×12 234. R.R.B. Altahabad Asst. Loco Pilot 09 12.2007 1×12 235. R.R.B. Altahabad Asst. Loco Pilot 03 08 2008 1×12 236. R.R.B. Altahabad Asst. Loco Pilot 103 08 2008 1×12 237. R.R.B. Colkata Asst. Loco Pilot 102 02009 1×11 238. R.R.B. Kolkata Asst. Loco Pilot 104 09 2008 1×12 239. R.R.B. Murafhayn Asst. Loco Pilot 104 06 2009 1×11 240. R.R.B. Gorakhgur Asst. Loco Pilot 114 06 2009 1×11 241. R.R.B. Gorakhgur Asst. Loco Pilot 106 06 62010 1×12 242. R.R.B. Gorakhgur Asst. Loco Pilot 106 06 62010 1×12 243. R.R.B. Jammu-Kashnir Asst. Loco Pilot 15 07 2012 1×14 244. R.R.B. Gorakhg	228.	R.R.B. Mumbai Asst. Loco Pilot	16.07.2006	1×13
230. R.R.B. Gorakhpur Asst. Loco Pilot 08.10.2006 1×11 231. R.R.B. Bangalore Asst. Loco Pilot 06.07.2007 1×12 233. R.R.B. Allahaba Asst. Loco Pilot 08.07.2007 1×12 234. R.R.B. Allahaba Asst. Loco Pilot 09.12.2007 1×12 235. R.R.B. Allahaba Asst. Loco Pilot 09.02.008 1×14 236. R.R.B. Allahaba Asst. Loco Pilot 03.08.2008 1×12 237. R.R.B. Chandigath Asst. Loco Pilot 02.01.2008 1×11 238. R.R.B. Kolkata Asst. Loco Pilot 10.02.01.008 1×11 239. R.R.B. Buhubneswar Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Buhubneswar Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Gorakhpur Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Horenia Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Hamaliore Asst. Loco Pilot 15.07.2012 1×13 245. R.R.B. Humbain Asst. Loco Pilot 15.07.2012 1×14 247. R.R.B. Mumbai Ass	229.	R.R.B. Malda Asst. Loco Pilot	16.07.2006	1×13
231. R.R.B. Patna Asst. Loco Pilot 04.02.2007 1×11 232. R.R.B. Bangalore Asst. Loco Pilot 08.07.2007 1×14 233. R.R.B. Ranchi Asst. Loco Pilot 09.02.2007 1×14 234. R.R.B. Sanchi Asst. Loco Pilot 09.02.2007 1×12 235. R.R.B. Allahabad Asst. Loco Pilot 03.08.2008 1×12 236. R.R.B. Chandigath Asst. Loco Pilot 14.09.2008 1×12 237. R.R.B. Kolkata Asst. Loco Pilot 16.02.2009 1×11 248. R.R.B. Muzaffarpur Asst. Loco Pilot 14.06.2009 1×11 240. R.R.B. Muzaffarpur Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Chennai Asst. Loco Pilot 11.00.2009 1×11 242. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 243. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×13 245. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 246. R.R.B. Bangalore Asst. Loco	230.	R.R.B. Gorakhpur Asst. Loco Pilot	08.10.2006	1×11
232. R.R.B. Bangalore Asst. Loco Pilot 08.07.2007 1×12 233. R.R.B. Allahabad Asst. Loco Pilot 08.07.2007 1×12 234. R.R.B. Allahabad Asst. Loco Pilot 09.12.2007 1×12 235. R.R.B. Allahabad Asst. Loco Pilot 03.08.2008 1×14 236. R.R.B. Chandigath Asst. Loco Pilot 03.08.2008 1×12 237. R.R.B. Chandigath Asst. Loco Pilot 02.11.2008 1×11 238. R.R.B. Kokata Asst. Loco Pilot 16.02.2009 1×11 240. R.R.B. Blubmeswar Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Blubmeswar Asst. Loco Pilot 11.00.2009 1×11 242. R.R.B. Gorakhpur Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Gorakhpur Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 246. R.R.B. Jammu-Kashmir Asst. Loco Pilot 15.07.2012 1×14 247. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Balagap	231.	R.R.B. Patna Asst. Loco Pilot	04.02.2007	1×11
233. R.R.B. Ranchi Asst. Loco Pilot 08.07 2007 1×14 234. R.R.B. Allahabad Asst. Loco Pilot 09.12.2007 1×12 235. R.R.B. SceunderJabd Asst. Loco Pilot 03.08.2008 1×12 236. R.R.B. SceunderJabd Asst. Loco Pilot 14.09.2008 1×12 237. R.R.B. Kolkata Asst. Loco Pilot 02.11.2008 1×11 238. R.R.B. Kolkata Asst. Loco Pilot 14.09.2009 1×11 240. R.R.B. Mumbai Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Mumbai Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Mumbai Asst. Loco Pilot 11.00.2009 1×11 243. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 244. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 245. R.R.B. Jammu-Kashmir Asst. Loco 110 06.06.2010 1×12 244. R.R.B. Secunderabad Asst. Loco Pilot 15.07.2012 1×13 246. R.R.B. Bubaneswar Asst. Loco Pilot 15.07.2012 1×12 247. R.R.	232.	R.R.B. Bangalore Asst. Loco Pilot	08.07.2007	1×12
234. R.R.B. Allahabad Asst. Loco Pilot 09.12.2007 1×12 235. R.R.B. Secunderabad Asst. Loco Pilot 29.06.2008 1×14 236. R.R.B. Nalhabad Asst. Loco Pilot 03.08.2008 1×12 237. R.R.B. Chandigarh Asst. Loco Pilot 02.01.2008 1×12 238. R.R.B. Muaffapur Asst. Loco Pilot 10.2009 1×11 240. R.R.B. Muxfapur Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Mumbai Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Gorakhupar Asst. Loco Pilot 14.06.2010 1×12 243. R.R.B. Gorakhupar Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×14 245. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 246. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×14 247. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×12 248. R.R.B. Bubaneswar Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bubaneswar As	233.	R.R.B. Ranchi Asst. Loco Pilot	08.07.2007	1×14
235. R.R.B. Secunderabad Asst. Loco Pilot 29.06.2008 1×14 236. R.R.B. Allahabad Asst. Loco Pilot 03.08.2008 1×12 237. R.R.B. Chandigarh Asst. Loco Pilot 02.11.2008 1×11 238. R.R.B. Muzaffarpur Asst. Loco Pilot 15.02.2009 1×11 240. R.R.B. Bububesware Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Murbai Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Bhopal Asst. Loco Pilot 10.60.60.2010 1×12 243. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 245. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 246. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×13 247. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bangalore Asst. Loco Pilot 2014 1×100 252. R.R.B. Ahmedabad	234.	R.R.B. Allahabad Asst. Loco Pilot	09.12.2007	1×12
236. R.R.B. Allahabad Asst. Loco Pilot 03.08 2008 1×12 237. R.R.B. Chandigarh Asst. Loco Pilot 14.09.2008 1×11 238. R.R.B. Kolkata Asst. Loco Pilot 02.11.2008 1×11 239. R.R.B. Kolkata Asst. Loco Pilot 14.06.2009 1×11 240. R.R.B. Bhubneswar Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Mumbai Asst. Loco Pilot 06.06.2010 1×12 243. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 244. R.R.B. Secunderabad Asst. Loco Pilot 15.07.2012 1×13 245. R.R.B. Secunderabad Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bangalor Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Bangalor Asst. Loco Pilot 2014 1×100 251. R.R.B. Bangalor Asst. Loco Pilot 2014 1×100 252. R.R.B. Ahmedabad Asst. Loco Pil	235.	R.R.B. Secunderabad Asst. Loco Pilot	29.06.2008	1×14
237. R.B. Chandigarh Asst. Loco Pilot 14.09.2008 1×12 238. R.B. Kolkata Asst. Loco Pilot 02.11.2008 1×11 240. R.B. Bubuneswar Asst. Loco Pilot 15.02.2009 1×11 241. R.B. Bubuneswar Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Gorakhpur Asst. Loco Pilot 11.10.2009 1×11 243. R.R.B. Bhopal Asst. Loco Pilot 06.06.2010 1×12 244. R.B. Bhopal Asst. Loco Pilot 06.06.2010 1×12 245. R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 246. R.R.B. Chandigarh Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 249. R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×12 251. R.R.B. Bilagur Asst. Loco Pilot 2014 1×100 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Soliguri Asst. Loco Pilot 2014 1×100 254. R.R.B. Soliguri Asst.	236.	R.R.B. Allahabad Asst. Loco Pilot	03.08.2008	1×12
238. R.B. Kolkata Asst. Loco Pilot 02.11.2008 1×11 239. R.B. B. Muzaffarpur Asst. Loco Pilot 15.02.2009 1×11 240. R.R.B. Bububeswar Asst. Loco Pilot 14.06.2009 1×11 241. R.B.B. Bubusewar Asst. Loco Pilot 11.02.009 1×11 242. R.B.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Scunderabad Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Scunderabad Asst. Loco Pilot 15.07.2012 1×13 246. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Buhubaneswar Asst. Loco Pilot 15.07.2012 1×11 251. R.R.B. Buhubah Asst. Loco Pilot 2014 1×100 253. R.R.B. Sulaco Pilot 2014 1×100 254. R.R.B. Sulaco Pilot 2014 1×100 255. R.R.B. Sulaco Pilot 2014 <td< td=""><td>237.</td><td>R.R.B. Chandigarh Asst. Loco Pilot</td><td>14.09.2008</td><td>1×12</td></td<>	237.	R.R.B. Chandigarh Asst. Loco Pilot	14.09.2008	1×12
239. R.B. B. Murbai Asst. Loco Pilot 15.02.2009 1×11 240. R.B. B. Murbai Asst. Loco Pilot 14.06.2009 1×11 241. R.B.B. Murbai Asst. Loco Pilot 11.02009 1×11 242. R.B. B. Orakhpur Asst. Loco Pilot 06.06.2010 1×12 243. R.B. B. Chennai Asst. Loco Pilot 06.06.2010 1×12 244. R.B. Scunderabad Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×12 244. R.B. Scunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Murbai Asst. Loco Pilot 15.07.2012 1×13 248. R.B. Scunderabad Asst. Loco Pilot 15.07.2012 1×14 249. R.B. B. Bhubaneswar Asst. Loco Pilot 15.07.2012 1×11 250. R.R.B. B. Bhubaneswar Asst. Loco Pilot 2014 1×100 251. R.B. B. Bubaneswar Asst. Loco Pilot 2014 1×100 252. R.B. B. Kolkat Asst. Loco Pilot 2014 1×100 253. R.B. B. Kolkat Asst. Loco Pilot 2014 1×100 254. R.R.B. Scunde	238.	R.R.B. Kolkata Asst. Loco Pilot	02.11.2008	1×11
240. R.R.B. Bhubneswar Asst. Loco Pilot 14.06.2009 1×11 241. R.R.B. Mumbai Asst. Loco Pilot 11.0.2009 1×11 242. R.R.B. Gorakhpur Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Bhopal Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 246. R.R.B. Scunderabad Asst. Loco Pilot 15.07.2012 1×13 247. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 248. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Bubaneswar Asst. Loco Pilot 15.07.2012 1×12 251. R.R.B. Bubaneswar Asst. Loco Pilot 2014 1×100 252. R.R.B. Anedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Neita Asst. Loco Pilot 2014 1×100 255. R.R.B. Subada Asst. Loco Pilot <t< td=""><td>239.</td><td>R.R.B. Muzaffarpur Asst. Loco Pilot</td><td>15.02.2009</td><td>1×11</td></t<>	239.	R.R.B. Muzaffarpur Asst. Loco Pilot	15.02.2009	1×11
241. R.R.B. Mumbai Asst. Loco Pilot 14.06.2009 1×11 242. R.R.B. Gorakhpur Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 246. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Secunderabad Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×13 249. R.R.B. Buhagalore Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Buhapenswar Asst. Loco Pilot 15.07.2012 1×12 251. R.R.B. Buhapenswar Asst. Loco Pilot 15.07.2012 1×13 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Stilguri Asst. Loco Pilot 2014 1×100 254. R.B. B. Stilguri Asst. Loco Pilot 2014 1×100 255. R.R.B. Stilguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Stilguri Asst. Loco Pil	240.	R.R.B. Bhubneswar Asst. Loco Pilot	14.06.2009	1×11
242. R.B. Graakhpur Asst. Loco Pilot 11.10.2009 1×11 243. R.B. Bhopal Asst. Loco Pilot 06.06.2010 1×12 244. R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×12 249. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×12 250. R.R.B. Bilaspur Asst. Loco Pilot 15.07.2012 1×11 251. R.R.B. B. Bilaspur Asst. Loco Pilot 15.07.2012 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Solikata Asst. Loco Pilot 2014 1×100 254. R.R.B. Patna Asst. Loco Pilot 2014 1×100 255. R.R.B. Hamedabad Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot <td< td=""><td>241.</td><td>R.R.B. Mumbai Asst. Loco Pilot</td><td>14.06.2009</td><td>1×11</td></td<>	241.	R.R.B. Mumbai Asst. Loco Pilot	14.06.2009	1×11
243. R.R.B. Bhopal Asst. Loco Pilot 06.06.2010 1×12 244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×14 245. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×14 246. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Sceunderabad Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Bhubaneswar Asst. Loco Pilot 15.07.2012 1×11 251. R.R.B. Bangalore Asst. Loco Pilot 2014 1×100 253. R.R.B. Namedabad Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2	242.	R.R.B. Gorakhpur Asst. Loco Pilot	11.10.2009	1×11
244. R.R.B. Chennai Asst. Loco Pilot 06.06.2010 1×12 245. R.R.B. Jammu-Kashnir Asst. Loco 06.06.2010 1×14 246. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×12 250. R.R.B. Bilaspur Asst. Loco Pilot 15.07.2012 1×12 251. R.R.B. Bilaspur Asst. Loco Pilot 15.07.2012 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Solkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Solkata Asst. Loco Pilot 2014 1×100 256. R.R.B. Patan Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician 17.01.2022 1×80 258. NFL Non Executive examination 17.04.2021	243.	R.R.B. Bhopal Asst. Loco Pilot	06.06.2010	1×12
245. R.R.B. Jammu-Kashmir Asst. Loco 06.06.2010 1×14 246. R.R.B. Secunderabad Asst. Loco Pilot 06.06.2010 1×12 247. R.R.B. Mumbai Asst. Loco Pilot 15.07.2012 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot 15.07.2012 1×14 249. R.R.B. Bangalore Asst. Loco Pilot 15.07.2012 1×13 250. R.R.B. Bilappir Asst. Loco Pilot 15.07.2012 1×12 251. R.R.B. Bilappir Asst. Loco Pilot 15.07.2012 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Nent Asst. Loco Pilot 2014 1×100 255. R.R.B. Non Executive examination 17.01.2022 1×80 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.04.2021	244.	R.R.B. Chennai Asst. Loco Pilot	06.06.2010	1×12
246. R.R.B. Secunderabad Asst. Loco Pilot $06.06.2010$ 1×12 247. R.R.B. Mumbai Asst. Loco Pilot $15.07.2012$ 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot $15.07.2012$ 1×14 249. R.R.B. Bnagalore Asst. Loco Pilot $15.07.2012$ 1×13 250. R.R.B. Bhubaneswar Asst. Loco Pilot $15.07.2012$ 1×11 251. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Sliguri Asst. Loco Pilot 2014 1×100 254. R.R.B. Sliguri Asst. Loco Pilot 2014 1×100 255. R.R.B. Sliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Neat Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician $17.01.2022$ 1×80 258. NFL Non Executive examination $17.04.2021$ 1×100 261. IREL Tradesman $17.04.2021$ 1×50	245.	R.R.B. Jammu-Kashmir Asst. Loco Pilot	06.06.2010	1×14
247. R.R.B. Mumbai Asst. Loco Pilot $15.07.2012$ 1×13 248. R.R.B. Chandigarh Asst. Loco Pilot $15.07.2012$ 1×14 249. R.R.B. Bangalore Asst. Loco Pilot $15.07.2012$ 1×13 250. R.R.B. Binbubaneswar Asst. Loco Pilot $15.07.2012$ 1×12 251. R.R.B. Binspur Asst. Loco Pilot $15.07.2012$ 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 254. R.R.B. Shiguri Asst. Loco Pilot 2014 1×100 255. R.R.B. Shiguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Shiguri Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician $20.08.2022$ 1×80 258. NFL Non Executive examination $17.01.2022$ 1×80 259. NPCIL ITI Maintainer $04.09.2022$ 1×50 260. NCL Electrician $11.02.2018$ 1×120 261. IREL Tradesman $17.04.2021$ 1×50 262. NPCIL (STM)	246.	R.R.B. Secunderabad Asst. Loco Pilot	06.06.2010	1×12
248. R.R.B. Chandigarh Asst. Loco Pilot $15.07.2012$ 1×14 249. R.R.B. Bangalore Asst. Loco Pilot $15.07.2012$ 1×13 250. R.R.B. Bhubaneswar Asst. Loco Pilot $15.07.2012$ 1×12 251. R.R.B. Bhubaneswar Asst. Loco Pilot $15.07.2012$ 1×12 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Shiguri Asst. Loco Pilot 2014 1×100 255. R.R.B. Shiguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician $20.08.2022$ 1×80 258. NFL Non Executive examination $17.01.2022$ 1×80 259. NPCIL TI Maintainer $04.09.2022$ 1×50 261. IREL Tradesman $17.04.2021$ 1×50 262. NPCIL (STM) 31.22019 1×50 263. PGCIL 411.2018 1×120 264. IOCL Technical Attendant </td <td>247.</td> <td>R.R.B. Mumbai Asst. Loco Pilot</td> <td>15.07.2012</td> <td>1×13</td>	247.	R.R.B. Mumbai Asst. Loco Pilot	15.07.2012	1×13
249. R.R.B. Bangalore Asst. Loco Pilot $15.07.2012$ 1×13 250. R.R.B. Bhubaneswar Asst. Loco Pilot $15.07.2012$ 1×12 251. R.R.B. Bilaspur Asst. Loco Pilot $15.07.2012$ 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician $20.08.2022$ 1×80 258. NFL Non Executive examination $17.01.2022$ 1×80 259. NPCIL ITI Maintainer $04.09.2022$ 1×50 260. NCL Electrician $18.12.2021$ 1×50 261. IREL Tradesman $17.04.2021$ 1×50 262. NPCIL (STM) $03.12.2019$ 1×50 263. PGCIL 1×100 1×120 264. IOCL Technical Attendant $11.02.2018$ 1×120 </td <td>248.</td> <td>R.R.B. Chandigarh Asst. Loco Pilot</td> <td>15.07.2012</td> <td>1×14</td>	248.	R.R.B. Chandigarh Asst. Loco Pilot	15.07.2012	1×14
250. R.R.B. Bhubaneswar Asst. Loco Pilot $15.07.2012$ 1×12 251. R.R.B. Bilaspur Asst. Loco Pilot $15.07.2012$ 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 257. R.R.B. Cord Electrician 2008.2022 1×80 258. NFL Non Executive examination $17.01.2022$ 1×80 259. NPCIL ITI Maintainer $04.09.2022$ 1×50 260. NCL Electrician $18.12.2021$ 1×100 261. IREL Tradesman $17.04.2021$ 1×50 262. NPCIL (STM) $03.12.2019$ 1×50 263. PGCIL $14.11.2018$ 1×120 264. IOCL Technical Attendant $11.02.2018$ 1×55 265. CRPF Constable Tradesman 2016 <td>249.</td> <td>R.R.B. Bangalore Asst. Loco Pilot</td> <td>15.07.2012</td> <td>1×13</td>	249.	R.R.B. Bangalore Asst. Loco Pilot	15.07.2012	1×13
251. R.R.B. Bilaspur Asst. Loco Pilot $15.07.2012$ 1×11 252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 257. ONGC Trade Electrician $20.08.2022$ 1×80 258. NFL Non Executive examination $17.01.2022$ 1×80 259. NPCL ITI Maintainer $04.09.2022$ 1×50 260. NCL Electrician $18.12.2021$ 1×100 261. IREL Tradesman $17.04.2021$ 1×50 262. NPCIL (STM) $03.12.2019$ 1×50 263. PGCIL $14.11.2018$ 1×120 264. IOCL Technical Attendant $11.02.2018$ 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Constable Tradesman 2015 1×3	250.	R.R.B. Bhubaneswar Asst. Loco Pilot	15.07.2012	1×12
252. R.R.B. Ahmedabad Asst. Loco Pilot 2014 1×100 253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×45 265. CRPF Constable Tradesman 2016 1×45	251.	R.R.B. Bilaspur Asst. Loco Pilot	15.07.2012	1×11
253. R.R.B. Ranchi Asst. Loco Pilot 2014 1×100 254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×20 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×45 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267.	252.	R.R.B. Ahmedabad Asst. Loco Pilot	2014	1×100
254. R.R.B. Kolkata Asst. Loco Pilot 2014 1×100 255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel	253.	R.R.B. Ranchi Asst. Loco Pilot	2014	1×100
255. R.R.B. Siliguri Asst. Loco Pilot 2014 1×100 256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×36 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician	254.	R.R.B. Kolkata Asst. Loco Pilot	2014	1×100
256. R.R.B. Patna Asst. Loco Pilot 2014 1×100 Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×45 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×34 270. ESIC Electrician 2015 1×34 270. ESIC Electrician 2015 1×45 271. THDC Electrician 2015	255.	R.R.B. Siliguri Asst. Loco Pilot	2014	1×100
Other State & PSU's Examinations 257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×34 270. ESIC Electrician 2015 1×34 270. ESIC Electrician 2015 1×45 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×3	256.	R.R.B. Patna Asst. Loco Pilot	2014	1×100
257. ONGC Trade Electrician 20.08.2022 1×80 258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×45 265. CRPF Constable Tradesman 2016 1×38 267. HAL Electrician 2015 1×38 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×35 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total 20879 1<×38		Other State	& PSU's Examinations	
258. NFL Non Executive examination 17.01.2022 1×80 259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×34 270. ESIC Electrician 2015 1×34 270. ESIC Electrician 2015 1×35 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38	257.	ONGC Trade Electrician	20.08.2022	1×80
259. NPCIL ITI Maintainer 04.09.2022 1×50 260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×38 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×45 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total Total 1×38 1×38	258.	NFL Non Executive examination	17.01.2022	1×80
260. NCL Electrician 18.12.2021 1×100 261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×34 270. ESIC Electrician 2015 1×34 270. ESIC Electrician 2015 1×45 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total Total 1×38 1×38	259.	NPCIL ITI Maintainer	04.09.2022	1×50
261. IREL Tradesman 17.04.2021 1×50 262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×45 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38	260.	NCL Electrician	18.12.2021	1×100
262. NPCIL (STM) 03.12.2019 1×50 263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 270. Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38	261.	IREL Tradesman	17.04.2021	1×50
263. PGCIL 14.11.2018 1×120 264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×38 272. MAZGAON DOCK Ltd. 2013 1×38 270. ENC Electrician 2015 1×39	262.	NPCIL (STM)	03.12.2019	1×50
264. IOCL Technical Attendant 11.02.2018 1×65 265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	263.	PGCIL	14.11.2018	1×120
265. CRPF Constable Tradesman 2016 1×45 266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	264.	IOCL Technical Attendant	11.02.2018	1×65
266. CRPF Overseer 2016 1×38 267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	265.	CRPF Constable Tradesman	2016	1×45
267. HAL Electrician 2015 1×36 268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	266.	CRPF Overseer	2016	1×38
268. MES Electrician Tradesman 2015 1×39 269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 2015	267.	HAL Electrician	2015	1×36
269. VIZAAG Steel Electrician 2015 1×34 270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total 20879	268.	MES Electrician Tradesman	2015	1×39
270. ESIC Electrician 2015 1×55 271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	269.	VIZAAG Steel Electrician	2015	1×34
271. THDC Electrician 2015 1×45 272. MAZGAON DOCK Ltd. 2013 1×38 Total	270.	ESIC Electrician	2015	1×55
272. MAZGAON DOCK Ltd. 2013 1×38 Total 20879	271.	THDC Electrician	2015	1×45
Total 20879	272.	MAZGAON DOCK Ltd.	2013	1×38
	Total			20879

Trend Analysis of Electrician Questions Through Pie Chart and Bar Graph

 The main purpose of commutator in DC generator is? (a) To convert AC to DC (b) To reduce copper losses (c) To invert DC to AC (d) To reduce Iron losses UPPCL TG-2, 17.11.2023, Shift-II JSSC Electrician-19.09.2023 ONGC Electrician-20.08.2022 UPPCL TG-2, 28.03.2021 Shift I ISRO (VSSC) – Technician B, 14.07.2021 UPPCL TG-2, 25.01.2019 Shift I ISRO (VSSC) – Technician B, 24.01.2019 	 Ans : (a) DC generator works on the principle of faraday's law of electromagnetic induction. It is used to convert mechanical energy to electrical energy. According to faraday's law of electromagnetic induction we know that when a current carrying conductor is placed in a varying magnetic field an emf is induced in the conductor. If the variable loss of a D.C generator is equal to the fixed loss, then which of the following statements regarding its efficiency is correct? (a) Maximum efficiency (b) Full load efficiency
UPPCL TG-2, 2015 Ans : (a) The main purpose of commutator in D.C generator is to convert AC to DC. The material used in commutator is hard drawn copper. Split ring are also known as a commutator. For D.C generator commutator is known as a	 (c) Half of maximum efficiency (d) Twice of maximum efficiency MAHATRANSCO Electrician-2023 UPPCL TG-2, 28.03.2021 Shift II UPPCL TG-2 Electrical, 2015 UPPCL TG-2, 24.01.2019 Shift I GSSB Instructor Grade B- 30.12.2016 RSMSSB Instructor Electrician- 24.03.2019
 mechanical rectifier or rotating rectifier. For DC motor commutator is known as mechanical inverter or rotating inverter. In D.C machine, number of commutator segment are equal to the number of armature coils. How are the interpole field coils of a D.C generator are connected? (a) In parallel with the armature winding (b) In series with the armature winding (c) In parallel with the field winding 	 Ans (a) : The variable loss of a D.C generator is equal to the fixed loss, then the maximum efficiency variable loss = fixed loss Armature copper loss in DC machine are about 30% of the total full load losses. Field winding copper loss in DC machine are about 25% theoretically, but practically it is constant. Brush losses in DC machine are usually assumed to be about 2 volt. Mechanical losses in DC machine are usually very
 (d) In series with the field winding UPPCL TG-2, 09.11.2023, Shift-II UPPCL TG-2, 28.03.2021 Shift I ALP Technician- 23.01.2019, 8:30-11:00 ISRO (VSSC) Technician (B)- 14.07.2021, 4:30-6:30 MP Line Attendant- 27.07.2018 Keral PSC Wireman Instructor-26.02.2016 Ans : (b) The interpole field coils of a D.C generator are connected in series with the armature winding. Hence the same current will flow in the interpole winding but in opposite direction. 	 small about 15% of full load loss. 5. Which of the following is known as the outer frame in DC machines? (a) Yoke (b) Armature core (c) Commutator (d) Brushes (e) Shaft UPPCL TG-2, 09.11.2023, Shift-I JVVNL Technical Helper-27.08.2022, 12:00-2:00PM UPPCL TG-2, 24.01.2019 Shift-II UPRVVNL TG-2, 15.07.2021 Shift-I LMRC Maintainer Electrician Exam-2016 UPPVVNL TG-2, 21.12.2023 Shift II
 Interpole is a small pole. No. of inter pole is equal to the main pole. By this method demagnetization and cross-magnetization effect can be eliminated hence it improve commutation in the interpole region. And sparking will reduces at commutator surface. DC generators works on the principle of (a) Faraday's law of electromagnetic induction (b) Kirchhoff's law (c) Lenz's law (d) Ampere's law UPPCL TG-2 (24-01-2019) Shift-I UPPCL TG-2 (24-01-2019) Shift-I UPPCL TG-2 (24-01-2019) Shift-I UPPCL TG-2 (24-01-2019) Shift-I ISRO Ahmedabad (29-04-2018) 	Ans. (a) : Outer frame in D.C machine is called yoke.Yoke act as the protective coveringIt supports the main field pole as well as interpole.It provides flux path completion $\left(\frac{\phi}{2}\right)$ therefore yoke should be good magnetic material.In small D.C machine it is made by cast iron but in case of large size machine it is made by cast steel and rolled steel.6. The material used in split rings is- (a) Gold (b) Copper (c) Iron (d) Aluminium (e) PlasticUPPCL TG-2, 10.11.2023, Shift-I UPPCL TG-2, 25.01.2019 Shift-II UPPCL TG-2, 28.03.2021 Shift-II

60

Ans. (b) : The material used in split rings is copper.	Ans. (d) : If the series field turns are so adjusted that,
■ Split ring are also known as commutators.	the full load terminal voltage is equal to the no-load
• Split-ring or commutator is a rotating part of	terminal voltage, the generator is know as level
D.C machine.	compounded generator.
■ In D.C machine, Number of commutator segment are	Level compounded generator is used in short
equal to the number of armature coils.	distances such as in noted and office buildings because
• The main function of commutator in a DC	the loss of voltage over a small lengths of feeder is
machine is to change AC voltage into DC	negligible.
voltage and vice-versa	Over compounded generator –
 For D C generator commutator is known as a 	If the series field ampere-turns are such that the rated-
Tot D.C generator commutator is known as a machanical rectifier or rotating rectifier	load voltage is greater than the no-load voltage, the
E E E E E E E E E E E E E E E E E E E	generator is over compounded generator.
For D.C motor commutator is known as	Under compounded generator –
mechanical inverter or rotating inverter.	If the series field ampere-turn are such that the rated-
7. Rotational losses in electrical machines consist	load voltage is less than the no-load voltage then the
	generator is under-compounded.
(a) Friction and windage losses	Over compounded
(b) Stator core, friction and windage losses	Flator level compounded
(c) Rotor core, friction and windage losses	terminal
(d) Stray load losses and friction and windage	voltage
losses	21 22
UPPCL TG-2, 10.11.2023, Shift-I	Troll load automat
IUCL 1 echnical Attendent-12.09.2022	Full load current
JVVNL Electrician Helper -III, 24.08.2018 Shift-I IVVNL Electrician Helper-III 24.08 2018 Shift-I	10. In a DC generator, the generated EMF is
Ans (a) :Rotational losses in electrical machines	inversely proportional to
consist of friction and windage losses	(a) The magnetic flux per pole
■ Friction and windage losses are the mechanical	(b) The speed of armature
losses	(c) The number of parallel paths
Losses in a rotating D.C machine:-	(d) The number of poles
(i) Copper losses or variable losses :-	UPPCL TG-2, 08.11.2023, Shift-I
Armature copper loss	UPPCL TG-2, 09.11.2023, Shift-I
■ Field copper loss	UPRVUNL (TG-2) 21.12.2022, Shift-II
■ Losses due to brush contact resistance	IREL Electrician Trades man- 04.09.2022
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths.
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths.
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\boxed{E_g = \frac{NP\phi Z}{60A}}$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\boxed{E_g = \frac{NP\phi Z}{60A}}$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\boxed{E_g = \frac{NP\phi Z}{60A}}$ Where,
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\boxed{E_g = \frac{NP\phi Z}{60A}}$ Where, $E_g = Generated emf$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\boxed{E_g = \frac{NP\phi Z}{60A}}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\varphi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter (d) Electric generator 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $ \begin{bmatrix} E_g = \frac{NP\phi Z}{60A} \end{bmatrix} $ Where, $ E_g = Generated emf$ $ N = Speed in r.p.m$ $ P = number of pole$ $ \phi = Flux in per pole $
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter (d) Electric generator UPPCL TG-2, 09.11.2023, Shift-I 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\varphi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductor$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter (d) Electric generator UPPCL TG-2, 09.11.2023, Shift-I UPRVUNL TG-2, 15.07.2021 Shift II UPRVUNL TG-2, 15.07.2021 Shift II 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, E_g = Generated emf N = Speed in r.p.m P = number of pole ϕ = Flux in per pole Z = number of armature conductor A = Number of parallel path
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II HSSC ALM- 14.03 2020 Shift-II 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of parallel path$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $ \begin{bmatrix} E_g = \frac{NP\phi Z}{60A} \end{bmatrix} $ Where, $ E_g = Generated emf$ $ N = Speed in r.p.m$ $ P = number of pole$ $ \phi = Flux in per pole$ $ Z = number of armature conductor$ $ A = Number of parallel path$ $ \begin{bmatrix} E_{g} = \frac{1}{2} \end{bmatrix} $
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter (d) Electric generator UPPCL TG-2, 19.011.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-III HSSC ALM- 14.03.2020 Shift-III HSSC ALM- 14.03.2020 Shift-III 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of parallel pathE_g \propto \frac{1}{A}$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-III HSSC ALM- 14.03.2020 Shift-III HSSC ALM- 14.03.2020 Shift-III Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $ \begin{bmatrix} E_g = \frac{NP\phi Z}{60A} \end{bmatrix} $ Where, $ E_g = \text{Generated emf} \\ N = \text{Speed in r.p.m} \\ P = \text{number of pole} \\ \phi = \text{Flux in per pole} \\ Z = \text{number of armature conductor} \\ A = \text{Number of parallel path} \\ \begin{bmatrix} E_g \propto \frac{1}{A} \end{bmatrix} $ E.M.F is directly proportional to speed, number of pole,
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift II UPRCUNL TG-2, 15.07.2018 Shift-III HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11.Which of the following is defined as the stray$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2018 Shift-III HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\varphi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\begin{bmatrix} E_g = \frac{NP\varphi Z}{60A} \end{bmatrix}$ Where, $E_g = \text{Generated emf}$ N = Speed in r.p.m P = number of pole $\phi = \text{Flux}$ in per pole Z = number of armature conductor A = Number of parallel path $\begin{bmatrix} E_g \propto \frac{1}{A} \end{bmatrix}$ E.M.F is directly proportional to speed, number of pole, flux-and number of conductor. 11. Which of the following is defined as the stray loss in a DC generator? (a) Power loss in lateral circuit
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\begin{bmatrix} E_g = \frac{NP\varphi Z}{60A} \end{bmatrix}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole$ $\phi = Flux in per pole$ $Z = number of armature conductor$ $A = Number of parallel path$ $\begin{bmatrix} E_g \propto \frac{1}{A} \end{bmatrix}$ E.M.F is directly proportional to speed, number of pole, flux-and number of conductor. 11. Which of the following is defined as the stray loss in a DC generator? (a) Power loss in lateral circuit (b) Mechanical loss + core loss
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019 Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\begin{bmatrix} E_g = \frac{NP\varphi Z}{60A} \end{bmatrix}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole$ $\phi = Flux in per pole$ $Z = number of armature conductor$ $A = Number of parallel path$ $\begin{bmatrix} E_g \propto \frac{1}{A} \end{bmatrix}$ E.M.F is directly proportional to speed, number of pole, flux-and number of conductor. 11. Which of the following is defined as the stray loss in a DC generator? (a) Power loss in lateral circuit (b) Mechanical loss + core loss (c) Frictional loss of breaking + frictional loss in
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy is called electric generator. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known as generator. 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\varphi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductorA = Number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?(a) Power loss in lateral circuit(b) Mechanical loss + core loss(c) Frictional loss of breaking + frictional loss incommutator + Air friction loss$
 Losses due to brush contact resistance Losses due to brush contact resistance Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift II UPCL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known as generator.	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductorA = Number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?(a) Power loss in lateral circuit(b) Mechanical loss + core loss(c) Frictional loss of breaking + frictional loss incommutator + Air friction loss$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift-II UPRVUNL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the noload terminal voltage, the generator is known as generator. (a) Un-compounded (b) Over compounded (c) Under compounded (d) Level compounded 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductorA = Number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?(a) Power loss in lateral circuit(b) Mechanical loss + core loss(c) Frictional loss of breaking + frictional loss incommutator + Air friction loss(d) Hysteresis loss + eddy current loss$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric wattmeter (d) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift II UPCL TG-2, 15.07.2021 Shift-III HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known as generator. (a) Un-compounded (b) Over compounded (c) Under compounded (d) Level compounded (c) Under compounded 	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\phi Z}{60A}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductorA = Number of parallel pathE_g \propto \frac{1}{A}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?(a) Power loss in lateral circuit(b) Mechanical loss + core loss(c) Frictional loss of breaking + frictional loss incommutator + Air friction loss(d) Hysteresis loss + eddy current lossUPPCL TG-2, 07.11.2023, Shift-IIUPPCL TG-2, 07.11.2023, Shift-II$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPSC Lineman Instructor-15.07.2018 Mas. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy is called electric generator. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known as generator. (a) Un-compounded (b) Over compounded (c) Under compounded (d) Level compounded (c) Under compounded (d) Level compounded (c) Under compounded (d) Level compounded (f) Level CTG-2, 07.11.2023, Shift-II UPPCL TG-2, 07.11.2023, Shift-II UPPCL	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $\begin{bmatrix} E_g = \frac{NP\varphi Z}{60A} \end{bmatrix}$ Where, $E_g = Generated emf$ $N = Speed in r.p.m$ $P = number of pole\phi = Flux in per poleZ = number of armature conductorA = Number of parallel path\begin{bmatrix} E_g \propto \frac{1}{A} \end{bmatrix}E.M.F is directly proportional to speed, number of pole,flux-and number of conductor.11. Which of the following is defined as the strayloss in a DC generator?(a) Power loss in lateral circuit(b) Mechanical loss + core loss(c) Frictional loss of breaking + frictional loss incommutator + Air friction loss(d) Hysteresis loss + eddy current lossUPPCL TG-2, 08.11.2023, Shift-IIUPPCL TG-2, 08.11.2023, Shift-II$
 Losses due to brush contact resistance (ii) Iron losses or constant losses:- Hysteresis loss Eddy current loss (iii) Stray losses = Iron loss + mechanical loss 8. What is the electrics machine that converts mechanical energy into electrical energy is called? (a) Electric circuit breaker (b) Electric motor (c) Electric generator UPPCL TG-2, 09.11.2023, Shift-II UPRVUNL TG-2, 14.07.2021 Shift II UPCL TG-2, 15.07.2021 Shift-II HSSC ALM- 14.03.2020 Shift-III HSSC Lineman Instructor-15.07.2018 Ans. (d) : The electric machine that converts mechanical energy into electrical energy is called electric generator. Electric motor device that convert electrical energy into mechanical energy. 9. If the series field turns are so adjusted that, the full load terminal voltage is equal to the no-load terminal voltage, the generator is known as generator. (a) Un-compounded (b) Over compounded (c) Under compounded (d) Level compounded (c) Under compounded (d) Level compounded (f) Level compounded (g) TG-2, 07.11.2023, Shift-II UPRVUNL (TG-2, 17.11.2023, Shift-II UPRVUNL (TG-2, 07.11.2023, Shift-II UPRVUNL (TG-2) 21.12.2022, Shift-II UPRVUNL (TG-2) 21.12.2022, Shift-II UPRVUNL (TG-2) 21.12.2023, Shift-II UPRVUNL (TG-2) 21.12.2023, Shift-II UPRVUNL (TG-	IREL Electrician Trades man- 04.09.2022 DSSSB Craft Instructor Wireman- 01.09.2019Ans. (c) : In a DC generator, the generated E.M.F is inversely proportional to number of parallel paths. $E_g = \frac{NP\varphi Z}{60A}$ Where, E_g = Generated emf $N =$ Speed in r.p.m $P =$ number of pole $\phi =$ Flux in per pole $Z =$ number of armature conductor $A =$ Number of parallel path $E_g \propto \frac{1}{A}$ E.M.F is directly proportional to speed, number of pole, flux-and number of conductor.11. Which of the following is defined as the stray loss in a DC generator? (a) Power loss in lateral circuit (b) Mechanical loss + core loss (c) Frictional loss of breaking + frictional loss in commutator + Air friction loss (d) Hysteresis loss + eddy current loss UPPCL TG-2, 28.03.2021 Shift-II UPPCL TG-2, 25.01.2013, Shift-II UPPCL TG-2, 25.01.2014, Shift-II UPPCL TG-2, 25.01.2015, Shift-II UPPCL

 Ans (b) : Mechanical loss loss in DC generator. ■ There are same uncount that are difficult to measu Strayloss = mech 12. The generator madue to- (a) Its being kept is (b) A heavy short of (c) Heavy overload (d) Its being subject 	s + core loss is known as stray table losses in a D.C machine re are called stray losses. anicalloss + core loss y loss its residual magnetism dle of along time circuit ding eted to much heat	Ans. (a) : For a DC generator, external characteristic shows relation between terminal voltage and load current. External characteristic (V/I _L) – This curve show the relation between the terminal voltage (V) and load current (I _L). Internal characteristics (E_g/I_a) – This curve shows the relation between the generated e.m.f on load (E_g) and armature current (I _a). Open circuit characteristic (O.C.C) – This curve shows the relation between the generated e.m.f at No-load (E_o) and the field current (I _F) at
(e) All of the optio U JVVNL Technical I	ns PPCL TG-2, 08.11.2023, Shift-II Helper-27.08.2022,12:00-2:00PM	 constant speed. 16. Which one of the part of DC generator is used to spread out the flux in the air gap uniformly?
 Ans. (e) : A generator due to heating, vibration a 13. Which of the follo parallel operation 	RRB Chandigarh (LP)- 2012 may lose residual magnetism nd over excitation. wing is NOT a condition for of DC generator?	(a) Pole shoes (b) Pole core (c) Armature core (d) Commutator UPPCL TG-2, 17.11.2023, Shift-II UPPCL TG-2, 09.11.2023, Shift-II ISRO (VSSC) Technician (B) 25.09.2016
 (a) Same percenta (b) Same voltage r (c) Same operating (d) Same percenta movers U 	ge voltage regulation rating g temperature age speed regulation of prime PPCL TG-2, 08.11.2023, Shift-II	 Ans. (a) : Pole shoes of dc generator is used to spread out the flux in the air gap uniformly. ■ Pole shoes is attached to pole core by means of counter shunk screw. Pole shoe is made by to cast iron or cast steel. Pole shoe is laminated in order to reduce eddy current loss.
Image: Ans (c) Same ope condition for parallel oper	UPPCL TG-2, 19.03.2021 Shift I JPPCL TG-2, 27.03.2021 Shift-II rating temperature is not a ration of DC generator	 Pole shoe provide mechanical support to the field winding. It distributes the magnetic field uniformly through air gap.
Condition for parallel op Same percentage voltage Same voltage rating	peration of DC generator :- e regulation	 It provide low reluctance path for field flux An ideal DC generator is one that has voltage regulation.
Same percentage speed 14. A dc generator un have	regulation of prime movers. used for arc welding should	(a) Maximum (b) Negative (c) Zero (d) Positive UPPCL TG-2, 09.11.2023, Shift-I (CRPE Constable Tradesman Uttar Pradesh
 (a) raising charact (b) perpendicular c (c) straight charact (d) decoming charact 	eristics haracteristics teristics	Electrician-06.01.2013 Ans : (c) An ideal DC generator is one that has zero voltage regulation.
(u) urooping chara U U	UPPCL TG-2, 07.11.2023, Shift-I PPCL TG-2, 08.11.2023, Shift-II UPPCL TG-2, 08.11.2023, Shift-II (UPPCL-TG-2, 08.11.2023, Shift-I (UPPCL-TG2-Electrical-2015)	Voltage regulation = No load voltage – full load voltage Full load voltage ■ Shunt generator is positive voltage regulation.
Ans : (d) A DC generato have dropping characteri ■ A differential compou- welding.	r used for arc welding should stic. nd DC generator used for arc	Series generator is negative voltage regulation. Order of voltage regulation in descending order- Series > differential > over compound > shunt > separately compound > Flat compound.
Type of Generator	Application	18. Which of the following collects current from the commutator?
Shunt Generator	Battery charging	(a) Bearings
Series Generator	Used as booster	(b) Bearing plate
compound	nor tamp toad and for heavy	(c) Carbon brush
Generator	electric railway.	(u) Terminar plate UPPCL TG-2. 07.11.2023. Shift-II
15. For a DC gener	ator, external characteristic	UPPCL TG-2, 17.11.2023, Shift-II
shows relation bet	ween	UPPCL Technical Grade-II Electrical 11.11.2016
(a) Lerminal volta (b) Terminal volta	ge and load current	Ans: (c) Carbon brush is collecting current from the
(c) Generated volt	age and filed current	■ Brush is a stationary part of DC machine. Which is
(d) Generated volt	age and armature current	collect the current from commutator in DC generator.
U UPRV KPSP Electrici	PPCL TG-2, 17.11.2023, Shift-II UNL (TG-2) 21.12.2022, Shift-II ian Water Transport- 25.02.2016	 In DC motor, brushes are use to provide DC current to commutator from DC supply. Carbon brushes are used for low capacity machine.

29.	Full load armature current of a 200 V, dc series	Given that, V_{0} and V_{0} = 200 V
	develops if the total resistance of armature	$\sqrt{0}$ on age ($\sqrt{0}$) = 200 $\sqrt{0}$ A rmature current (L) = (L) = 20 A
	circuit is 0.10?	Armature resistance (R_a) = 0.50
	(a) 8750 W (b) 8500 W	Generated voltage $(E_{\alpha}) = ?$
	(c) 10 kW (d) 9750 W	Formula, $E_{\sigma} = V + I_a R_a$
	UPPCL TG-2, 17.11.2023, Shift-II	$E_{g}^{5} = 200 + 20 \times 0.5$
Ans.	(d): Given that,	$E_g = 210V$
	Voltage (V) = 200 V	33. A DC shunt generator delivers an armature
	Armature current $(I_a) = 50 A$	current of 22 A on full load full load with a
	Armature Resistance $(R_a) = 0.1\Omega$	terminal voltage of 200 V. If the field current is
	Mechanical power $(P_m) = ?$	2 A, What is the load power?
	$P_{\rm m} = V I_{\rm a} - I_{\rm a}^{-} K_{\rm a}$ $P_{\rm m} = 200 \times 50 - 50^{2} \times 0.1$	(a) 400 W (b) 4 kW
	$P_m = 200 \times 30 = 30 \times 0.1$ $P_m = 10.000 = 2500 \times 0.1$	(c) 4.4 KW (d) 2 KW
	$P_{\rm m} = 10,000 - 2500 \times 0.1$	UPPCL 1G-2, 17.11.2023, Smit-11
	P = -9750 W	Ans. (D):
	$T_{\rm m} = 9750 \text{ W}$	
30.	The motor generator set can be used for	
	conversion for electrical power from AC to DC	E Q ^{r,} la
	(a) induction motor and induction generator	
	(b) induction motor and DC generator] ↓₽
	(c) DC motor and DC generator.	Given that
	(d) DC motor and induction generator.	Armature current $(I_a) = 22$ Amp
	UPPCL TG-2, 17.11.2023, Shift-II	Terminal voltage $(V) = 200 V$
Ans.	(b) : The motor generator set can be used for	Field current $(I_f) = 2$ Amp
conv	ersion for electrical power from AC to DC by	Load power $(P) = ?$
using	induction motor and DC generator.	$I_L = I_a - I_{sh}$
	or-Generator set-	$I_{\rm L} = 22 - 2$
	otor generator set is a device used to convert sical power to another form of energy (Mostly ΔC	$\frac{\mu_L = 20 \text{ Amp}}{\mu_L = 20 \text{ Amp}}$
to DC	C).	$P = 200 \times 20$
■ It	consists of a motor and a generator connected	P = 4000
mech	anically on the same shaft.	P = 4 kW
■ A	motor set is a convert consisting of a three phase	34 Which of the following materials is used for the
AC n	notor and a DC generator (generally compound DC	field coils of a DC generator?
gener	ator) which is used to convert the AC supply to the	(a) Nichrome (b) Carbon
DC S	upply and vice versa.	(c) Copper (d) Silica
31.	In an 8-pole DC generator, now many cycles of FMF are generated in one completed rotation	UPPCL TG-2, 09.11.2023, Shift-I
	of the armature?	Ans. (c) : Field coil of DC generator is usually made up
	(a) 16 (b) 4 (c) 2 (d) 8	of copper because it has good electrical conductivity,
	UPPCL TG-2, 17.11.2023, Shift-II	Field goil are former wound and placed on each rele
Ans.	(b) : In an 8-pole DC generator, 4 cycles of emf	and are connected in series
are g	enerated in one completed rotation of the armature.	■ Vake is made up of cast iron steel
Henc So fo	e, one cycle is generated for a two pole generator.	 Pole shoes serve two numerose
32	A separately excited DC generator givens lead	(i) They support field coil
52.	voltage of 200V, while taking a line current of	(i) Spread out the flux in air gap uniformly
	20A. What is the generated voltage if the	 Armature core is made of silicon steel laminations
	armature resistance is 0.5 Ω?	which are insulated from each other by insulating
	(a) 210 V (b) 220 V	varnish coating.
	(c) 200 V (d) 190 V	35. The armature MMF in a DC machine is
A	<u>UPPCL TG-2, 17.11.2023, Shift-II</u>	with respect to field poles and with
Ans.	(a):	reference to armature.
ſ		(a) zero, infinite (b) infinite, zero
+	」→古"。 † ¹	(c) stationary, rotating (d) rotating, stationary
V, -	r _R ∃ Q [±] ↓b	UTTUL IG-2, 09.11.2023, SMIT-I
	3 TR, IA	Alls. (c): The armature MINIF in a DC machine is stationary with respect to field note and rotating with
	[] ↓ ₽	reference to armature
1 2		reference to armature.

According to figure-	(c) Providing compensating winding in parallel
$I_a = I_{se} = I_{sh} + I_L$	(d) Paducing amore turns in field winding
Now,	CPRI ITI Electrician-19 12 2022 9:00-10:30AM
Shunt field current $(I_{cb}) = -\frac{V}{C_{cb}}$	Ans (a) : To provide compensating winding in series
R _{sh}	with the armature to compensate for the demagnetizing
4 00	effect of low induced emf in large machine.
$I_{\rm sh} = \frac{1}{200}$	Armature reaction :- The effect of armature flux on
$L_{\rm th} = 2$ Amp	the main field flux is known as armature reaction.
\therefore Armature current (I ₂) = I _{sb} + I _I	In order to reduce the effect of armature reaction
$I_a = 2 + 180^{-1}$	following methods are used :-
$I_a = 182 \text{ Amp}$	(1) High reluctance pole tip
∴ Now,	(ii) By increase the reluctance in the armature flux
$E = V + I_a R_a + I_{se} R_{se} + Brush drop$	(iii) strong main field flux
$E = 400 + 182 \times 0.04 + 182 \times 0.03 + 2 \{I_a = I_{se}\}$	(iv) Interpole
E = 400 + 182 (0.04 + 0.03) + 2	(v) compensating winding.
$E = 400 + 182 \times 0.07 + 2$	50. The number of armature parallel paths in a 4-
E = 400 + 12.74 + 2	is
E = 414.74 volt	(a) 2
46. Stray losses are caused due to-	(b) $\frac{1}{4}$
(a) Infinite flow of current	(c) 8
(b) Due to insulation	(d) 12
(c) Lamination	TRANSCO JLM-11.02.2018
(d) Leakage of flux MDESD Electricity 21 12 2022	Ans. (b) : The number of armature parallel path in a 4-
MIPESB Electrician-21.12.2022	pole D.C generator having lap winding is 4.
Ans. (d) : Stray losses are caused due to leakage of flux.	Lap winding :-
Stray loss is the sum of mechanical loss and iron loss.	Lap winding the number of parallel paths is equal to
stray loss: - The combination of inction losses due to moving of bearing, shaft and windage losses due to air	the total number of poles.
gan is called stray loss	A = P
47 By which affact of electric current both	The number of brushes is equal to the number of
47. By which elect of electric current both generator and motor are working?	parallel paths.
(a) Physical (b) Chemical	Wave winding :-
(c) Magnetic (d) Heating	■ Wave winding the number of parallel paths is always
IOCL Technical Attendent-12.09.2022	equal to two $A - 2$
HPSSC Lineman instructor 15.07.2018	The number of brushes in wave winding is two
Ans. (c) : Magnetic effect of electric current both	• The field goils of D C generator are usually
generator and motor are working.	made of
An electric motor is a device that converts electrical	(a) Mica
energy into mechanical energy.	(b) Copper
An electric generator is a device that converts	(c) Cast Iron
mechanical energy into electrical energy.	(d) Carbon
48. Bearings are used for	TRANSCO JLM-11.02.2018
(a) Support and hold the shaft in fixed position	RSMSSB Junior Instructor Electrician- 24.03.2019
(b) Allow the shall to fun freely	UPPCL Electrician TG-2, 16.10.2016
(d) All the above	Ans. (b) : The field coil of D.C generator are usually
(d) All the above IOCL Technical Attendent-12.09.2022	made of copper.
Punjah Wireman Instructor 07 07 2013	Field coll of D.C generator or motor is usually made
Ans (d) \cdot Bearing are used for following region -	and good thermal conductivity
Support and hold the shaft in fixed position	Voke
 Allow the shaft to run freely 	In small D C machine it is made by cost iron but in case
 Minimize the rubbing action. 	of large size machine it is made by cost steel and rolled
To reduce the frictional losses.	steel.
■ In D.C machines ball bearing or roller bearing are	Armature core :-
commonly used.	Armature core is made up of silicon steel material
49. How can we compensate for the demagnetizing	Pole and pole shoe:-
effect of low induced emf in large machines?	Pole and pole shoe is made of steel but the pole shoe is
(a) To provide compensating winding in series	laminated.
with the armature	Commutator :-
(b) Increasing ampere turns in the field winding	it is made of hard drown copper.

 57. The armature reaction of an unsaturated DC machine is- (a) Cross- magnetization 	60. A four-pole dynamo, has 600 conductors in total and runs at 1000 rpm. It is lap wound and its flux/pole is 0.064 wb. Find the induced
(b) Demagnetization	EMF.
(c) Both cross-magnetization and demagnetization	(a) $160 V$ (b) $320 V$
(a) None of the options	(c) 480 v (d) 640 v
JVVNL Technical Helper-02.11.2022, 12:00-14:00 PM	JVVNL Technical Helper-27.08.2022.12:00-2:00PM
UPRVUNL (TG-2) ,21.12.2022 Shift-I	Ans. (d) : Given that-
Ans. (a): The armature reaction of an unsaturated DC	Number of poles in $(P) = 4$
Before saturation of main field note there is only cross	No. of parallel path $(A) = 4$
magnetising effect of armature reaction. After saturation	Speed of armature in RPM $(N) = 1000$
or saturated there is demagnetising and cross-	Magnetic flux per pole (ϕ) = 0.064 wb
magnetising effect both are observed.	1 otal no. of armature conductor $(Z) = 600$
58. The armature core of a DC generator is	NAPZ
Iaminated to-	$E_g = \frac{1}{60} \frac{1}{2}$
(b) Reduce eddy current loss	00A 1000×0.064×4×600
(c) Reduce mass	$E_{g} = \frac{1000 \times 0.004 \times 4 \times 000}{60.004}$
(d) Provide a passage for cooling air	60×4
(e) Reduce hysteresis loss	$E_g = 640 V$
JVVNL Technical Heiper-27.08.2022,12:00-2:00PM	61. The open-circuit characteristic of DC
laminated to reduce eddy current loss.	generators is also known as a/an-
■ The armature core of a DC generator is made of	(a) Internal characteristic
silicon steel.	(b) No-load saturation characteristic
Eddy current are circulating currents that are	(d) Performance characteristic
induced in the conducting material (in this case,	(e) External characteristic
the armature core) when it is exposed to changing	UPPCL TG-2, 10.11.2023 Shift I
magnetic field.	JVVNL Technical Helper-27.08.2022,12:00-2:00PM
■ In familiating affiature core, it is divided into this insulated layers, which effectively reduces the	Ans. (b) : The open-circuit characteristic (o.c.c) is also
nath for eddy current to flow and minimizes the	known as magnetic characteristic or no load saturation
associated power losses.	■ This characteristic show the relation between
59. Wave winding is employed in a DC machine	generated emf at no-load (E_0) and the field current (I_F)
for-	at a given fixed speed ($E_o V_S I_f$).
(a) High current and low voltage rating	Internal characteristics (E _g /I _a)
(b) Low current and high voltage rating	An internal characteristic curve show the relation hot $\mathcal{L}_{\mathcal{L}}$ and the
(d) Low current and low voltage rating	armature current (I)
(e) All of the options	External characteristics (V/I_{I})
JVVNL Technical Helper-27.08.2022,12:00-2:00PM	An external characteristic curve shows the relation
Ans. (b) : Wave winding is employed in a DC machine	between terminal voltage (v) and the load current (I_L) .
for low current and high voltage rating.	62. The peripheral distance between two sides of a
Wave winding :-	coll, measured in terms of the number of armature slots between them is called
■ wave winding used for high voltage and low	(a) Pole pitch (b) Coil pitch
■ In wave winding the number of parallel path is	(c) Back pitch (d) Front pitch
always equal to two $(A = 2)$	(e) Resultant pitch
■ Wave winding is incomplete winding. It is	JVVNL Technical Helper-27.08.2022,12:00-2:00PM
mechanically unbalanced. to make it balance, a	Ans. (b) : The peripheral distance between two sides of
dummy coil is used.	a coll, measured in terms of the number of armature slots between them is called coll nitch
Number of brushes required is two.	siots between them is called con pitch.
Lap winding :-	Back pinch
■ Lap winding used for low voltage and high	windlessmith 1 2 Front night 1' 2'
current.	or Resultant nich b
$\blacksquare \text{ number of orushes are equal to number of }$	
Number of parallel path is equal to number of	
nole $(A = P)$	
Equalizer ring used to stop circulating current	

72. When magnetic reversals are increased in dc	Ans. (c) : Where,	
generators, which loss will increase rapidly?	No. of poles $(P) = 6$	
(a) Hysteresis loss (b) Friction loss (a) Conner loss (d) Eddy current loss	Flux $(\phi) = 0.035$ Wb	
(C) Copper loss (d) Eddy current loss UPRVINL (TG-II) 21 12 2022 Shift-I	Total No. of conducto	rs(Z) = 800
Ans (a) · When magnetic reversals are increased in de	Rotational speed of armature r	pm(N) = 1500 rpm
generators then hysteresis loss will increase rapidly	No. of parallel path in armatur	e(A) = 6
Hysteresis loss in DC generator- The loss that occurs	for a lap wound generator $A = D$	
in core of the armature of a dc machine due to magnetic	A - P Generated emf(E) =	9
field reversal in the armature core when it passes under	E m f equation of generator is	given as follows
the successive magnetic pole of different polarity is	NAP7	given us ionows
called hysteresis.	$E_g = \frac{1}{60}$	
hysteresis loss $(P_h) = K_h B_{max}^{1.6} f v$	500A	
where K_h = steinmetz's hysteresis coefficient.	$E_{a} = \frac{1500 \times 0.035 \times 65}{100}$	×800
$B_{max} = maximum$ flux density	60×6	
f = frequency	$E_g = 500 \times 0.035 \times 40$	
V = volume of armature core	$E_g = 700 \text{ V}$	
73. In a DC generator armature lap winding, how	76. In DC generator arm	nature is simplex wave
many parallel paths must be there?	winding, how many	parallel paths must be
(a) I riple the number of poles (b) Half the number of poles	(a) Double the number	ofpoles
(c) Double the number of poles	(a) Double the number (b) two	of poles
(d) Equal to number of poles	(c) Half the number of	poles
UPRVUNL (TG-II) 21.12.2022. Shift-I	(d) Equal to number of	poles
Ans. (d) : In a DC generator armature lap winding the	UPRVUNL (1	G-2) 21.12.2022, Shift-II
number of parallel paths must be equal to number of poles.	Ans. (b) : In D.C generator an	mature number of parallel
A = P	path in simplex wave winding	is 2.
In a DC generator armsture wave winding the number	A = 2m	
of parallel path must be equal two	Where $m = multiplicity$	
$\left[A - 2 \right]$	m = 1 for simplex	
A-2	m = 2 for duplex	
74. Which of the following is NOT effect of	m = 3 for triplex	
(a) Paduction in generated EME	\therefore A = 2×1	
(a) Reduction in generated EMP (b) Commutation problem	A = 2	
(c) Shifting of magnetic neutral axis	77 In a DC Generator	Poles are joined to the
(d) Increase in number of poles	Yoke with the help of:	i ones une gonneu to the
UPRVUNL (TG-2) 21.12.2022, Shift-II	(a) Groove and brazing	g (b) Electrical wire
Ans. (d) : Increase in number of poles is not effect of	(c) Rivet and soldering	(d) Bolts and welding
armature reaction in DC generator.	UPRVUNL	<u>FG-2 22.12.2022, Shift-II</u>
Effect of armature reaction-	Ans. (d) : In a DC generator	r, poles are joined to the
The total magnetic flux created by each pole is reduced.	yoke with the help of Bolts and	d welding.
■ The MINA (magnetic neutral axis) is shifted in the direction of rotation of the armature this shifting of	Yoke- It is the outer covering p	art of the DC generator and
MNA is due to shifting in the axis of resultant flux	Is made of cost steel of cost from.	it serves two purposes.
The armature causes a magnetic flux in the neutral	Provides a path for pole fit	
zone. This flux in the neutral zone induces a voltage in	Provides mechanical support	ort to the whole machine.
armature which causes commutation problem.	Part	Material
Methods of reducing armature reaction in D.C	Yoke	Cast steel
generator:-	Pole core and Pole Shoe	Cast steel
Using laminated poles.	Armature core	Laminated steel
 Functing rectangular noies in field poles. Stronger main field flux as compared to armsture flux. 	Commutator	Hard drawn copper
 Subliger main netw nux as compared to armature flux. Using compensating windings 	Brusnes (Small machine)	Copper or carbon
■ Using interpoles	70. Kead the following st	atements for armature
75 A 6-pole lap wound DC generator has 800	correct ontion	chines and select the
conductors on its armature. The flux ner nole	Statements 1. Net redu	uction in the main flux
is 0.035 Wb. The speed of rotation of the	called as cross magneti	zing effect.
armature is 1500 RPM. Calculate the	Statements 2. Distortio	on of the main field flux
generated EMF?	along the air gap	periphery called as
(a) $1400V$ (b) $350V$	demagnetizing effect.	10
$\begin{array}{c} (c) / 000 \\ \text{UDDVINI} (TC 2) 21 12 2022 \\ \text{SLIP} U \\ \end{array}$	(a) Statements I is false	and Statements 2 is true
UPKVUNL (1G-2) 21.12.2022, Shift-II	(b) Statements I is true	and Statements 2 is false

YCT

 84. In whi are ma (a) Br (b) Gu (c) Ca (d) Zi Ans. (c) : T carbon and g The only generator is segments. The brushebrush holder 85. The D import (a) Ge (b) Ge (c) Ge (d) Ge 	ch material th ade? onze unmetal orbon and graph nc Carbide ISRO (VSS) The brushes of raphite these ar- function of the to collect es are housed in or brush box. C and AC gen tant function, to enerated emf is enerated emf is enerated emf is enerated emf is enerated emf is enerated emf is enerated emf is	e brushes of DC generator ite <u>SC) Technician (B) 25.09.2016</u> dc generators are made of e rectangular block shaped. ese carbon brushes of DC current from commutator a the rectangular box shaped merators are similar in one that is the: DC AC pulsating current an oscillating current <u>SC) Technician (B) 25.09.2016</u> C generators are similar in	 (c) Copper loss (d) None of the above ISRO (SAC Ahmedabad) Technician (B) 01.07.2018 DMRC Maintainer- 17.04.2018, 9:00-10:30 RSMSSB Instructor Wireman-24.03.2019 RRB Jammu Srinagar (LP)- 2010 KPSC Instructor Electrician- 16.09.2020 ALP Technician 23.01.2019, 4:30- 7:00 Technical Helper- 29.08.2018, Shift-II Haryana Shifting Asst2016, Shift-II Haryana Shifting Asst2016, Shift-II Haryana Shifting Asst2016, Shift-II Haryana Shifting (looping) currents produced in a solid metal due to change in magnetic field. (magnetic flux) in the metal are called eddy currents. On applying an alternating magnetic field to a magnetic material an emf is induced in the material itself according to Faraday's law of electromagnetic induction. They will occur when the conductor experiences a changing magnetic field. As these currents does not do any useful work, and it produces I²R loss in the magnetic material is known as
one importa	ant function gen	erated emf in AC.	an Eddy current loss.
some majo	e following	between AC and DC	■ Eddy current flow in closed loops within core, in planes perpendicular to the magnetic field
AC ge	nerator	DC generator	■ If the core is made up to solid iron of larger cross-
The curre	ent reverses	The current flows only	sectional area, the magnitude of eddy current will be
direction per	riodically	in one direction	very large and hence losses will be high.
The AC ge	enerator does	DC Generators have	■ 10 reduce the eddy current loss mainly there are two methods-
not nave con	minutators	the current flow in one	1. The magnitude of the current can be reduced by
		direction only.	splitting the solid core into thin sheets called
AC Generat	tors have slip	DC Generators have	laminations.
rings		commutators.	2. The eddy current loss is also reduced by using a magnetic material having ferrites
The initial generator is	cost of a AC	The initial cost of a DC generator is low	Eddy current loss $(\mathbf{p}) = k \mathbf{B}^2 \mathbf{f}^2 t^2 \mathbf{y}$ watt
Generators	are very	Generators are less	$\frac{[\text{Eddy current loss}(p_e) - \kappa_e D_m^{-1} t v]}{\text{watt}}$
efficient as	the energy	efficient due to sparking	Where, $\mathbf{D} \rightarrow \mathbf{E} ddy \text{ surrant loss (watt)}$
losses are le	SS.	and other losses like	$P_e \rightarrow Eddy$ current loss (wall) $R \rightarrow Maximum$ Flux density (wh/m ²)
	<u>a</u> 11 (copper, eddy current	$f \rightarrow Frequency of supply (Hz)$
86. In a D	C. machine, t	he number of commutator	$t \rightarrow Thickness of lamination (meter)$
(a) Ni	ints is equal to a umber of condu	ctors	$v \rightarrow Volume of material (m3)$
(b) Ty	vice the number	of poles	$k_{a} \rightarrow \text{Eddy current constant.}$
(c) Ni	umber of coils		Hysteresis loss $(P_h) = K_h (B_{max})^{1.6} \times f \times v$ watt
(d) No	one of the above	e	$P_h \rightarrow Hysteresis loss (Watt)$
	ISRO (VSS	SC) Technician (B) 25.09.2016	$K_h \rightarrow$ Steinmetz's constant
Ans. (c) : In	a DC machine	the number of commutator	$B_{max} \rightarrow maximum flux density (W_b/m^2)$
Commutator	r segments:	of cons.	$f \rightarrow supply frequency (Hz)$
The purp	ose of the com	mutator is to rectify the AC	$v \rightarrow$ volume of the materials (m ³)
waveform	n.	inductor is to rectify the rice	88. Which part of the DC generator is used for
■ The segn	nents of the cor	nmutator are insulated from	supporting the pole cores and provides
each other and the armature shaft.		ure shaft.	mechanical protection to the inner parts of the machines?
 Wires from segments 	om the armature	e are connected to armature	(a) Armature core (b) Yoke
 Armature 	e current is cond	lucted from the commutator	(c) Pole core (d) Shaft
to the load by carbon brushes.		ishes.	UPPCL TG-2, 28.03.2021 Shift I
To help produce a smooth dc output, more coils and		th dc output, more coils and	Ans: (b) Yoke of the D.C generator is used for
commutator segment are used.		usea.	supporting the pole cores and provides mechanical
8%. In electrical machines, laminated cores are used with a view to reduce:		nes, laminated cores are	For small machine the voke is made by cost iron and
(a) Hysteresis loss (b) Eddy current loss		(b) Eddy current loss	large machine yoke is made by cost steel or rolled steel.
(,,	,		

1-co

YCT

YCT

YCT

137. Keeping pole flux constant, if the speed of a DC	141. What is a commutator used for?
snunt generator is doubled, then its generated	(a) Transformer
(a) Will be doubled	(b) D.C machine
(b) Will be halved	(c) Induction machine (d) Symphronous machine
(c) Will remain unchanged	(u) Synchronous machine MP Line Attendant 24 07 2018
(d) Will decrease slightly	ISRO DT- 10.02.2019
KSMSSB INSTRUCTOR (Electrician) 24.03.2019 UPPCI Electrician TC-2, 16,10,2016 (Re-aram)	Ans: (b) The commutator used for DC machine.
Ans (a) • The pole flux constant if the speed of a DC	■ Commutator made by hard drown copper.
shunt generator is doubled, then its generated emf will	■ It is made in the segmented form.
be doubled.	Each segment is insulated with a thin layer of mica.
For DC shunt generator -	It is act as a mechanical fectifier.
$\int P \phi Z N$	signal
$E_g \propto N$ $\left\{ \begin{array}{c} \cdot E_g = \frac{1}{60A} \end{array} \right\}$	The number of commutator segment is equal to
$\{ \therefore \phi = \text{constant} \}$	number of coil in the armature.
According to question -	Annature
$N_2 = 2N_1$	Commutator
E_{g} , N_{2}	Shaft
$\frac{1}{E_a} = \frac{1}{N_1}$	Commutator
	segments
$\frac{L_{g_2}}{L} = \frac{2N_1}{N_1}$	1 Denes /
E_{g_1} N_1	
$E_{g_2} = 2E_{g_1}$	Amature Pole shoe
138 Inter poles in DC machines are used to	
(a) Reduce the effect of armature reaction	Main parts of a 4-pole d.c. machine.
(b) Reduce the effect of cogging	142. In resistance commutation conner
(c) Reduce the effect of crawling	hrushes are comparatively replaced by
(d) None of these $(ISRO DT 02.06.2019)$	carbon.
Ans : (a) Inter poles in DC machines are used to	(a) High, High (b) Low, high
reduce of armature reaction .	(c) Low, low (d) High, low
■ Inter pole is a small pole	MP Line Attendant 23.07.2018
Placed in between the main field pole.	Ans: (b) In resistance commutation low copper
■ It is connected in series with armature.	brushes
winding but in opposite direction	Advantage of carbon brushes:-
139 Which two main parts are generally there in	■ They have high contact resistance which is useful for
any electrical machine?	having good commutation.
(a) Carbon brush and rotor	They uses as lubricate and polish the commutator as it
(b) Main pole and inter pole	rotates.
(c) Stator and rotor	the commutator less in carbon brushes comparison to
(d) Commutator and inter pole	copper brushes.
FGUL IECH. 14.11.2018	143. In which type of DC machine poles is residual
rotor in any electrical machine	magnetism necessary.
• The rotor is the rotating part, and the stator is the	(a) Shunt generator
stationary part of an electrical machine.	(b) Motor
140. What is the rotating part of a DC machine	(c) Separately excited generator
called?	(d) Permanent magnet type generator
(a) Rotor (b) Field	Ans : (a) For DC shunt generator regidual magnetism
(C) Armanue (C) Stator MP Line Attendant 23 07 2018	is necessary.
Ans: (c) The rotating part of a DC machine is called a	■ Residual magnetism is the small magnetic field left in
armature.	the iron cores of shunt fields when the generator is rest.
Armature generally cylindrical drum type which is	Without it, the field would have to be flashed with a DC
punched into slot. Which contain armature winding on	Lunce to start the generator generating.
In the slot provide mechanical security to the winding	r = r = r = r = r = r = r = r = r = r =
The armature is made up of silicon steel material	shunt generator

ι

Ans : (c) When the armature of the motor rotates in a	Ans. (c) : The armature core provide reluctance in
magnetic field it intersects the magnetic line of force	magnetic flux
and then according to faraday's law an electromotive	Armature core is made of silicon steel lamination
force (emf) is induced.	which are insulated from each other by insulated
It's mathematical expression is-	varnish coating.
dφ	175. In armature reaction the brushes are placed
$E = -N \frac{d\phi}{dr}$	exactly on the magnetic neutral axis to
dt	(a) To reduce armature reaction
171. The thickness of lamination in the armature	(b) To maximize the armature reaction
core of the generator is	(c) To stop the flow of current
(a) 0.45 mm to 0.5 mm (b) 0.35 mm to 0.5 mm	(d) Increase in sparking
(c) 0.35 mm to 0.4 mm (d) 0.25 mm to 0.4 mm	[DMRC Maintainer 12.04.2018, 9.00 -10:30 am]
[DMRC Maintainer 10.04.2018. 9.00 -10:30 am]	Ans. (a) : In armature reaction the brushes are placed
KPSC Lineman Exam- 21.04.2016	exactly on the magnetic neutral axis to reduce armature
JVVNL Electrician Helper-III, 29.08.2018 Shift-I	reaction.
Ans (b) • The thickness of lamination in the armature	MNA (Magnetic neutral axis) - May be defined as the
Ans. (b) The theckness of minimation in the armature core of the generator is 0.35 mm to 0.5 mm	axis along which no Emf is generated in the armature
- In a DC machine, lemination are used to reduce addy	conductors as the move parallel to the flux lines.
In a DC machine, famination are used to reduce eddy	Brushes are always placed along the MNA because
current losses.	reversal of current in the armature conductors takes
out phillipping	placed along this axis.
Bearing	176. The starting and ending end of the coil
Re - Ber	connected to adjacent regions of a commutator
(B) de Brush	are known as
Shaft Cooling fan	(a) Retrogressive winding
Commutator	(b) Lap winding
Armature winding	(c) Progressive winding
annature conductor	(d) Wave winding
Bennas cr and plan	[DMRC Maintainer 13.04.2018, 9-10:30 am]
Beating	Ans. (b) : The starting and ending end of the coll
172 Armsture reaction is defined as the effect of the	connected to adjacent region of commutator are known
magnetic field established by the armature on	as lap winding is suitable for low voltage and high
magnetie new established by the armature on	Lap willung is suitable for low voltage and high
(a) Commutator (b) Main field flux	- I an winding the number of parallel noth is equal to
(a) Communication (b) Main Hera Hux (c) Interpole (d) Armature coil	the total number of poles of the coil
(c) interpole (d) Affinitute con	■ In lap winding, the number of brushes is equal to the
	number of parallel path
Ans. (b) : Armature reaction is defined as the effect of	177 In inter-nole method inter-nole is placed
the magnetic field established by the armature on the	between the main poles so that-
main field flux.	(a) Sparking can be reduced
The effect of armature flux on the main flux is called	(b) Voltage can be increased
armature reaction.	(c) Sparking can be maximum
173. A short circuit occurs between the armature	(d) The flow of current can increase
coils during commutation, when	[DMRC Maintainer 13.04.2018, 9 -10:30 am]
(a) Any two commutators come in contact with	Ans. (a) : In inter-pole method, inter-pole is placed
the yoke	between the main poles so that sparking can be reduced.
(b) Any two commutators come in contact with	■ Inter-pole is connected in series with armature.
rotor	■ The winding of the inter-pole is made of thick wire
(c) Any two commutators come in contact with	and few turn
brushes	■ The number of inter-poles is equal to the number of
(d) Any two commutators come in contact with	main field poles.
the armature core	178. To achieve DC generator are run in parallel
[DMRC Maintainer 12.04.2018, 9.00 -10:30 am]	operation.
Ans. (c) : A short circuit occurs between the armature	(a) Low reliability (b) Low capacity
coil during commutation when any two commutators	(c) Low value of load (d) High reliability
come in contact with brushes	[DMRC Maintainer 13.04.2018, 9 -10:30 am]
174 What does the armature care provide?	Ans. (d) : To achieve high reliability DC generator are
(a) Magnetic flux produces conscitance	run in parallel operation. So that fault occurs in any
(a) magnetic flux produces capacitance	generator, then other generators installed in its place
(b) inductance of magnetic flux (c) Creates relations in magnetic flux	keep providing supply and there is no interruption in
(c) Creates reluctance in magnetic flux	any kind of work, hence more than one generator is
(a) Creates resistance in magnetic flux	operated in parallel. Due to which the reliability of the
[DMRC Maintainer 12.04.2018, 9.00 -10:30 am]	system increase.

201. In dc machines the plane passing through the axis of the armature and through center of	Ans : (c) The winding used in a DC machine are both lan and wave windings
contact of the brushes is known as:	■ Wave winding used in DC machine, for high
(a) Geographic plane (b) Magnetic plane	voltage and low current.
(c) Commutating plane (d) Geometrical plane (DMRC Maintainer Electrician 2017)	■ Lap winding used in DC machine, for high current and low voltage
Ans : (c) In D.C machines the plane passing through	206. Which of the following is not the effect of
the axis of the armature and through center of contact of	armature reaction in a dc machine?
the brushes is known as commutating plane.	(a) It weakens the main field flux and distorts it
202. In an armature, winding is connected in	(b) It produces heavy sparking on the commutator
(a) Paraner (b) Series	generator
(c) Either series or parallel	(d) It increases the speed of the motor
(d) Cannot be determined	(UPPCL-TG2-Electrical-2015)
(UPRVUNL-TG-2 Electrical-2015)	Ans : (d) It increase the speed of the motor is not the
Ans : (c) In an armature, winding is connected in	The effect of Armature reaction in a D.C machine.
The armsture windings are usually former wound	(i) It weakens the main field flux and distorts it
The armature windings are usually former-would. These are wound in the form of flat rectangular coils.	(ii) It produces heavy sparking on the commutator
	(iii) It weakens the emf generated in case of generator
	■ Demagnetizing effect- The armature flux
	■ Cross magnetizing effect - The armature reduces
	the main flux.
	207. The winding of a dc machine is said to be full
	pitched winding when
	(a) Winding pitch = pole pitch (b) Winding pitch \geq pole pitch
203 In a da machina if D is the number of poles. N	(c) Winding pitch $<$ pole pitch
is the armature speed in rpm, then the	(d) There is no relation between winding pitch
frequency of the magnetic reversals will be	and pole pitch
(a) PN/60 (b) PN/120	(UPPCL-2016, TG2 Exam Date : 26-06-2016)
(c) $PN/100$ (d) $PN/180$ (UPPCL TC2 Electrical 2015)	Ans : (a) The winding of a DC machine is said to be full nithched winding when winding nitch is equal to
(UFFCL-IG2-Electrical-2015)	the pole pitch.
Number of poles = P	Winding pitch (full pitch) = pole pitch = coil pitch =
Speed in R.P.M. $=$ N	180° electrically
$Frequency(f) = \frac{PN}{P}$	winding nitch <pole nitch<="" th=""></pole>
120	208. The condition for maximum efficiency in case
204. Iron loss in a dc machine takes place in	of DC generator is
(a) yoke (b) commutator	(a) variable loss = $1/constant loss$
(C) main body (C) armature rotor (UPPCL_TC2-Fleetrical-2015)	(b) variable $loss = constant loss$
Ans : (d) Iron loss in a DC machine takes place in	(c) variable $loss = 2 \times constant loss$ (d) variable $loss = 1/2 \times constant loss$
armature rotor.	(UPPCL-TG2-Electrical-2015)
■ Iron losses are two types -	Ans : (b) The condition for maximum efficiency in
(i) Hysteresis loss $(W_h) = K_h B_m^{1.6} f V$ watt	case of DC generator is variable loss = constant loss.
(ii) Eddy current loss (W _e) = $K_e B_m^2 f^2 t^2 V$ watt	Mechanical lasses = Friction loss of bearings + friction loss at a commutator + windage loss
Where,	Core loss = hysteresis loss + eddy current loss
$B_m = Maximum flux density (Wb/m2)$	Stray loss = mechanical loss + core loss.
f = Frequency of supply (Hz) $V =$ Volume of the material (M^3)	Constant losses = shunt field copper losses+stray loss
t = Thickness of lamination (m)	Current at maximum efficiency (I _{max})
$K_{\rm h}$ = Coefficient of hysteresis	= I Constant loss
$K_e = Eddy$ current constant	$\Gamma_{\rm F.L.}$ V Full load copper loss
205. The winding used in a dc machine is/are	209. What is correct regarding lap and wave winding
(a) lap winding only	
(b) wave winding only	in D.C generator.
(b) wave winding only(c) both lap and wave windings	 in D.C generator. (a) Wave winding is used for high voltage and high current machine
(b) wave winding only(c) both lap and wave windings(d) concentric winding	 in D.C generator. (a) Wave winding is used for high voltage and high current machine (b) The number of parallel paths in lap winding is

(iii) Compound Generator -	221. Tension in brushes of DC generator is quite
A. Cumulative -Compound Generator -Which	important for its working; while excess tension
require d.c. supply at constant voltage, for lamp loads	in brushes causes :
and for heavy power service such as electric railways.	(a) velocity of machine to decrease
B. Differential Compound Generator- It is widely	(b) output voltage to decrease
desirable with increase in current	(c) output voltage to increase
	(d) over heating of commutator and surface wear
217. What will be the field winding copper losses of	
a DC generator when the current flowing is 10 A and inter pole resistance is 10 abm?	(LMRC Maintainer Electrical Exam 2016)
A and inter pole resistance is 10 onm: (a) 100 W (b) 1000 W	Ans: (d) Tension in brushes of DC generator is quite
(a) 100 W (b) 1000 W (c) 1 W (d) 10 W	important for its working; while excess tension in
(UPRVINL_TG_2 Flectrical_2015)	brushes causes over nearing of commutator and
(01 KV 01 L - 10 - 2 Electrical-2013)	surface wear out.
Ans. (b) Orven that, Current (I) = $10A$	222. Generator used in arc welding is-
$\frac{1000}{1000}$	(a) DC series generator
Conner loss = $I^2 R = 2$	(b) DC snunt generator
$= (10)^2 \times 10^{-10}$	(c) DC compound differential generator (d) DC sumulative compound generator
Copper loss $(P_{i}) = 1000$ Watt	(d) DC cumulative compound generator (LMDC Maintainan Elastrical Evan 2016)
218 To improve the armsture reaction of DC	(LMRC Maintainer Electrical Exam 2010)
generator the brush	Ans: (c) DC compound differential generator is used in
(a) Lead is provide in the direction of rotation of	Sorias generator has the nearest valtage regulation
the armature	 Series generator has the poolest voltage regulation. Cumulative compound concreter has the best voltage
(b) Back lead is provide in the direction of	■ Cumulative compound generator has the best voltage
(c) Can not tested	Shunt generator is used in battery charging
(d) None of these	= Shuhi generator is used in battery charging.
(DMRC Maintainer Electrical-2014)	225. What do we call a winding when the ends of a coil are joined to a commutator bar at a
Ans : (a) Brush lead is provide in the direction of	distance of one nole nitch?
rotation of the armature to improve the armature	(a) I an winding
reaction of DC generator.	(h) Wave winding
219. The voltage regulation of a DC generator at	(c) Ring winding
full load being zero implies that the generator	(d) Rectangular winding
is	(LMRC Maintainer Electrical Exam 2016)
(a) Series	Ans : (b) When the ends of a coil are joined to a
(b) shunt	commutator bar at a distance of one pole pitch is called
(d) Differentially compounded	wave winding.
(u) Differentially compounded (DMRC Maintainer Flectrical 2014)	224. The process of joining ends of a coil on a
(DNIKC Maintainer Electricai-2014)	commutator segment is called –
full load being zero implies that the generator is	(a) commutator connection
cumulatively compounded	(b) coil connection
The voltage regulation of flat or level compounded	(c) slot connection
DC generator is zero	(d) point connection
The voltage regulation of under compounded DC	(LMRC Maintainer Electrical Exam 2016)
generator is lagging.	Ans : (b) The process of joining ends of a coil on a
■ The voltage regulation of over compounded DC	commutator segment is called coil connection.
generator is leading.	225. Level compounded DC generator is used for
220. A 4-pole DC generator runs at 1800 r.p.m. the	the following purpose is-
frequency of armature current is -	(a) Electrical Arc welding
(a) 25Hz (b) 30Hz	(b) Electric Traction
(c) 50Hz (d) None of these	(c) Charging the battery
(DMRC Maintainer Electrical-2014)	(d) Lighting
Ans: (d) Given that,	(DMRC Maintainer Electronic EXAM, 2014)
Speed $(N_s) = 1800 \text{ r.p.m.}$	Ans : (d) Level compounded DC generator is used for
Pole(P) = 4	the lighting purpose.
Frequency $(f) = ?$	226. The formula to find EMF induced (E) in DC
Formula -	generator is (Φ = Average magnetic flux
N 120f	per pole, Z = Total number of conductors, N =
$N_s = -P$	speed of rotation in rpm , $P = Number of poles$,
N P 1800×4	$\mathbf{A} = \mathbf{N}\mathbf{u}\mathbf{m}\mathbf{D}\mathbf{e}\mathbf{r} \text{ of parallel paths})$
$f = \frac{14_{s1}}{120} = \frac{1000 \times 4}{120} = 60$ Hz	(a) $E = \frac{\phi Z N}{V} \times \frac{P}{V}$ volts
120 120	60 A

ϕ ZN A μ	Where,
(b) $E = \frac{1}{60} \times \frac{1}{P}$ volts	$E_0 = No$ load Generated emf in armature
$\phi ZP A$	$I_f = Field \text{ or exciting current}$
(c) $E = \frac{\pi}{60} \times \frac{\pi}{P}$ volts	E = Induced emf in armature.
	$I_a = Armature current$
(d) $E = \frac{\psi Z I V}{120}$ volts	V = terminal voltage
120 (ISBO Technician Electrical 27.11.2016)	I = Load current.
(ISRO Technician Electrical 27.11.2010)	229. In dc generators iron losses are made up of–
Ans: (a) induced ENIF in generator $\cdot \cdot $	(a) hysteresis and friction losses
. Number of armature revolution per minute – N	(b) hysteresis, eddy current and brush contact losses
\therefore Number of armature revolution per second $=\frac{1}{11}$	(c) nysteresis and eddy current losses (d) hysteresis addy current and compar losses
60	(u) hysteresis, eduy current and copper losses
\therefore Time taken in $\frac{N}{m}$ revolution = 1 sec	(OFFCL Electrician IG-2 ITainee 16 10 2016 Be From) (IOF 2012 2017)
60 ¹⁰ ¹⁰ ¹⁰ ¹⁰	Ans \cdot (c) In DC generators iron losses are made up of
: Time taken in 1 revolution $dt = \frac{60}{5}$ sec	hysteresis and eddy current losses
$\frac{1}{N}$	Iron loss = hysteresis loss + eddy current loss
According to Farraday's law of electromagnetic	Hyperpresis loss = $K B^{1.6} f V$ Watt
induction	$\mathbf{R}_{h}\mathbf{D}_{m} = \mathbf{V} \mathbf{V} \mathbf{U}$
EME per conductor $E = \frac{d\phi}{d\phi} = \frac{\phi PN}{Volt}$	Eddy current loss = $K_e B_m^2 f^2 t^2 V$ Watt
$\frac{1}{dt} = \frac{1}{60} \frac{1}{60}$	Where,
Number of conductors is secoldal active Z	$B_m = Maximum flux density (Wb/m2)$
Number of conductors in parallel path = $\frac{-}{A}$	f = Frequency of supply (Hz)
$E = Average induced EMF per conductor \times Number of$	V = V olume of the material (m ²)
conductors in parallel path	t = 1 hickness of lamination (m)
_Γ φPN Z	$K_h = Hysteresis constant$
$E = \frac{1}{60} \times \frac{1}{A}$	$K_e = Eddy current constant$
227. Which type of generator gives a constant	230. A constant-voltage generator has-
voltage output at all loads ?	(a) minimum enriciency (b) minimum current capacity
(a) level compound generator	(c) low internal resistance
(b) cumulative compound generator	(d) high internal resistance
(a) differential common d concretor	
(c) anterential compound generator	(UPPCL Electrician TG-2 Trainee
(d) series generator (f) (d) series generator	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam)
(d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014)	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal
(d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by-
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by– (a) rivets (b) counter sunk screw (c) wolding
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by– (a) rivets (b) counter sunk screw (c) brazing (d) welding
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by– (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16 10 2016, Re-Exam)
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam)
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded Undercompounded Undercompounded Differentially Compounded Undercompounded Statement (a compounded Condercompounded Statement (a compounded statement (a c	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by– (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded Undercompounded	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by– (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between:	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded Undercompounded Undercompounded Undercompounded Under gives relation between:	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam)
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) 	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded Undercompounded Undercompounded Undercompounded Undercompounded Undercom	 (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between: (a) E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) Ans : (b) Load saturation characteristics of a DC generator gives relation between V and I_f. Characteristics of D.C. Generator- 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between: (a) E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) Ans : (b) Load saturation characteristics of a DC generator gives relation between V and I_f. (c) Nand Saturation characteristics of a DC generator gives relation between V and I_f. (d) None of these (DMRC Maintainer Electrician 2017) 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam)
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between: (a) E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) Ans : (b) Load saturation characteristics of a DC generator gives relation between V and I_f. Characteristics of D.C. Generator- (i) No-load saturation characteristics E₀/I_f (b) Voltagenerator gives relation between V and I_f. 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw.
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compounded Undercompounded Undercompounded	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened To the pole core by counter sunk screw. The p
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between: (a) E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) Ans : (b) Load saturation characteristics of a DC generator gives relation between V and I_f. Characteristics of D.C. Generator- (i) No-load saturation characteristics Or a DC. Generator- (i) No-load saturation characteristics Or open circuit characteristic (O.C.C.) (ii) Internal or total characteristics E/I_a 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. (a) double the number of brushes is always- (b) double the number of poles
 (c) differential compound generator (d) series generator (ISRO Technician Electrical 27.11.2016), (IOF 2014) Ans : (a) Level compound generator gives a constant voltage output at all loads. Over compound generator gives a leading voltage regulation Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. Under compound generator gives a lagging voltage regulation. 228. Load saturation characteristics of a DC generator gives relation between: (a) E and I_f (b) V and I_f (c) V and I_a (d) None of these (DMRC Maintainer Electrician 2017) Ans : (b) Load saturation characteristics of a DC generator gives relation between V and I_f. Characteristics of D.C. Generator- (i) No-load saturation characteristics Dr and I_f. Characteristics of D.C. Generator- (ii) Internal or total characteristics V/I 	(UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (c) A constant-voltage generator has low internal resistance because if the value of internal resistance is high, losses will be high. ■ Due to which constant voltage cannot be obtained in the generator. 231. In DC generators the pole shoes are fastened to the pole core by- (a) rivets (b) counter sunk screw (c) brazing (d) welding (UPPCL Electrician TG-2 Trainee 16.10.2016, Re-Exam) Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) In DC generators the pole shoes are fastened to the pole core by counter sunk screw. Ans : (b) and the number of brushes is always- (a) double the number of poles (b) same as the number of poles

(c) half the number of poles	236. How many magnetic poles are there in a simple
(a) LWO (LIPPCL Electrician TC 2 Traince	(a) 1 (b) 2 (c) 4 (d) 6
16.10.2016. Re-Exam). (IOF 2015)	(UPPCL Technical Grade-II Electrical 11.11.2016)
Ans : (b) In lap winding the number of brushes is	Ans : (c) There are 4 magnetic poles in a simple D.C
always same as the number of poles. [A=P]	machine.
A = No of parallel paths	■ For high speed the number of poles is kept less.
P = No of poles	237. If the resistance in the coil is 4 ohms and the
■ Number of parallel paths are equal number of	current passing through it is 20A, what is the
orusnes. In wave winding number of brushes are equal to two	armature copper losses generated in the DC
[A=2].	(a) 80 W (b) 40 W
233. The e.m.f. generated in a dc generator is	(c) 320 W (d) 1600 W
directly proportional to-	(UPPCL Technical Grade-II Electrical 11.11.2016)
(a) flux/pole	Ans : (d) Given that,
(b) speed of armature	I = 20A
(c) number of poles (d) all af these	$R = 4\Omega$
(u) all of these (UPPCL Electrician TC-2 Trainage	Armature copper losses = 1° R = $(20)^{2} \times 4 = 400 \times 4$
(011CE) Executional 10-2 Trainee 16.10.2016, Re-Exam)	$-(20) \times 4 - 400 \times 4$ Armature conner losses = 1600 Watt
Ans : (d) The e.m.f generated in a dc generator is	238 Which of the following is not a part of Rotor in
directly proportional to the flux/pole, speed of armature,	DC generator?
number of poles and inversely proportional to the	(a) Fan blade (b) Brush holder
number of parallel paths.	(c) Bearing plate (d) Base plate
$E = \frac{\phi ZPN}{\phi ZPN}$	(UPPCL Technical Grade-II Electrical 11.11.2016)
a b b c b c b c b c b c b c c b c	Ans : (d) Base plate is not a part of rotor in DC
$E_g =$ induced emf in dc generator	generator.
$\varphi = \Pi u x / pole$ Z = Total No of conductors	And
P = No of poles	Han 15 to the bar and
N = Speed of armature	(<u> </u>
A = No of parallel path	an both the day
234. In context with armature reaction of a DC	
generator, the MNA stands for:	Manastic circuit of a
(a) Main Neutral Arm	4-pole d.c. generator.
(b) Main Neutral Axis (c) Magnetic Neutral Arm	239. Thin wire and more turns is found in which of
(d) Magnetic Neutral Axis	the following windings?
(UPPCL Technical Grade-II Electrical 11.11.2016)	(a) Shuft which g (b) Series winding
Ans : (d) In context with armature reaction of a DC	(c) Series and shunt winding both
generator the MNA stands for magnetic neutral axis.	(d) Neither shunt nor series winding
■ Magnetic neutral axis [M.N.A] is the axis on which	(UPPCL Technical Grade-II Electrical 11.11.2016)
no electro magnetic force is induced in stationary	Ans: (a) Thin wire and more turns is found shunt
235 Armeture in a DC machine moves in	winding of D.C generator.
(a) moving voke	reate field or magnet
(b) static stator	■ Shunt winding is connected in parallel with armature
(c) moving stator	and has more turns of thin wire.
(d) static commutator	Ish I
(UPPCL Technical Grade-II Electrical 11.11.2016)	I.
Ans: (b) Armature in a dc machine moves in static	+
The armature core is keyed to the machine shaft and	Shunt g R _{sk}
rotates between the field poles.	
■ It consists of slotted soft-iron laminations (about 0.4	- Armature -
to 0.6 mm thick) that are stocked to form a	
cylindrical core.	Shunt wound d.c. generator
Armature core is made of silicon steel laminations	240. In wave winding of a DC generator, if 4
varnish coating	with a speed of 600 rpm generates a magnetic
 These laminations are used to reduce eddy current 	flux of 0.5 weber, what will be the magnitude of
losses.	induced emf?
	1