National Medical Commission All India Medical Entrance Examination

NEET PHYSICS Objective

Chapterwise Solved Papers

Based on NMC Reduced & Updated Syllabus

Chief Editor A.K. Mahajan

Compiled and Edited by Subject Expert Group

Computer Graphics by Balkrishna, Charan Singh

Editorial Office 12, Church Lane Prayagraj-211002 Mob. : 9415650134 Email : yctap12@gmail.com website : www.yctbooks.com / www.yctfastbook.com © All rights reserved with Publisher

Publisher Declaration Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Om Sai Offset In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed. In the event of any dispute, the judicial area will be Prayagraj.

	PHYSICS AND MEASUREMENT	10-38
_	□ Units of measurements, System of Units and S I Units, Fundamental and derived units	
	□ Significant figures	
	Errors in measurements	
	Dimensions of physical quantities.	
	Dimensional analysis and its applications	
	KINEMATICS	
	□ The frame of reference	
	D Motion in a straight line	
	Uniform and non-uniform motion	
	□ Average speed and instantaneous velocity	
	□ Velocity-time and Position-time graph	
	Relations for uniformly accelerated motion	
	□ Scalars and Vectors (Addition, subtraction and products)	
	□ Unit Vector and Resolution of a Vector	
	□ Relative Velocity	
	□ Motion in a plane, Projectile Motion	
	LAWS OF MOTION	
	□ Forces	
	□ Newton's First law of motion (Inertia)	
	□ Newton's Second Law of motion & Impulses	
	□ Newton's Third Law of motion	
	Law of conservation of linear momentum and its applications	
	Equilibrium of concurrent forces	113
	□ Static and Kinetic friction, Laws of friction, Rolling friction	
	Centripetal force and its applications	129
	□ Vehicle on level circular road, Vehicle on a banked road	
	WORK, ENERGY, AND POWER	
	□ Work done by a constant force and a variable force	
	□ Kinetic and potential energies	
	Power, Work-energy theorem	
	□ The potential energy of spring conservation of mechanical energy	
	Dynamics of uniform circular motion (Motion in a vertical circle)	
_	□ Elastic and inelastic collision in one and two dimensions	
	ROTATIONAL MOTION	
	Centre of mass of a two-particle system & of a rigid body	
	Basic concepts of rotational motion	
	□ Moment of a force: Torque	
	Conservation of angular momentum and its applications	
	□ The moment of inertia and radius of gyration & their applications	
	Equilibrium of rigid bodies	
_	□ Rigid body rotation and equations of rotational motion	
	GRAVITATION	
	 The universal law of gravitation Acceleration due to gravity and its variation with altitude and depth 	
	□ Kepler's law of planetary motion	
	 Gravitational potential energy Orbital velocity, Escape velocity, Time period and energy of satellite 	
	PROPERTIES OF SOLIDS AND LIQUIDS	251 200
	□ Elastic behaviour, Stress-strain relationship & Hooke's Law	23 4-308
	□ Young's modulus, Bulk modulus & Modulus of rigidity	
	 Found s modulus, Bulk modulus & Modulus of rigidity Pressure due to a fluid column, Pascal's law and its applications, Effect of gravity on fluid pressure 	
	□ Pressure due to a hund column, Pascar's law and its applications, Effect of gravity on hund pressure □ Viscosity. Stokes' law & Terminal velocity	
	□ Streamline flow, turbulent flow and Critical velocity	
	■ Sucamme now, through now and Critical velocity	

I	Bernoulli's principle and its applications	272
I	□ Surface energy, surface tension & its applications (drops, Bubbles, and capillary rise)	276
I	Excess of pressure across a curved surface	280
I	Heat temperature thermal expansion, specific heat, calorimetry, change of state latent heat	292
	Heat transfer-Conduction, Convection and Radiation.	304
	THERMODYNAMICS	
	□ Thermal equilibrium, Zeroth law and Concept of temperature	
	□ Heat, work and internal energy	
	□ First law of thermodynamics	
	□ Isothermal and adiabatic processes	
	Second law of thermodynamics: Reversible and irreversible processes	
	Second law of thermodynamics: Reversible and inteversible processes	
	□ Equation of state of a perfect gas	
	□ Work done on compressing a gas	
	□ Kinetic theory of gases-assumptions	
	□ The concept of pressure	
	□ Kinetic interpretation of temperature	
	RMS speed of gas molecules	
	Law of equipartition of energy and applications to specific heat capacities of gases	
	□ Mean free path	336
	OSCILLATIONS AND WAVES	37-400
	□ Oscillation and periodic motion- time period, Frequency	
	Displacement as a function of time	
	Periodic functions, Simple harmonic motion and its equation, energy in S.H.MKinetic and potential energies	
l	Phase: oscillations of a spring – restoring force and force constant	365
I	□ Simple pendulum-derivation of expression for its time period	376
	Uwave motion, Longitudinal and transverse waves, Speed of travelling wave	381
	Displacement relation for a progressive wave	
	□ Principle of superposition of waves and Reflection of waves	
	□ Standing waves in strings and organ pipes	
	□ Fundamental modes and harmonics (Beats)	
	ELECTROSTATICS	
	Conservation of charge, Coulomb's law forces between two point charges, Forces between multiple charges.	
	□ Superposition principle and continuous charge distribution	412
	Electric field: Electric field due to a point charge, Electric field lines	
	Electric dipole, Electric field due to a dipole, Torque on a dipole in a uniform electric field	
	□ Electric flux, Gauss's law and its applications (straight wire, infinite plane sheet, thin spherical shell)	
	Electric potential and its calculation for a point charge	
	Detective potential and its calculation for a point enarge	
	Conductors and insulators	
	Capacitors and capacitances.	
	CURRENT ELECTRICITY	
	Electric current, Drift velocity, Mobility and their relation with electric current.	
	□ Ohm's law, Electrical resistance, V-I characteristics of Ohmic and non-ohmic conductors	
	Electrical energy and power, Electrical resistivity and conductivity	
	□ Series and parallel combinations of resistors, Temperature dependence of resistance	
	□ Internal resistance, Potential difference and emf of a cell, and combination of cells	
	□ Kirchhoff's laws and their applications	
	Uwheatstone bridge, Metre Bridge	
	MAGNETIC EFFECTS OF CURRENT AND MAGNETISM4	
	Biot- Savert law, Ampere's law	
	□ Force on a moving charge and current-carrying conductor in a uniform magnetic field	504
	Torque experienced by a current loop in a uniform magnetic field (Moving coil galvanometer and	
	Its sensitivity) and conversion to ammeter and voltmeter	513
1	Current loop as a magnetic dipole and its magnetic dipole moment	
	Bar magnet, Magnetic field due to a magnetic dipole (bar magnet), Torque on a magnetic dipole	
	□ Para-dia-and ferromagnetic substances with examples, Effect of temperature on magnetic properties	530
	ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS	
	□ Electromagnetic induction, Faraday's law.	
	□ Induced emf and current: Lenz's Law, Eddy currents, Self and mutual inductance	

□ Alternating currents, Peak and RMS value of alternating current/voltage	
□ LCR series circuit: Reactance and Impedance, Resonance: power in AC circuits, wattless cur	rrent547
□ AC generator and transformer	
■ ELECTROMAGNETIC WAVES	564-573
□ Displacement current	
 Electromagnetic waves and their characteristics 	
 Transverse nature of electromagnetic waves. 	
 Fransverse nature of electromagnetic waves. Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, G 	
Applications of e.m. waves	
■ OPTICS	
□ Reflection of light: Spherical mirrors, Mirror formula	
□ Refraction of light at plane and spherical surfaces & through a prism	
□ Thin lens formula, lens maker formula & Combination of thin lenses in contact	
□ Total internal reflection and its applications	
□ Magnification & Power of a Lens	
□ Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying por	wers608
□ Wave optics: Wavefront and Huygens' principle, Interference and diffraction of light	
□ Polarization, Plane-polarized light, Brewster's law, Uses of plane-polarized light and Polaroi	d 631
 DUAL NATURE OF MATTER AND RADIATION 	634-655
Dual nature of radiation	
□ Photoelectric effect	
 Hertz and Lenard's observations 	
□ Particle nature of light	
De Broglie relation	
■ ATOMS AND NUCLEI	
□ Rutherford's model of atom	
□ Bohr model, Energy levels, hydrogen spectrum, Composition and size of nucleus	
□ Atomic masses, Mass-energy relation	671
□ Mass defect; binding energy per nucleon and its variation with mass number	
Nuclear fission and fusion	
■ ELECTRONIC DEVICES	
□ Semiconductors	
□ Semiconductors	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacement 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors. Semiconductor diode: I-V characteristics in forward and reverse bias. Diode as a rectifier; I-V characteristics of LED. The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR). EXPERIMENTAL SKILLS. Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire. Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments Unit-5. Young's modulus of elasticity of the material of a metallic wire. Unit-6. Surface tension of water by capillary rise and effect of detergents. Unit-7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given sp Unit-8. Speed of sound in air at room temperature using a resonance tube 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED. The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS	682 688 692 696 697 697 697 697 697 697 697 697 705 nt and time712 719 728 736 50herical body742 746 752 756 762 768
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments Unit-5. Young's modulus of elasticity of the material of a metallic wire Unit-6. Surface tension of water by capillary rise and effect of detergents Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-9. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures Unit-10. The resistivity of the material of a given wire using a meter bridge. Unit-11. The resistance of a given wire using Ohm's law. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: 	682 688 692 696 697 697 697 697 697 697 697 697 705 nt and time712 719 728 736 50herical body742 746 752 756 762 768
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a vest Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments. Unit-5. Young's modulus of elasticity of the material of a metallic wire Unit-6. Surface tension of water by capillary rise and effect of detergents. Unit-9. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures	682 688 692 696 697 697 697 697 697 697 697 697 705 nt and time712 719 728 736 50herical body742 746 752 756 762 768
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a vest Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments. Unit-5. Young's modulus of elasticity of the material of a metallic wire. Unit-7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given sp Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-10. The resistivity of the material of a given wire using a meter bridge. Unit-11. The resistance of a given wire using a meter bridge. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: (i) Convex mirror (ii) Concave mirror, and 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a vest Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacement Unit-4. Metre Scale- the mass of a given object by the principal of moments. Unit-5. Young's modulus of elasticity of the material of a metallic wire Unit-7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given sp Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-10. The resistance of a given wire using 0 hm's law. Unit-11. The resistance of a given wire using 0 hm's law. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: (i) Convex mirror (ii) Convex lens, using the parallax method 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments. Unit-5. Young's modulus of elasticity of the material of a metallic wire Unit-6. Surface tension of water by capillary rise and effect of detergents. Unit-7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given sp Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-10. The resistivity of the material of a given wire using a meter bridge. Unit-11. The resistance of a given wire using Ohm's law. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: (i) Convex mirror (ii) Convex mirror (ii) Convex mirror (iii) Convex lens, using the parallax method Unit-14. The plot of the angle of deviation vs angle of incidence for a triangular prism. 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR) EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a ves Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-4. Metre Scale- the mass of a given object by the principal of moments. Unit-5. Young's modulus of elasticity of the material of a metallic wire Unit-6. Surface tension of water by capillary rise and effect of detergents. Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-10. The resistivity of the material of a given wire using a meter bridge. Unit-11. The resistance of a given wire using Ohm's law. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: (i) Convex mirror (ii) Convex lens, using the parallax method Unit-14. The plot of the angle of deviation vs angle of incidence for a triangular prism. Unit-15. Refractive index of a glass slab using a traveling microscope. 	
 Semiconductors Semiconductor diode: I-V characteristics in forward and reverse bias Diode as a rectifier; I-V characteristics of LED. The photodiode & Solar cell Zener diode: Zener diode as a voltage regulator Logic gates (OR, AND, NOT, NAND and NOR). EXPERIMENTAL SKILLS Familiarity with the basic approach and observation of the experiments and activities Unit-1. Vernier calipers-its use to measure the internal and external diameter and depth of a vest Unit-2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire Unit-3. Simple Pendulum-dissipation of energy by plotting a graph between the square of displacemer Unit-5. Young's modulus of elasticity of the material of a metallic wire. Unit-6. Surface tension of water by capillary rise and effect of detergents. Unit-7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given signal to the material of a metallic wire. Unit-8. Speed of sound in air at room temperature using a resonance tube Unit-10. The resistivity of the material of a given wire using a meter bridge. Unit-11. The resistance of a given wire using Ohm's law. Unit-12. Resistance and figure of merit of a galvanometer by half deflection method. Unit-13. The focal length of: (i) Convex mirror (ii) Convex lens, using the parallax method Unit-14. The plot of the angle of deviation vs angle of incidence for a triangular prism. Unit-16. Characteristic curves of a p-n Junction diode in forward and reverse bias 	682 688 692 696 697 697 697 697 697 697 697 705 nt and time
 Semiconductors	682 688 692 696 697 697 697 697 697 697 697 705 nt and time

NEET Updated (Reduced) Syllabus as per National Medical Commission (Undergraduate Medical Education Board)

UNIT 1. PHYSICS AND MEASUREMENT:

Units of measurements, System of Units and S I Units, Fundamental and derived units, Significant figures, Errors in measurements, Dimensions of physical quantities, Dimensional analysis and its applications.

UNIT 2. KINEMATICS:

The frame of reference, Motion in a straight line, Uniform and non-uniform motion, Average speed and instantaneous velocity, Velocity-time and Position-time graph, Relations for uniformly accelerated motion, Scalars and Vectors (Addition, subtraction and products), Unit Vector and Resolution of a Vector Relative Velocity, Motion in a plane, Projectile Motion

UNIT 3. LAWS OF MOTION:

Forces, Newton's First law of motion(inertia), Newton's Second Law of motion & Impulses, Newton's Third Law of motion, Law of conservation of linear momentum and its applications, Equilibrium of concurrent forces., Static and Kinetic friction, Laws of friction, Rolling friction, Centripetal force and its applications. Vehicle on level circular road, Vehicle on a banked road

UNIT 4. WORK, ENERGY, AND POWER:

Work done by a constant force and a variable force, Kinetic and potential energies, Power, Work-energy theorem, The potential energy of spring conservation of mechanical energy, Dynamics of uniform circular motion (Motion in a vertical circle), Elastic and inelastic collision in one and two dimensions.

UNIT 5. ROTATIONAL MOTION:

Centre of mass of a two-particle system & of a rigid body, Basic concepts of rotational motion, Moment of a force: Torque, Conservation of angular momentum and its applications, The moment of inertia and radius of gyration & their applications., Equilibrium of rigid bodies, Rigid body rotation and equations of rotational motion.

UNIT 6. GRAVITATION:

The universal law of gravitation, Acceleration due to gravity and its variation with altitude and depth, Kepler's law of planetary motion, Gravitational potential energy, Orbital velocity, Escape velocity, Time period and energy of satellite

UNIT 7. PROPERTIES OF SOLIDS AND LIQUIDS:

Elastic behaviour, Stress-strain relationship & Hooke's Law , Young's modulus, Bulk modulus & Modulus of rigidity , Pressure due to a fluid column, Pascal's law and its applications, Effect of gravity on fluid pressure, Viscosity. Stokes' law & Terminal velocity, Streamline flow, turbulent flow and Critical velocity, Bernoulli's principle and its applications, Surface energy, surface tension & its applications (drops, Bubbles, and capillary rise), Excess of pressure across a curved surface, Heat temperature thermal expansion, specific heat, calorimetry, change of state latent heat, Heat transfer-Conduction, Convection and Radiation

UNIT 8. THERMODYNAMICS:

Thermal equilibrium, Zeroth law and Concept of temperature Heat, work and internal energy First law of thermodynamics Isothermal and adiabatic processes Second law of thermodynamics: Reversible and irreversible processes

UNIT 9. KINETIC THEORY OF GASES:

Equation of state of a perfect gas, Work done on compressing a gas, Kinetic theory of gases-assumptions The concept of pressure, Kinetic interpretation of temperature, RMS speed of gas molecules, Law of equipartition of energy and applications to specific heat capacities of gases, Mean free path.

UNIT 10. OSCILLATIONS AND WAVES:

Oscillation and periodic motion- time period, Frequency, Displacement as a function of time, Periodic functions, Simple harmonic motion and its equation, energy in S.H.M.-Kinetic and potential energies, Phase: oscillations of a spring – restoring force and force constant, Simple pendulum-derivation of expression for its time period, Wave motion, Longitudinal and transverse waves, Speed of travelling wave Displacement relation for a progressive wave, Principle of superposition of waves and Reflection of waves, Standing waves in strings and organ pipes, Fundamental modes and harmonics (Beats).

UNIT 11. ELECTROSTATICS:

Conservation of charge, Coulomb's law forces between two point charges, Forces between multiple charges, Superposition principle and continuous charge distribution, Electric field: Electric field due to a point charge, Electric field lines, Electric dipole, Electric field due to a dipole, Torque on a dipole in a

uniform electric field, Electric flux, Gauss's law and its applications (straight wire, infinite plane sheet, thin spherical shell), Electric potential and its calculation for a point charge, Potential difference, Equipotential surfaces, Conductors and insulators, Capacitors and capacitances.

UNIT 12. CURRENT ELECTRICITY:

Electric current, Drift velocity, Mobility and their relation with electric current, Ohm's law, Electrical resistance, V-I characteristics of Ohmic and non-ohmic conductors, Electrical energy and power, Electrical resistivity and conductivity, Series and parallel combinations of resistors, Temperature dependence of resistance, Internal resistance, Potential difference and emf of a cell, and combination of cells, Kirchhoff's laws and their applications, Wheatstone bridge, Metre Bridge.

UNIT 13. MAGNETIC EFFECTS OF CURRENT AND MAGNETISM:

Biot-Savart law, Ampere's law, Force on a moving charge and current-carrying conductor in a uniform magnetic field, Torque experienced by a current loop in a uniform magnetic field (Moving coil galvanometer and, Its sensitivity) and conversion to ammeter and voltmeter, Current loop as a magnetic dipole and its magnetic dipole moment, Bar magnet, Magnetic field due to a magnetic dipole (bar magnet), Torque on a magnetic dipole, Para-dia-and ferromagnetic substances with examples, Effect of temperature on magnetic properties.

UNIT 14. ELECTROMAGNETIC INDUCTION AND ALTERNATING CURRENTS:

Electromagnetic induction, Faraday's law, Induced emf and current: Lenz's Law, Eddy currents, Self and mutual inductance, Alternating currents, Peak and RMS value of alternating current/voltage, LCR series circuit: Reactance and Impedance, Resonance: power in AC circuits, wattless current, AC generator and transformer.

UNIT 15. ELECTROMAGNETIC WAVES:

Displacement current, Electromagnetic waves and their characteristics, Transverse nature of electromagnetic waves, Electromagnetic spectrum (radio waves, microwaves, infrared, visible, ultraviolet, X-rays, Gamma rays), Applications of e.m. waves.

UNIT 16. OPTICS:

Reflection of light: Spherical mirrors, Mirror formula, Refraction of light at plane and spherical surfaces & through a prism, Thin lens formula, lens maker formula & Combination of thin lenses in contact, Total internal reflection and its applications, Magnification & Power of a Lens, Microscope and Astronomical Telescope (reflecting and refracting) and their magnifying powers, Wave optics: Wavefront and Huygens' principle, Interference and diffraction of light, Polarization, Plane-polarized light, Brewster's law, Uses of plane-polarized light and Polaroid.

UNIT 17.DUAL NATURE OF MATTER AND RADIATION:

Dual nature of radiation, Photoelectric effect, Hertz and Lenard's observations, Particle nature of light De Broglie relation.

UNIT 18.ATOMS AND NUCLEI:

Rutherford's model of atom, Bohr model, Energy levels, hydrogen spectrum, Composition and size of nucleus, Atomic masses, Mass-energy relation, Mass defect; binding energy per nucleon and its variation with mass number, Nuclear fission and fusion.

UNIT 19. ELECTRONIC DEVICES:

Semiconductors, Semiconductor diode: I-V characteristics in forward and reverse bias, Diode as a rectifier; I-V characteristics of LED, The photodiode & Solar cell, Zener diode: Zener diode as a voltage regulator, Logic gates (OR, AND, NOT, NAND and NOR).

UNIT 20. EXPERIMENTAL SKILLS:

Familiarity with the basic approach and observation of the experiments and activities:

1. Vernier calipers-its use to measure the internal and external diameter and depth of a vessel 2. Screw gauge-its use to determine thickness/diameter of thin sheet/wire, 3. Simple Pendulum-dissipation of energy by plotting a graph between the square of amplitude and time, 4. Metre Scale- the mass of a given object by the principal of moments, 5. Young's modulus of elasticity of the material of a metallic wire

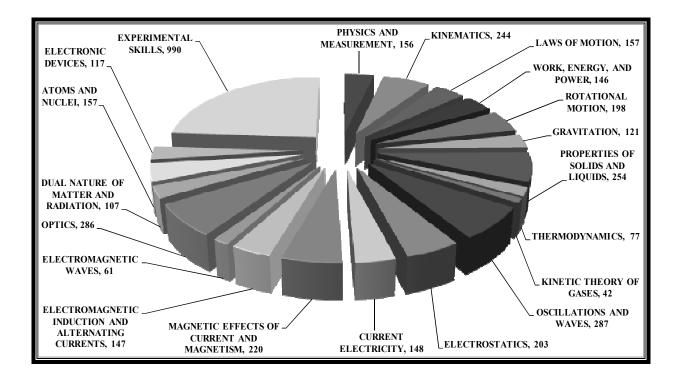
6. Surf ace tension of water by capillary rise and effect of detergents, 7. Co-efficient of Viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body, 8. Speed of sound in air at room temperature using a resonance tube, 9. Specific heat capacity of a given (i) solid and (ii) liquid by method of mixtures, 10. The resistivity of the material of a given wire using a meter bridge, 11. The resistance of a given wire using Ohm's law, 12. Resistance and figure of merit of a galvanometer by half deflection method, 13. The focal length of:

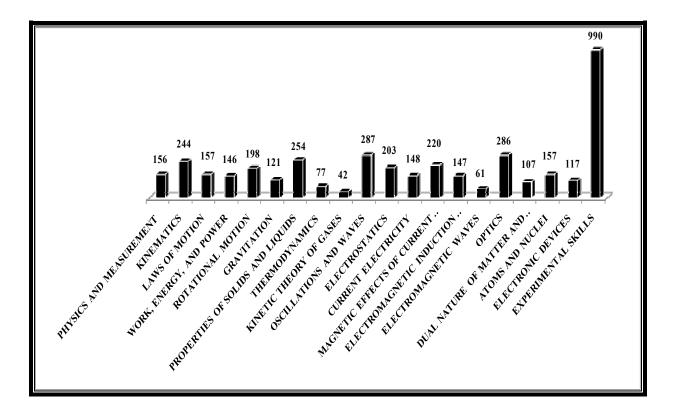
(i) Convex mirror

(ii) Concave mirror, and

(iii) Convex lens, using the parallax method

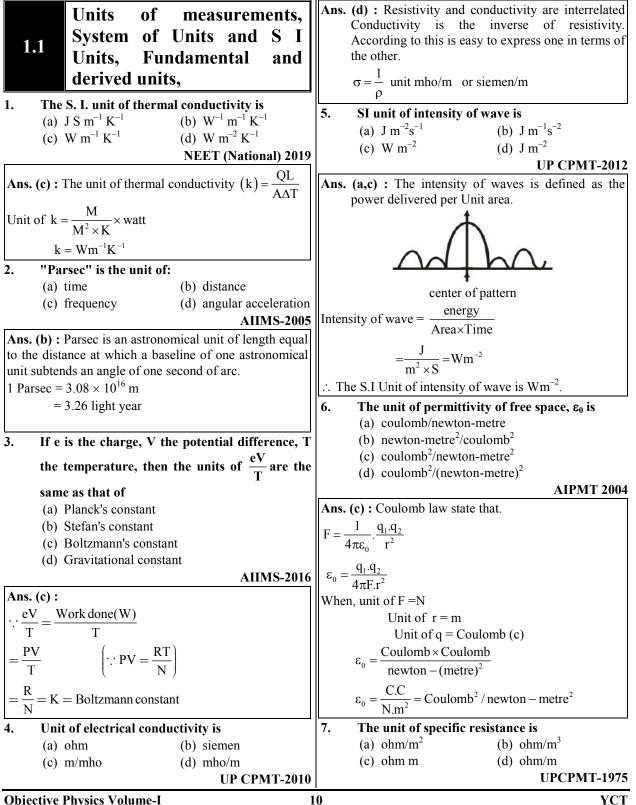
14. The plot of the angle of deviation vs angle of incidence for a triangular prism


S. No	Exam	Proposed Year	Question Paper	Total Question
5. NO		al Test/National Eligibility Cum		
1.	RE-NEET - Manipur	06.06.2023		50
2.	NEET (UG)	07.05.2023		50
3.	NEET	17.07.2022		50
,.	NEET	12.09.2021		50
	NEET	13.09.2020		50
	NEET	05.06.2019		50
'. '.	NEET	06.05.2018		50
	NEET	07.05.2017		50
	NEET	01.05.2016	Phase-I	50
0.	NEET	24.06.2016	Phase-II	50
1.	NEET/AIPMT	25.07.2015	T huse h	50
2.	NEET	04.05.2014		50
3.	NEET	05.05.2013		50
<u>4.</u>	AIPMT	2012		50
5.	AIPMT	2011		50
6.	AIPMT	2011		50
7.	AIPMT	2009		50
8.	AIPMT	2009		50
9.	AIPMT	2003		50
20.	AIPMT	2007		50
21.	AIPMT	2005		50
2.	AIPMT	2003		50
23.	AIPMT	2003		50
24.	AIPMT	2002		50
25.	AIPMT	2001		50
26.	AIPMT	2000		50
27.	AIPMT	1999, 98, 97, 96, 95, 94, 93, 92, 91, 90,		600
		89, 88 Il India Institute of Medical Scie	nace (AIIME)	
28.	AIIMS	26.05.2019	Shift-I	60
.o. 29.	AIIMS	26.05.2019	Shift-II	60
.9. 60.	AIIMS	25.05.2019	Shift-I	60
1.	AIIMS	25.05.2019	Shift-II	60
2.	AIIMS	23.03.2019	51111-11	60
2. 3.	AIIMS	2018		60
53. 54.	AIIMS	2017		60
5.	AIIMS	2015		60
6.	AIIMS	2013		60
0. 7.	AIIMS	2014		60
8.	AIIMS	2013		60
9.	AIIMS	2012		60
19. 10.	AIIMS	2011		60
1.	AIIMS	2010		60
2.	AIIMS	2009		60
	AIIMS	2003		60
3.				60
	AIIMS	/006		50
4.	AIIMS	2006		60
4. 5.	AIIMS	2005		60 60
4. 5. 6.	AIIMS AIIMS	2005 2004		60
4. 5. 6. 7.	AIIMS AIIMS AIIMS	2005 2004 2003		60 60
4. 45. 46. 47. 48.	AIIMS AIIMS AIIMS AIIMS	2005 2004 2003 2002		60 60 60
43. 44. 45. 46. 47. 48. 49. 50.	AIIMS AIIMS AIIMS	2005 2004 2003		60 60


All India Medical Entrance Exam Physics Previous Years Exam Papers Analysis Chart

Andhra Pradesh Engineering, Agriculture and Medical Common Entrance Test (AP EAMCET)				
52.	AP EAMCET Medical	2013		50
53.	AP EAMCET Medical	2012		50
54.	AP EAMCET Medical	2010		40
55.	AP EAMCET Medical	2009		40
56.	AP EAMCET Medical	2008		40
57.	AP EAMCET Medical	2007		40
58.	AP EAMCET Medical	2006		40
59.	AP EAMCET Medical	2004		40
60.	AP EAMCET Medical	2003		50
61.	AP EAMCET Medical	2002		40
62.	AP EAMCET Medical	2001		40
63.	AP EAMCET Medical	1999		40
64.	AP EAMCET Medical	1998		50
65.	AP EAMCET Medical	1997		50
		ostgraduate Medical Education		
66.	JIPMER	2019		60
67.	JIPMER	2018		60
68.	JIPMER	2017		60
69.	JIPMER	2016		60
70.	JIPMER	2015		60
71.	JIPMER	2014		60
72.	JIPMER	2013		60
73.	JIPMER	2012		60
74.	JIPMER	2011		60
75.	JIPMER	2010		60
76.	JIPMER	2009		60
77.	JIPMER	2008		60
78.	JIPMER	2007		60
79.	JIPMER	2006		60
80.	JIPMER	2005		60
81.	JIPMER	2004		60
	Uttar Prade	sh Combined Pre Medical Tes	(UPCPMT)	
82.	UPCPMT	2014		50
83.	UPCPMT	2013		50
84.	UPCPMT	2012		50
85.	UPCPMT	2011		50
86.	UPCPMT	2010		50
87.	UPCPMT	2009		50
88.	UPCPMT	2008		50
89.	UPCPMT	2007		50
90.	UPCPMT	2006		50
91.	UPCPMT	2005		50
92.	UPCPMT	2004		50
93.	UPCPMT	2003		50
94.	UPCPMT	2002		50
95.	UPCPMT	2001		50
			Total 5	850

Note : After detailed analysis of above mentioned papers of **NEET** and Other Medical Entrance Examination Related to **Physics** 5850 have been presented Chapterwise. Questions of repeated and similar nature have included so that the technique of asking question can benefit the competitors.


Trend Analysis of All Medical Entrance Exam Physics Questions through Pie Chart & Bar Graph

9

Physics and Measurement

Ans. (c) : We know that,	So,
$R = \rho \frac{l}{A}$	The unit of thermal conductivity = $\frac{Js^{-1} \times m}{m^2 \times {}^{\circ}C}$
ρ = specific resistance	$= Js^{-1}m^{-1}cC^{-1}$
$\rho = \frac{RA}{l}$	11. The unit of viscosity in the CGS system is poise
	(P) and that in SI Poiseuille (PI). Which of the following statement is correct?
$\rho = \frac{\text{ohm} - \text{m}^2}{\text{m}}$	(a) $1 P = 1PI$ (b) $1P = 10PI$
p – <u>m</u>	(c) $10P = 1PI$ (d) Non of these
Unit of $\rho = ohm - m$	UP CPMT-2013
8. What is the SI unit of Stefan-Boltzmann's	Ans. (c) : $1P = 1 \text{ gm cm}^{-1} \text{ S}^{-1}$
constant σ ?	$\therefore 1 \text{ PI} = 10 \text{ g cm}^{-1} \text{ S}^{-1}$
(a) $W m^{-2} K^{-4}$ (b) $W m^2 K^4$	$1\mathrm{PI} = 10\mathrm{P}$
(c) W K^{-4} (d) erg $s^{-2} K^{-4}$	
AIPMT-2002,	1.2 Significant figures,
Ans.(a): According to stefan's law, energy per unit time	12. The diameter of a spherical bob, when
$(E/t) = \sigma AT^{4}$	measured with vernier calipers yielded the
E/t	following values :3.33 cm, 3.32 cm, 3.34cm, 3.33cm, and 3.32 cm.
$\sigma = \frac{E/t}{AT^4}$	The mean diameter to appropriate significant
W	figures is:
$\sigma = \frac{W}{m^2 K^4}$	(a) 3.33cm (b) 3.32cm
$= Wm^{-2}K^{-4}$	(c) 3.328 (d) 3.3cm
The SI unit of Stefan's constant = $W.m^{-2}.K^{-4}$ and CGS	RE-NEET (UG)-06.06.2023 (Manipur)
unit is = Erg.cm^2	Ans. (a) :
9. Unit of Magnetic Flux is:	Mean diameter = $\frac{3.33 + 3.32 + 3.34 + 3.33 + 3.32}{5}$
 (a) Tesla (b) Gauss (c) Weber (d) Weber/m² 	
(c) Weber (d) Weber/ m^2 AIIMS-26.05.2019(E) Shift-2	= 3.328 cm
Ans. (c) : The SI unit of magnetic flux is weber (Wb).	$\frac{\text{Mean diameter} = 3.33 \text{ cm}}{1000 \text{ cm}}$
Weber is commonly expressed in a multitude of	(by taking appropriate significant figure)
other units.	13. The number of significant figures in the quantity 5.6200 J is
$Wb = \frac{kg.m^2}{s^2 A} = V.s = H.A = T.m^2 = \frac{J}{A} = 10^8 mx$	(a) 3 (b) 5
$w_0 = \frac{1}{s^2 A} = v_0 = H A = 1.111 = \frac{1}{A} = 10 \text{ Inx}$	(c) 2 (d) 4
where,	AP EAMCET-11.07.2022, Shift-II
Wb = Weber $s = second$	Ans. (b) : As we know zeroes only after a non-zero
T = Tesla $H = Henry$	digit, after the decimal, and zeroes between any two
V = volt $A = Ampere$	non-zero digits are significant.
J = joule Mx = Maxwell 10. The correct unit of thermal conductivity is	Therefore, the answer is 5.
(a) $Jm^{-2} sec^{-1} (°C)^{-1}$ (b) $Jm^{-1} sec^{-1} (°C)^{-2}$	14. What is the number of significant figures in $(3.20 + 4.80) \times 10^5$
(a) $Jm^{-1} \sec^{-1}(^{\circ}C)^{-1}$ (c) $J-\sec^{-1}(^{\circ}C)^{-1}$	(a) 2 (b) 3
(d) 5m 5cc (e) AIIMS-27.05.2018(E)	$\begin{array}{cccc} (a) & 2 & (b) & 2 \\ (c) & 4 & (d) & 5 \end{array}$
Ans. (d): The thermal conductivity of a material is a	AP EAMCET-07.09.2021, Shift-I
measure of its ability to conduct heat.	Ans. (b) :3.20 has '3' significant figures 4. 80 has '3'
Thermal conductivity (K) = $\frac{QL}{A \triangle T}$	significant figures. Therefore, there is 3 significant
	Figure's because 10 ⁵ has no singeficant figures.
Where,	15. Taking into account of the significant figures, what is the value of $0.00 \text{ m} = 0.0000 \text{ m}^2$
Q = Heat transfer through the material	what is the value of 9.99 m - 0.0099 m? (a) 9.98 m (b) 9.980 m
L = Length	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
A = Area $\Delta T = Temperature difference$	[NEET (Sep.) 2020]
1	

Ans. (a) :	(a) (2.828 ± 0.01) s (b) (2.83 ± 0.02) s
9.9900	(a) (2.828 ± 0.0075) s (b) (2.83 ± 0.0075) s
	AP EAMCET (21.04.2019) Shift-I
<u>- 0.0099</u>	Ans. (b) : Given,
9.9801	
Since least number of significant figure persent in given	$\Delta t_1 = (2.00 \pm 0.02)$ second $\Delta t_1 = 2.00$ second,
numbers in 2, hence,	$\Delta te_1 = \pm 0.02$ second
9.99m - 0.0099m = 9.98m	$\Delta t_2 = (4.00 \pm 0.02) \text{ second} \qquad \Delta t_2 = 4.00 \text{ second},$
16. Assertion (A) : The number 0.00764 has three	$\Delta te_2 = \pm 0.02$ second
significant figures. P ease (\mathbf{P}) : If the number is loss than 1, the	$\therefore T = \sqrt{\Delta t_1 \times \Delta t_2}$
Reason (R) : If the number is less than 1, the zeros on the right of the decimal point but to the	
left of the first non-zero digit are not significant.	$T = \sqrt{2.00 \times 4.00} = 2.8284$
(a) Both (A) and (R) are true and (R) is the	T = 2.838
correct explanation of (A).	$\Delta T = 1 (\Delta te_1 \ \Delta te_2) = 1 [0.02 \ 0.02]$
(b) Both (A) and (R) are true but (R) is not the	$\left \frac{\Delta T_{e}}{\Delta T} = \frac{1}{2} \left(\frac{\Delta t e_{1}}{\Delta t_{1}} + \frac{\Delta t e_{2}}{\Delta t_{2}}\right) = \pm \frac{1}{2} \left[\frac{0.02}{2.00} + \frac{0.02}{4.00}\right]$
correct explanation of (A).	
(c) (A) is true but (R) is false.	$=\pm\frac{1}{2}[0.01+0.005]$
(d) (A) is false but (R) is true. AD = AMCET (22.04.2010) Shift L	2
AP EAMCET (23.04.2019) Shift-I	$\frac{\Delta T_{e}}{2.83} = \pm \frac{1}{2}(0.015)$
Ans. (a) : For Assertion (A):- No. of significant figure in 0.00764	$\frac{1}{2.83} - \frac{1}{2} \frac{1}{2}$
= (7, 6, 4)	$\Delta T_{e} = 0.0212258 = 0.02$
There are 3 significant figure in above number	$T = (2.83 \pm 0.02)$ second
For reason (R):-	
Let a number is	19. The length, breadth and thickness of a block
0.00 abc $00 \rightarrow$ significant (Right zeros)	are given by $l = 12$ cm, $b = 6$ cm and
\downarrow	t = 2.45cm. The volume of the block according
Non-significant (Left zeros)	to the idea of significant figures should be (a) $1 \times 10^2 \text{cm}^3$ (b) $2 \times 10^2 \text{ cm}^3$
17. Assertion: Number of significant figures in	
0.005 is one and that in 0.500 is three	(c) $1.763 \times 10^{2} \text{ cm}^{3}$ (d) None of the above
Reason: This is because zeros are not	JIPMER-2005 UPCPMT-2004
significant.	
(a) If both assertion and reason are true and reason is the correct explanation of assertion.	Ans. (b) : Given that, $1 = 12$ cm
(b) If both assertion and reason are true but	b = 6 cm
reason is not the correct explanation of	
assertion.	t = 2.45 cm
(c) If assertion is true but reason is false.	Using the relation for volume $V = l \times b \times t$
(d) If both assertion and reason are false.	
AIIMS-25.05.2019(E) Shift-2	$V = 12 \times 6 \times 2.45$
Ans. (c) : No. of significant in 0.005	V = 176.4
= (digit 5)	$V = 1.764 \times 10^2 \text{ cm}^3$
= only 1 significant figure	The minimum number of significant figures is one in thickness, hence, the volume will contain only one
No. of significant in 0.500 $-(5,0,0)$	thickness, hence the volume will contain only one significant figure.
= (5, 0, 0) = 3 significant figure	Therefore,
So, Zeroes placed to the left of the number are never	$V = 2 \times 10^2 \text{ cm}^3$
significant, but zeroes places to right of the number are	
significant.	20. In a system of units, the units of mass, length and time are 1 quintal 1 km and 1h
Hence, assertion is true but reason is false.	and time are 1 quintal, 1 km and 1h respectively. In this system 1 N force will be
18. Two intervals of time are measured as Δt_1 =	equal to
(2.00 ± 0.02) s and $\Delta t_2 = (4.00 \pm 0.02)$ s. The	(a) 1 unit (b) 129.6 unit
value of with $\sqrt{(\Delta t_1)(\Delta t_2)}$ with correct	(c) 125.7 unit (d) 10^3 unit
significant figures and error is	UP CPMT-2002
	2 YCT

Ans. (b) : $1 \text{ kg} = 10^{-2} \text{ quintal}$	43120000 contains 4 significant figure i.e. $N_B = 4$
Ans. (b): 1 kg = 10 quintal $1 m = 10^{-3} \text{ km}$	$ 43120000$ contains 4 significant figure i.e. $N_B = 4$ 1200 contains 4 significant figure i.e. $N_C = 4$
	Hence, $N_A = N_B = N_C$
$1 \text{ s} = \frac{1}{3600} \text{ hour}$	$\frac{1}{1} \frac{1}{1} \frac{1}$
3600	1.3 Errors in measurements
$kg \times m = 10^{-2} \times 10^{-3}$	
1 N = $\frac{\text{kg} \times \text{m}}{\text{s}^2} = \frac{10^{-2} \times 10^{-3}}{\left(\frac{1}{3600}\right)^2}$	25. The errors in the measurement which arise due to unpredictable fluctuations in temperature
$\left \frac{1}{2(00)} \right $	and voltage supply are :
	(a) Random errors
$1 \text{ N} = 10^{-5} \times 3600 \times 3600$	
1 N = 129.6 unit	(b) Instrumental errors
Hence, unit in quintal, kilometer and hour is 129.6 unit.	(c) Personal errors
21. Assertion: The number of significant figures	(d) Least count errors
depends on the least count of measuring	NEET (UG)-07.05.2023
instrument.	Ans. (a) : The error in the measurement which arise due
Reason: Significant figures define the accuracy	to unpredictable fluctuations in the temperature in
of measuring instrument.	temperature and voltage supply are random error.
(a) If both Assertion and Reason are correct and	26. A metal wire has mass (0.4 ± 0.002) g, radius
Reason is the correct explanation of Assertion.	(0.3 ± 0.001) mm and length (5 ± 0.02) cm. The
(b) If both Assertion and Reason are correct, but	
Reason is not the correct explanation of	maximum possible percentage error in the
Assertion.	measurement of density will nearly be:
(c) If Assertion is correct but Reason is incorrect.	(a) 1.4% (b) 1.2%
(d) If both the Assertion and Reason are incorrect.	(c) 1.3% (d) 1.6%
AIIMS-2016	
Ans. (b) : Significant figure refers to the accuracy of	Ans. (d) : Given that : $m = (0.4 \pm 0.002)$ g
measurement and accuracy of measurement also depend	$r = (0.3 \pm 0.001) \text{ mm}$
upon the least count of measuring instrument.	$l = (5 \pm 0.02)$ cm
22. The length and breadth of a metal sheet are	The volume of the wire is given by –
3.124 m and 3.002 m respectively. The area of	
this sheet upto four correct significant figure is:	The density of the wire is –
(a) 9.378 m^2 (b) 9.37 m^2	
(c) 9.378248 m^2 (d) 9.3782 m^2	$\rho = \frac{m}{\pi r^2 I}$
AIIMS-2001	
Ans. (a) : Given, Length = 3.124 m	$\frac{\Delta \rho}{\rho} \times 100 = \frac{\Delta m}{m} \times 100 + 2\frac{\Delta r}{r} \times 100 + \frac{\Delta L}{L} \times 100$
Breadth = 3.002 m	ρ m r L
Area $= L \times B$	0.002 0.001 0.02
$= 3.124 \times 3.002 = 9.378 \text{ m}^2$	$= \frac{0.002}{0.4} \times 100 + 2 \times \frac{0.001}{0.3} \times 100 + \frac{0.02}{5} \times 100$
23. The number of significant figures in quantity	
23. The number of significant rightes in quantity 0.00005041 J is	$=\frac{2}{4}+\frac{2}{3}+\frac{2}{5}$
(a) 9 (b) 4	
(a) $(b) = (b) + (c) = (c) + (c) + (c) = (c) + (c) + (c) = (c) + (c) = (c) + (c) + (c) + (c) = (c) + (c) + (c) + (c) + (c) = (c) + $	$=\frac{30+40+24}{60}$
AP EAMCET-07.07.2022, Shift-I	60
	94
Ans. (b) : $0.00005041 = 5041 \times 10^{-8}$	$=\frac{94}{60}$
Significant digit = 5041	
Only 4 significant figures	$\frac{\Delta \rho}{2} \times 100 = 1.56\% = 1.6\%$
24. If N_A , N_B and N_C are the number of significant	
figures in $A = 0.001204$ m, $B = 43120000$ m and	27. What is the fractional error in g calculated
C = 1.200 m respectively then	from $T = 2\pi\sqrt{\ell/g}$? Given fraction errors in T
(a) $N_A = N_B = N_C$ (b) $N_A > N_B > N_C$	
(c) $N_A < N_B < N_C$ (d) $N_A > N_B < N_C$	and <i>l</i> are $\pm x$ and $\pm y$ respectively?
AP EAMCET-04.07.2022, Shift-I	(a) $x + y$ (b) $x - y$
Ans. (a) :	(c) $2x + y$ (d) $2x - y$
0.001204 contains 4 significant figure i.e. $N_A = 4$	AIIMS-2012

Ans. (c) :
$$T = 2\pi \sqrt{\frac{L}{g}}$$

Squaring both side
 $T^{2} = \left[2\pi \sqrt{\frac{L}{g}}\right]^{2}$
 $T^{2} = \left[2\pi \sqrt{\frac{L}{g}}\right]^{2}$
 $T^{2} = \left[2\pi \sqrt{\frac{L}{g}}\right]^{2}$
 $g \approx \frac{4\pi^{2}l}{T^{2}}$
 $g \approx \frac{4\pi^{2}l}{T}$
 $g \approx \frac{4\pi^{2}l}{T}$
20. The least count of a stop watch is 0.2 second.
The preduct to be 2.5 secod. The percentage
error in the measurement of fine will be
(a) 8% (b) 1.5%
(c) 0.8% (c) $0.1.5\%$
(c) 0.8% (d) 0.1%
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{0.2}{2.25}$
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{1}{2.25 \sec^{2}}$
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{1}{2.25 \sec^{2}}$
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{1}{2.25 \sec^{2}}$
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{1}{2.25 \sec^{2}}$
 $g \approx roret = \frac{6T}{1 \times 8\pi^{2}}$ $100 = \frac{2.2}{1 \times 8\pi^{2}}$ $\frac{2A\pi}{\pi} = \frac{4\pi}{\pi} = \frac{2A\pi}{\pi}$
 $g = \frac{4\pi}{\pi} = \frac{2A\pi}{\pi}$
 $g = \frac{4\pi}{\pi} = \frac{2A}{\pi} = \frac{2A}{\pi}$
 $g = \frac{4\pi}{\pi} = \frac{2A}{\pi}$
 $g = \frac{4\pi}{\pi} = \frac{2}{\pi}$
 $g = \frac{2\pi}{\pi} = \frac{4\pi}{\pi} = \frac{2\pi}{\pi}$
 $g = 2\pi^{2} + \frac{2\pi}{\pi}$
 $g = 2\pi^{2} + \frac{2\pi}{\pi}$
 $g = 2\pi^{2} + \frac{2\pi}{\pi}$
 $g = \frac{\pi}{\pi} = \frac{2\pi}{\pi}$
 $g = 2\pi^{2} + \frac{2$

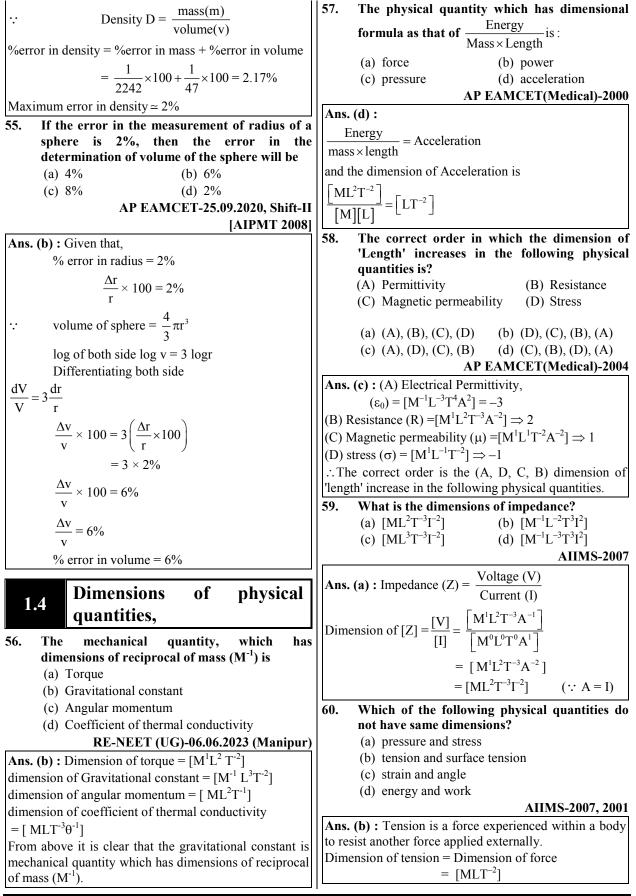
YCT

are

are

the

taking log and Differentiating of Both side	(a) 1 (b) 5
	(c) 10 (d) 15
$\frac{\Delta E}{E} = \frac{\Delta m}{m} + \frac{2\Delta v}{v}$	AP EAMCET -2012
$\Delta E = \Delta m = \Delta V$	Ans. (c) : Given data,
$\frac{\Delta E}{E} \times 100 = \frac{\Delta m}{m} \times 100 + 2\frac{\Delta V}{V} \times 100$	$T = 1 \min 3 \sec \theta$
$= 1\% + 2 \times 2\% = 5\%$	= 60 + 3
32. If the error in the measurement of momentum	= 63 sec
of a particle is (+100%), then the error in the	$T \rightarrow \overline{l}$
measurement of kinetic energy is	$T = 2\pi \sqrt{\frac{l}{g}}$
(a) 25% (b) 200%	1 - 4 - 21
(c) 300% (d) 400%	$T^2 = 4\pi^2 \frac{l}{g} \Longrightarrow g = \frac{4\pi^2 l}{T^2}$
UP CPMT-2014	8 1
Ans. (c) : We know that	Error analysis,
Momentum $(p) = mv$	$\frac{\Delta g}{g} = \frac{\Delta l}{l} + 2\frac{\Delta T}{T}$
Kinetic energy (KE) = $\frac{1}{2}$ mv ²	5 1 1
Kinetic energy (KE) = $\frac{1}{2}$ inv	$\frac{\Delta g}{g} = \frac{0.01}{1.01} + 2 \times \frac{3}{63}$
Then,	g 1.01 63
\mathbf{p}^2	$\Delta \mathbf{g}$ = 0.0000 + 0.005
$KE = \frac{p^2}{2m}$	$\frac{\Delta g}{g} = 0.0099 + 0.095$
Given, $p_i = p$	λσ
	$\frac{\Delta g}{g} \times 100 = [0.0099 + 0.095] \times 100$
$p_{f} = p + \frac{p \times 100}{100} = 2p$	$= 0.1042 \times 100$
100	$= 0.1042 \times 100$ = 10.4% $\approx 10\%$
Error,	
$\frac{KE_{f} - KE_{i}}{KE_{i}} \times 100 = \frac{p_{f}^{2} - p_{i}^{2}}{p_{i}^{2}} \times 100$	35. The density of a cube is measured by measuring its mass and length of its sides. If the
KE_i p_i^2	maximum error in the measurement of mass
$(2p)^2 - p^2$	and length are 4% and 3% respectively, the
Error $=\frac{(2p)^2 - p^2}{p^2} \times 100$	maximum error in the measurement of density
P	will be
= 3×100 =300%	(a) 7% (b) 9%
	(c) 12% (d) 13%
33. A public park, in the form of a square, has an area of (100 ± 0.2) m ² . The side of park is	[AIPMT 1996]
(a) (10 ± 0.01) m (b) (10 ± 0.1) m	Ans. (d) : Given that, $\frac{9}{2}$ array in mass = 49/
(a) (10 ± 0.01) (b) (10 ± 0.1) (c) (10.0 ± 0.1) (d) (10.0 ± 0.2) m	% error in mass = 4%
(c) (10.0 ± 0. 1)m (d) (10.0 ± 0.2)m UP CPMT-2014	% error in length = 3%
Ans. (a) : Area = (100 ± 0.2) m ²	\therefore Density D = $\frac{\text{mass}}{\text{volume}} = \frac{\text{m}}{\text{L}^3}$
So, (100 ± 0.2)	
$100 = l^2$	$\therefore \qquad \frac{\Delta D}{D} \times 100 = \left(\frac{\Delta m}{m} \times 100\right) + 3\left(\frac{\Delta L}{L} \times 100\right)$
10 m = l (length)	D (m) (L)
rom (lengen)	
Now.	$= 1 \times 4\% + 3 \times 3\%$
Now, $\Delta A = 2\Lambda l$	=4% + 9%
Now, $\frac{\Delta A}{A} = \frac{2\Delta l}{l}$	= 4% + 9% max. error in measurement of density = 13%
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$	= 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively.
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$ So, length = (10± 0.01)m	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$ So, length = (10± 0.01)m 34. The length of a pendulum is measured as 1.01	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be (a) 12% (b) 10%
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$ So, length = (10± 0.01)m 34. The length of a pendulum is measured as 1.01 m and time for 30 oscillations is measured as	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be (a) 12% (b) 10% (c) 8% (d) 2%
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$ So, length = (10± 0.01)m 34. The length of a pendulum is measured as 1.01	 = 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be (a) 12% (b) 10% (c) 8% (d) 2% [AIPMT 1995] Ans. (c) : Given that, % error in mass (m) = 2%
$\frac{\Delta A}{A} = \frac{2\Delta l}{l}$ $\frac{0.2}{100} = 2 \times \frac{\Delta l}{10}$ $\Delta l = 0.01 \text{ m}$ So, length = (10± 0.01)m 34. The length of a pendulum is measured as 1.01 m and time for 30 oscillations is measured as one minute 3 s. Error length is 0.01 m and	= 4% + 9% max. error in measurement of density = 13% 36. The percentage errors in the measurement of mass and speed are 2% and 3% respectively. The error in kinetic energy obtained by measuring mass and speed, will be (a) 12% (b) 10% (c) 8% (d) 2% [AIPMT 1995] Ans. (c) : Given that,

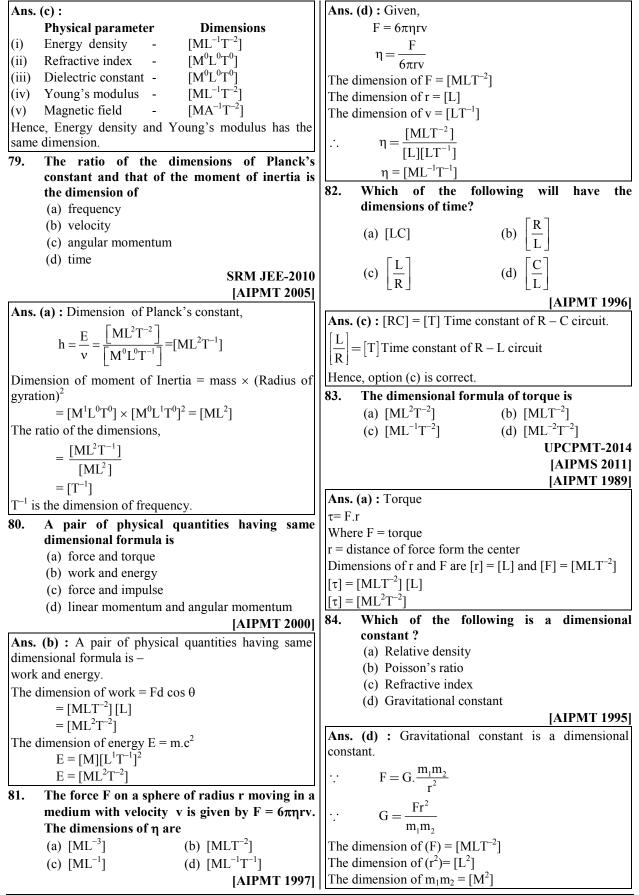

$$\begin{array}{cccc} & K.E. = \frac{1}{2} \mathrm{mv}^2 & (b) & 7\% & (c) & 8\% & (d) & 1\% & (d) & 1$$

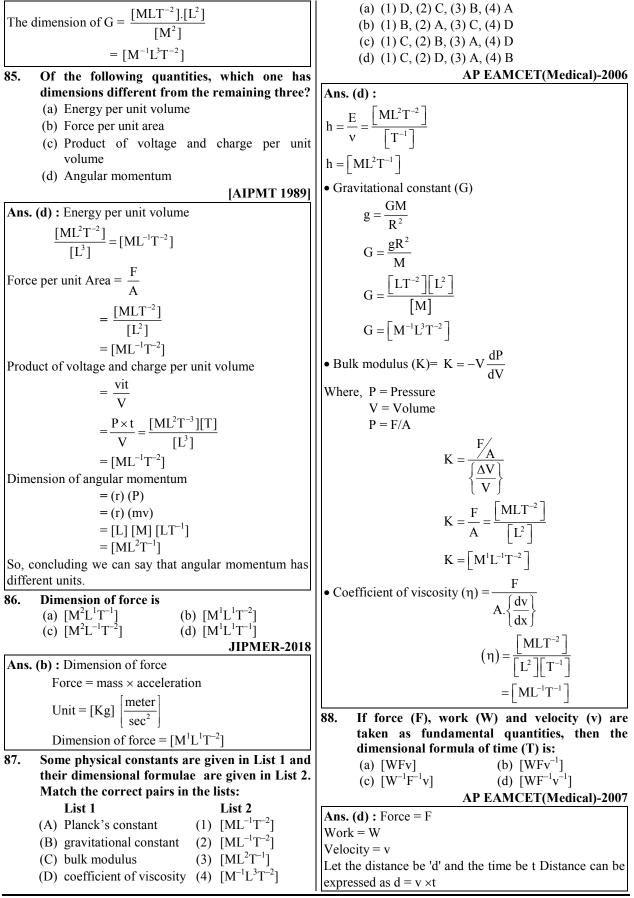
41. While measuring acceleration due to gravity by a simple pendulum, a student makes a positive	Ans. (a) : Both Assertion and Reason are correct and
error of 2% in the length of the pendulum and	Reason is the correct explanation of Assertion.
a positive error of 1% in the value of time	44. R = $65 \pm 1\Omega$ L, $l = 5 \pm 0.1$ mm and d = 10 ± 0.5
period, this actual percentage error in the	mm. Find error I calculation of resistivity.
measurement of the value of g will be	(a) 21% (b) 13%
-	$\begin{array}{c} (a) & 1 \\ (b) & 16\% \\ (c) & 16\% \\ (d) & 41\% \\ \end{array}$
(c) 3% (d) 0%	JIPMER-2018
AP EMCET(Medical)-2011	Ans. (b) : Given that,
Ans. (d) : Given that	$R = 65 \pm 1 \Omega$, $l = 5 \pm 0.1 mm$, $d = 10 \pm 0.5$
	Since we know that
$\frac{\Delta l}{l} \times 100 = +2\%$	Since we know that
l	$ \mathbf{R} - \mathbf{o} - \mathbf{h} $
ΔT too to (Since we know that $R = \rho \frac{l}{A}$ $\rho = \frac{RA}{l}$ $\rho = R \frac{\pi d^2}{4l}$
$\frac{\Delta T}{T} \times 100 = +1\%$	RA
1	$\rho = \frac{1}{1}$
$g = \frac{4\pi^2 l}{T^2}$	
$g = \frac{1}{T^2}$	$ _{\mathbf{a}} = \mathbf{P} \pi \mathbf{d}^2$
$\Lambda \alpha = \Lambda I = \Lambda T$	$\rho = R \frac{1}{4l}$
$\frac{\Delta g}{g} \times 100 = \frac{\Delta l}{l} \times 100 + (-2)\frac{\Delta T}{T} \times 100$	
g l T	So error in resistivity $\frac{\Delta \rho}{\Delta R} = \frac{\Delta R}{2\Delta d} + \frac{\Delta l}{\Delta d}$
٨α	So, error in resistivity, $\frac{\Delta \rho}{\rho} = \frac{\Delta R}{R} \pm \frac{2\Delta d}{d} \pm \frac{\Delta l}{l}$
$\frac{\Delta g}{g} \times 100 = 2\% + (-2) \times (1)\%$	
g	$\left\ \frac{\Delta\rho}{\rho} = \frac{1}{65} + \frac{2\times(0.5)}{10} + \frac{(0.1)}{5}\right\ $
Δσ	ρ 65 10 5
$\frac{\Delta g}{g} \times 100 = 2\% - 2\%$	1
g	$\frac{\Delta \rho}{\rho} = 0.015 + 0.1 + 0.02$
Λg	ρ
$\frac{\Delta g}{2} \times 100 = 0\%$	
g	$\frac{\Delta \rho}{\Delta r} = 0.015 + 0.1 + 0.02$
42. If the absolute errors in two physical quantities	ρ
A and B are a and b respectively, then the	$\frac{\Delta \rho}{\Delta \rho} = 0.135$
absolute error in the value of A – B is	= 0.135
(a) $a - b$ (b) $b - a$	
(c) $a = b$ (d) $a + b$	$\frac{\Delta \rho}{\Delta m} \times 100\% = 0.135 \times 100$
	ρ
AP EAMCET(Medical)-2014	
Ans. (d) : Absolute error in the given value,	$\left \frac{\Delta \rho}{\Delta r} \times 100\% = 13.5\% \right $
X = A - B	ρ
$\Delta A = a$	
$\Delta B = b$	45. The velocity of projection of a body is increased
$\Delta \mathbf{X} = \Delta \mathbf{A} + \Delta \mathbf{B}$	by 2%. Other factors remaining unchanged
	what will be the percentage change in the
$\Delta X = a + b$	maximum height attained?
Where a and b are absolute errors in the quantity A and	(a) 1% (b) 2%
B respectively.	
13. Assertion: In the measurement of physical	(c) 4% (d) 8%
quantities direct and indirect methods are used.	AIIMS-25.05.2019(E) Shift-2
Reason: The accuracy and precision of	Ans. (c) : Height of projection
measuring instruments along with errors in	
measurements should be taken into account,	$H = \frac{u^2 \sin^2 \theta}{2g} \implies H \propto u^2, \left(\frac{\sin^2 \theta}{2g}\right) = \text{constant}$
while expressing the result.	$2g \rightarrow 11 \approx u$, $2g \rightarrow 11 \approx u$, $2g \rightarrow 11 \approx u$
	taking log and differentiating
(a) If both Assertion and Reason are correct and	taking log and differentiating
Reason is the correct explanation of	$\log H = 2 \log 4$
Assertion.	ΔΗ Δυ
(b) If both Assertion and Reason are correct, but	$\left \frac{\Delta H}{H} = 2\frac{\Delta u}{u}\right $
Reason is not the correct explanation of	
Assertion.	$\frac{\Delta H}{H} = 2\frac{\Delta u}{u} \Rightarrow \frac{\Delta H}{H} \times 100 = 2\frac{\Delta u}{u} \times 100$
(c) If Assertion is correct but Reason is incorrect.	$H = \frac{u}{u} + \frac{u}{H} + \frac{u}{u} + \frac{u}{u}$
(d) If both the Assertion and Reason are	= 2(2%) = 4%
incorrect. AIIMS-2017	-2(2/0) - 4/0

 46. If 1% and 2% are the errors in the measurement of mass and density of a cube respectively, then the error in the measurement of length is (a) 1% (b) 3% (c) 2% (d) 4% AP EAMCET (22.04.2019) Shift-I 	$\Delta A = \frac{1.8}{27.0} \times A$ $\Delta A = \frac{1.8}{27.0} \times A$ $\Delta A = \frac{1.8}{27.0} \times 27.0$
Ans. (a) : Volume of cube, $V = a^3$ Where, $a = side$ of cube Density of cube is given as $\rho = \frac{m}{V}$	$\Delta A = 1.8$ So, Area = (27.0 ± 1.8)cm ² 48. To estimate g from $g = 4\pi^2 \frac{L}{T^2}$, error in
$\therefore V = a^{3}$ $\therefore \rho = \frac{m}{a^{3}}$ $a^{3} = \frac{m}{\rho}$	measurement of L is $\pm 2\%$ and error in measurement of T is $\pm 3\%$. The error in estimated g will be (a) $\pm 8\%$ (b) $\pm 5\%$
ρ $a = \left(\frac{m}{\rho}\right)^{1/3}$ So, percentage error in measurement of length of a cube	(c) $\pm 3\%$ (d) $\pm 6\%$ AP EAMCET (18.09.2020) Shift-II Ans. (a) : Given, $g = \frac{4\pi^2 L}{T^2}$
is given as- $\left(\frac{\Delta a}{a} \times 100\right)\% = \frac{1}{3} \left[\left(\frac{\Delta m}{m} \times 100\right)\% + \left(\frac{\Delta \rho}{\rho} \times 100\right)\% \right]$	The percentage error in measurement of 'g' is given as- $\left(\frac{\Delta g}{g} \times 100\right)\% = \left(\frac{\Delta L}{L} \times 100\right)\% + 2 \times \left(\frac{\Delta T}{T} \times 100\right)\%$
$\therefore \left(\frac{\Delta m}{m} \times 100\right)\% = 1\% , \left(\frac{\Delta \rho}{\rho} \times 100\right)\% = 2\%$ $\therefore \left(\frac{\Delta a}{a} \times 100\right)\% = \frac{1}{3} \left[1\% + 2\%\right]$	$\therefore \left(\frac{\Delta L}{L} \times 100\right)\% = \pm 2\% , \left(\frac{\Delta T}{T} \times 100\right)\% = \pm 3\%$ $\therefore \left(\frac{\Delta g}{g} \times 100\right)\% = \pm 2\% + 2 \times (\pm 3\%)$
$\left(\frac{\Delta a}{a} \times 100\right)\% = \frac{1}{3} \times 3\% = 1\%$ $\left[\left(\frac{\Delta a}{a} \times 100\right)\% = 1\%\right]$	$\left(\frac{\Delta g}{g} \times 100\right)\% = 2\% + 6\%$
 47. The sides of a rectangular plate are (9.0±0.3) cm and (3.0±0.1) cm. The area of the plate with error limits is 	49. Time intervals measured by a clock give the following readings 1.25 s, 1.24 s, 1.27 s, 1.21 s and 1.28 s. What is the percentage relative
(a) (27.0 ± 0.1) cm ² (b) (27.0 ± 0.3) cm ² (c) (27.0 ± 1.8) cm ² (d) (27.0 ± 0.2) cm ² AP EAMCET-24.04.2019, Shift-II	and 1.26 s. What is the percentage relative error of the observations? (a) 2% (b) 4% (c) 16% (d) 1.6% [NEET (Oct.) 2020]
Ans. (c) : Given that, Length $(l) = (9.0 \pm 0.3)$ Breadth $(d) = (3.0 \pm 0.1)$ Area $(A) = l \times b = 9 \times 3 = 27 \text{ cm}^2$	Ans. (d) : Error = Reading value – mean value Mean value = $\frac{\text{Sum of observation}}{\text{No. of observation}}$
Percentage error of Area $\frac{\Delta A}{A} = \frac{\Delta l}{l} + \frac{\Delta b}{b}$ $\frac{\Delta A}{A} = \left(\frac{0.3}{9.0} + \frac{0.1}{3.0}\right) = \frac{1.8}{27.0}$	$= \frac{1.25 + 1.24 + 1.27 + 1.21 + 1.28}{5}$ $= \frac{6.25}{5}$ $= 1.25 \text{ sec}$

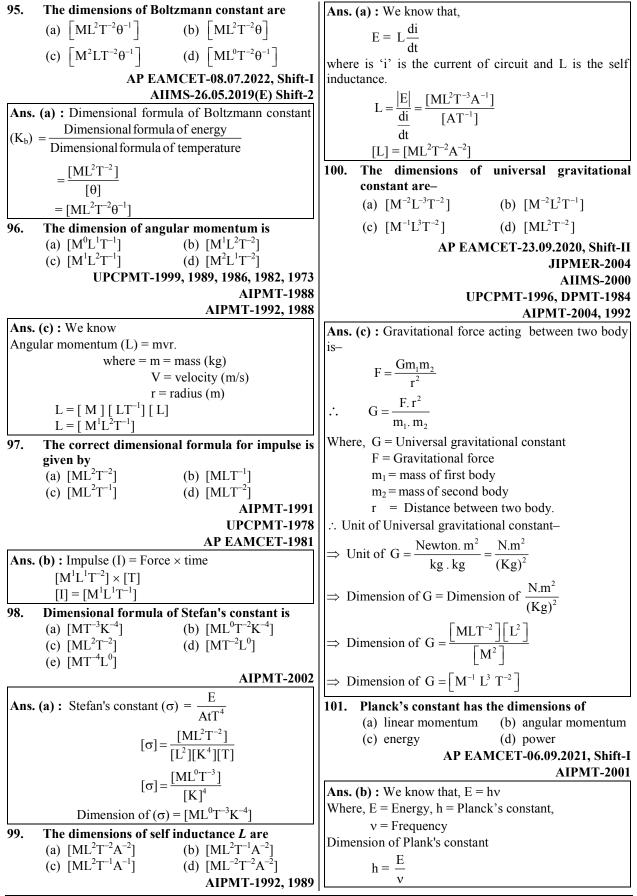
Error in each reading,
$$E_1 = 1.25 - 1.25 = 0.01$$

 $E_2 - 1.27 - 1.25 = -0.01$
 $E_3 - 1.27 - 1.25 = -0.02$
 $E_4 - 1.21 - 1.25 = -0.03$
Relative error $= \frac{\text{Sum of absolute error}}{\text{Mean values 5}}$
 $= \frac{|E_1| + |E_2| + |E_3| + |E_3| + |E_3|}{1.25 \times 5} = 1.00\%$
 $= \frac{0.1}{1.25 \times 5} \times 100\%$
 $= (0.00 \pm 0.02 \pm 0.04 \pm 0.03)$
 $(c) (600 \pm 0.02 \pm 0.04 \pm 0.02) \Omega$
 $(c) (600 \pm 0.02 \pm 0.04 \pm 0.02) \Omega$
 $(c) (600 \pm 0.02 \pm 0.04 \pm 0.02) \Omega$
 $(c) (600 \pm 0.02 \pm 0.04 \pm 0.02) \Omega$
 $(c) (600 \pm 0.02 \pm 0.02 \pm 0.02) \Omega$
 $(c) (600 \pm 0.02) \Omega$
 $(c) (60$

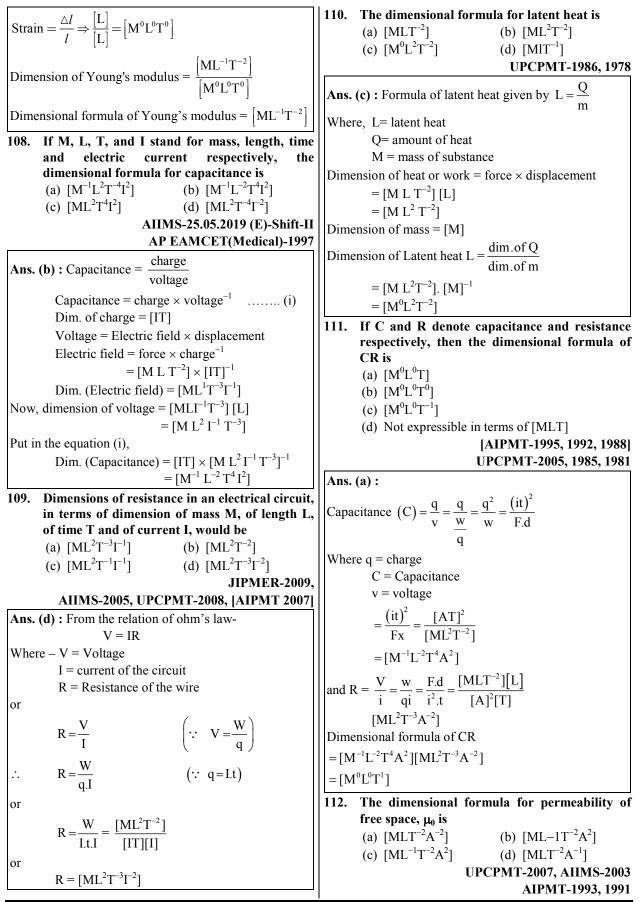

YCT

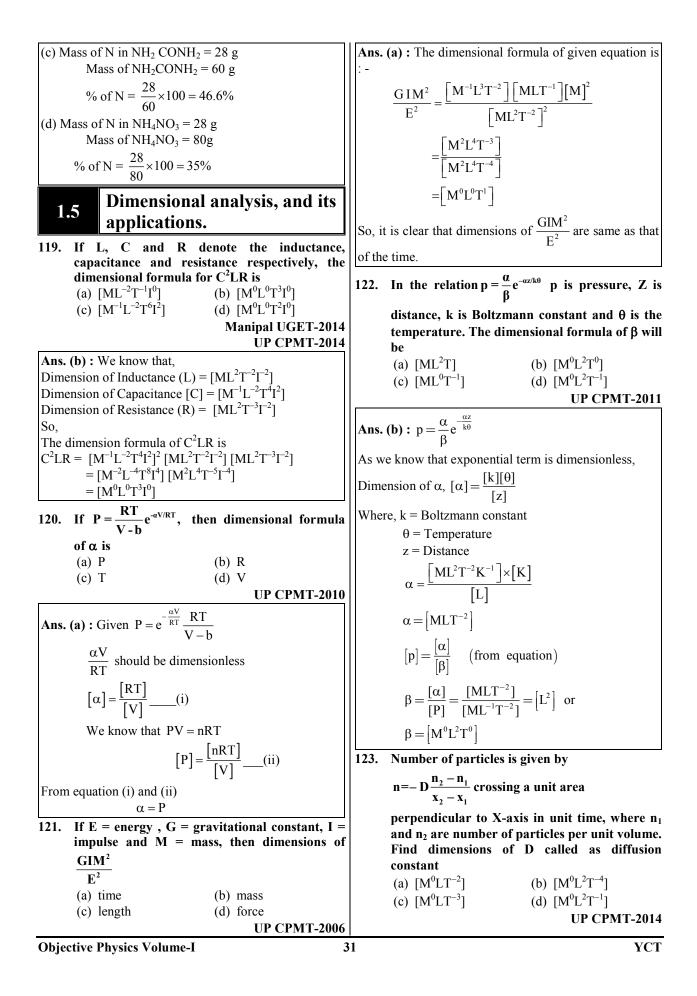


Surface tension is the force per unit length	(c) If the Assertion is correct but Reason is
perpendicular to line drawn in the surface of the liquid. Dimension of surface tension,	incorrect. (d) If both the Assertion and Reason are
,	incorrect.
$=\frac{\text{Force}}{\text{Length}}=\frac{[\text{MLT}^{-2}]}{[\text{L}]}=[\text{MT}^{-2}]$	(e) If the Assertion is incorrect but the Reason is
	correct.
Dimension of surface tension = $[MT^{-2}]$	AIIMS-2002
61. Which of the following pair of quantities do not have the same dimensions:	Ans. (c). The relative velocity is defined as the velocity
(a) Potential gradient, electric field	of an object with respect to another object or observer.
(b) Torque, kinetic energy	It is vector subtraction of two velocities. Relative velocity of P w.r.t Q
(c) Light year, time period	$V_r = V_P - V_O$
(d) Impedance, reactance	$v_r - v_p - v_Q$ So, the dimensional formula of relative velocity is same
AIIMS-2011	as that of the change in velocity.
Ans. (c) : Light year is unit of distance.	64. Assertion: Specific gravity of a fluid is a
So, dimension of light year = [L]	dimensionless quantity.
• Time taken for one complete oscillation to occur is	Reason: It is the ratio of density of fluid to the
called time period.	density of water.
So, Dimension of time period = [T]	(a) If both Assertion and Reason are correct and
62. The dimensional formula of Farad is (a) $[M^{-1}L^{-2}TO]$ (b) $[M^{-1}L^{-2}T^{2}O^{2}]$	the Reason is a correct explanation of the Assertion.
(a) $[M^{-1}L^{-2}TQ]$ (b) $[M^{-1}L^{-2}T^2Q^2]$ (c) $[M^{-1}L^{-2}TQ^2]$ (d) $[M^{-1}L^{-2}T^2Q]$	(b) If both Assertion and Reason are correct but
(c) [W L IQ] (d) [W L IQ] AIIMS-2012	
Ans. (b) : Dimension of Farad	Assertion.
	(c) If the Assertion is correct but Reason is
\therefore $C = \frac{Q}{V}$	incorrect.
As we know,	(d) If both the Assertion and Reason are incorrect.
	(e) If the Assertion is incorrect but the Reason is
$W = Q.V \implies V = \frac{W}{Q}$	correct.
$W = Q.V \implies V = \frac{W}{Q}$ $C = \frac{Q^2}{W} \qquad [\because Q = CV]$	AIIMS-2005
$C = \frac{Q}{W}$ [::Q = CV]	Ans. (a) : Specific gravity of fluid,
And $W = F.d$	$(G) = \frac{\text{Density of fluid}}{\text{Density of water at 4}^{\circ}\text{C}}$
Thus, $C = \frac{Q^2}{F d}$	It is clear that the specific gravity of fluid is dimensionless quantity.
1.4	65. The magnetic moment has dimensions of
Dimension of $C = \frac{\left[\text{Dimension of } Q\right]^2}{\text{Dimension of } F \times \text{dimension of } d}$	(a) $[LA]$ (b) $[L^2A]$
Dimension of $C = \frac{1}{Dimension of F \times dimension of d}$	(c) $[LT^{-1}A]$ (d) $[L^2T^{-1}A]$
$\left[Q^{2} \right]$	JCECE-2007
$= \frac{\left[Q^{2}\right]}{\left[M^{1}L^{1}T^{-2}\right]\left[L^{1}\right]}$	AIIMS-2006
	Ans. (b) : Magnetic moment of a current carrying coil
$= \left[\mathbf{M}^{-1} \mathbf{L}^{-2} \mathbf{T}^{2} \mathbf{Q}^{2} \right]$	is defined as the product of current in the coil with the
63. Assertion: The dimensional formula for	
relative velocity is same as that of the change in	
velocity. Research Bolative velocity of B wat O is the	Thus, dimensions of $M = [A] [L]^2$
Reason: Relative velocity of P w.r.t. Q is the ratio of velocity of P and that of Q.	
(a) If both Assertion and Reason are correct and	66. Dimensions of relative density is (a) $[MI^{-2}]$ (b) $[MI^{-3}]$
the Reason is a correct explanation of the	
Assertion.	(c) Dimensionless (d) $[M^2L^{-6}]$ UP CPMT-2003
(b) If both Assertion and Reason are correct but	
Reason is not a correct explanation of the	
Assertion.	Density of water
Objective Physics Volume I)1 VCT


system will be (a) $[ML^2T^{-2}Q^{-1}]$ (b) $[ML^{2}T^{-1}]$ (c) $[ML^{2}Q^{-1}]$ (d) $[MLT^{-2}Q^{-2}]$ UP CPMT-2002 Ans. (a) : Dimensional formula of emf electro magnetic force - $EMF = \frac{W}{q}$ or $\frac{[ML^{2}T^{-2}]}{[Q]} = [ML^{2}T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^{2}T^{-2}]}{[AT]} = [ML^{2}T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^{2}T^{-2}]}{[AT]} = [ML^{2}T^{-3}A^{-1}]$ 68. $[ML^{3}T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire.	
Idimensioness.67. The dimensional formula for emf, e in MKS system will be (a) $[ML^2T^2Q^{-1}]$ (b) $[ML^2T^{-1}]$ (c) $[ML^2Q^{-1}]$ (d) $[MLT^2Q^{-2}]$ UP CPMT-2020Ans. (a) : Dimensional formula of emf electro magnetic force - $EMF = \frac{W}{q}$ or $\frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ $EMF = [ML^2T^{-3}A^{-1}]$ 68. $[ML^3T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity $UP CPMT-2012$ Ans. (b) : The formula of resistivity is given by $p = \frac{AR}{l}$ • Here, p is the resistance R = $[ML^2T^{-3}A^{-2}]$ The dimension of Resistivity $p = [ML^3T^{-3}A^{-2}]$ The dimension of Conductive $[M^{-1}L^{-2}T^{3}A^{-2}]$ The dimension of Conductivity $[M^{-1}L^{-2}T^{3}A^{-2}]$ The dimension of Conductive $[M^{-1}L^{-2}T^{-3}A^{-2}]$ (b) Electri	¹ T ⁻¹]
67. The dimensional formula for emf, e in MKS system will be (a) $[ML^2T^2Q^{-1}]$ (b) $[ML^2T^{-1}]$ (c) $[ML^2Q^{-1}]$ (d) $[MLT^2Q^2]$ UP CPMT-2002 Ans. (a) : Dimensional formula of emf electro magnetic force - $EMF = \frac{W}{q}$ or $\frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ $EMF = [ML^2T^{-3}A^{-1}]$ 68. $[ML^3T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistance of the wire. The dimension of Resistivity $\rho = [ML^2T^{-2}A^{-2}]$ The dimension of Resistance $R = [ML^2T^{-3}A^{-2}]$ The dimension of Conductive $[ML^3T^{-3}A^{-2}]$ The dimension of Conductive $[ML^3T^{-3}A^{-2}]$ (d) Self inductance (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015	¹ T ⁻¹]
system will be (a) $[ML^2T^2Q^{-1}]$ (b) $[ML^2T^{-1}]$ (c) $[ML^2Q^{-1}]$ (d) $[MLT^2Q^{-2}]$ UP CPMT-2002 Ans. (a) : Dimensional formula of emf electro magnetic force - $EMF = \frac{W}{q} \text{ or } \frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ [ML ² T ⁻²] e MF = $[ML^2T^{-3}]$ $EMF = [ML^2T^{-3}]$ $EMF = [ML^2T^{-3}A^{-1}]$ 68. $[ML^3T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistance of the wire. l is the length of the wire. l is defined uctance $MLT^{-2}A^{-2}]$ (b) Electric Permeability $[M^{-1}L^{-2}A^{-2}]$ (c) Magnetic flux $[M^{-1}L^{-2}A^{-2}]$ (d) Self Inductance $[ML^{-1}T^{-2}A^{-2}]$ (e) Mither following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (¹ T ⁻¹]
(a) [ML ⁻¹ Q ⁻¹] (b) [ML ⁻¹ ⁻ Q ⁻²] UP CPMT-2002 Ans. (a) : Dimensional formula of emf electro magnetic force - $EMF = \frac{W}{q} \text{ or } \frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ $EMF = [ML^2T^{-3}A^{-1}]$ 68. $[ML^3T^{-3}A^{-2}] \text{ is the dimensional formula of}$ (a) resistance (b) resistivity (c) conductance (d) conductivity WP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ (d) Conductivity • Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. <i>l</i> is following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 WB JEE 2015	
$\frac{\text{UP CPMT-2002}}{\text{Ans. (a) : Dimensional formula of emf electro magnetic force -} \\ EMF = \frac{W}{q} \text{ or } \frac{[\text{ML}^2\text{T}^{-2}]}{[\text{Q}]} = [\text{ML}^2\text{T}^{-2}\text{Q}^{-1}] \\ \text{or } EMF = \frac{[\text{ML}^2\text{T}^{-2}]}{[\text{AT}]} = [\text{ML}^2\text{T}^{-2}\text{Q}^{-1}] \\ \text{or } EMF = [\text{ML}^2\text{T}^{-3}\text{A}^{-1}] \\ \text{68. } [\text{ML}^3\text{T}^{-3}\text{A}^{-2}] \text{ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 \\ \hline \text{Mas. (b) : The formula of resistivity is given by } \\ \rho = \frac{AR}{l} \\ P = \frac{AR}{l} \\ \text{72. The dimension of Resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. The dimension of Conductance \text{E} [\text{ML}^2\text{T}^{-3}\text{A}^{-2}] \\ \text{The dimension of Conductance C = [\text{M}^{-1}\text{L}^{-2}\text{T}^{3}\text{A}^{-2}] \\ \text{The dimension of Conductive [M^{-1}\text{T}^{-3}\text{A}^{-2}] \\ \text{The dimension of Conductive [M^{-1}\text{L}^{-2}\text{T}^{3}\text{A}^{-2}] \\ \text{(b) Electric Permeability [M^{-1}\text{L}^{-3}\text{T}^{4}\text{A}^{2}] \\ \text{(c) Magnetic Permeability [M^{-1}\text{L}^{-3}\text{T}^{4}\text{A}^{2}] \\ ($	
$ [MIG (r) F Bindmatric formation of the electron magnetic force - EMF = \frac{W}{q} \text{ or } \frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}] or EMF = \frac{[ML^2T^{-2}]}{[AT]} = [ML^2T^{-2}Q^{-1}] or EMF = \frac{[ML^2T^{-3}A^{-1}]}{[AT]} 68. [ML^3T^{-3}A^{-2}] \text{ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 Mns. (b) : The formula of resistivity is given by \rho = \frac{AR}{l} (a) the resistivity of the wire A is Area of cross section - of wire R is the resistance of the wire.l is the length of Resistance R = [ML^2T^{-3}A^{-2}]The dimension of Conductivity = [M^{-1}L^{-2}T^{-3}A^{-2}]The dimension of Conductivity = [M^{-1}L^{-2}T^{-3}A^{-2}]The dimension of Conductivity = [M^{-1}L^{-2}T^{-3}A^{-2}]The dimension of Conductivity = [M^{-1}L^{-2}T^{-3}A^{-1}]69. When light is refracted from a surface, which of its following physical parameters does not change?(a) Velocity (b) Amplitude (c) Frequency (d) WavelengthWB JEE 2015WB JEE 2015WB JEE 2015WB JEE 2015We serve equivalent = [ML^{-1}T^{-2}A^{-2}]WB JEE 2015Water equivalent = [ML^{-1}T^{-2}A^{-2}]WB JEE 2015WB JEE 2015 $	
$EMF = \frac{W}{q} \text{ or } \frac{[ML^2T^{-2}]}{[Q]} = [ML^2T^{-2}Q^{-1}]$ or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ $EMF = [ML^2T^{-3}A^{-1}]$ 68. $[ML^3T^{-3}A^{-2}] \text{ is the dimensional formula of } (a) \text{ resistance} (b) \text{ resistivity} (c) \text{ conductive } (d) \text{ conductivity} UP CPMT-2012}$ $Mns. (b) : The formula of resistivity is given by \rho = \frac{AR}{l} (• Here, \rho is the resistance of the wire. l is the resistance of the wire. l is the resistance of the wire. l is the length of the wire. l is the resistance of the wire. l is the length of the wire. l is the length of the wire. R = [ML^2T^{-3}A^{-2}] The dimension of Conductance C = [M^{-1}L^{-2T^{-3}}A^{-2}] The dimension of Conductivity [M^{-1}L^{-2T^{-3}}A^{-1}] (b) Electric Permeability [M^{-1}L^{-3}T^{-3}A^{-2}] The dimension of Conductivity [M^{-1}L^{-2T^{-2}}A^{-1}] (c) Magnetic flux [M^{-1}L^{-2T^{-2}}A^{-1}] (d) Self Inductance [ML^{-2}T^{-2}A^{-2}] The dimension of Conductivity [M^{-1}L^{-2T^{-2}}A^{-1}] The dimension of Conductivity [M^{-1}L^{-2T^{-2}}A^{-1}] The dimension of Conductivity [M^{-1}L^{-2T^{-2}}A^{-1}] The dimension of Conductivi$	$^{-3}$ K ⁻¹]
$EMF = - or f (Q)^{-1} = [ML^{c}T^{-2}Q^{-1}]$ or $EMF = [ML^{2}T^{-2}]$ $EMF = [ML^{2}T^{-3}A^{-1}]$ 68. $[ML^{3}T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductance (d) conductivity $UP CPMT-2012$ Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistivity of the wire A is Area of cross section of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductivity $= [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension of Conductance $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension $C = [M^{-1}L^{-2}T^{-3}A^{-2}]$ f dimension $C = [M^{-1}L^{-2}T$	$^{-3}K^{-1}$]
or $\operatorname{EMF} = [\operatorname{ML}^2 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 68. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 68. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 69. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 61. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 62. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 63. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 64. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-1}]$ 65. $[\operatorname{ML}^3 \operatorname{T}^{-3} \operatorname{A}^{-2}]$ 67. The formula of resistivity is given by $\rho = \frac{\operatorname{AR}}{l}$ 67. The dimension of Resistance of the wire. l is the length of the wire. The dimension of Resistance of the wire. l is the length of the wire. The dimension of Resistance $\operatorname{R} = [\operatorname{ML}^2 \operatorname{T}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductance $\operatorname{C} = [\operatorname{M}^{-1} \operatorname{L}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductivity $[\operatorname{M}^{-1} \operatorname{L}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductivity $= [\operatorname{ML}^2 \operatorname{T}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductive $\operatorname{C} = [\operatorname{M}^{-1} \operatorname{L}^{-2} \operatorname{T}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductive $\operatorname{C} = [\operatorname{M}^{-1} \operatorname{L}^{-2} \operatorname{T}^{-3} \operatorname{A}^{-2}]$ The dimension of Conductive $\operatorname{C} = [\operatorname{M}^{-1} \operatorname{L}^{-2} \operatorname{T}^{-3} \operatorname{A}^{-2}]$ 7. The dimension of Conductive $\operatorname{C} = [\operatorname{M}^{-1} \operatorname{L}^{-2} \operatorname{T}^{-3} \operatorname{A}^{-2}]$ 7. $\operatorname{Mas.}(a) : = \frac{\operatorname{List} - \operatorname{I} \operatorname{List} - \operatorname{II} \operatorname{List} - \operatorname{II} \operatorname{I} \operatorname{I} \operatorname{Magnetic} \operatorname{Permeability} [\operatorname{M}^{-1} \operatorname{L}^{-3} \operatorname{T}^{-4} \operatorname{A}^{-2}]$ 69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 10. $\operatorname{Match the following}$ A. Angular momentum 1. $[\operatorname{M}^{-1} \operatorname{L}^{-2} \operatorname{A}^{-2}]$ 11. $\operatorname{Match the following}$ 11. $\operatorname{Match the following}$ 	L
or $EMF = \frac{[ML^2T^{-2}]}{[AT]}$ $EMF = [ML^2T^{-3}A^{-1}]$ (a) No units and no dimensions $EMF = [ML^2T^{-3}A^{-1}]$ (b) Both units and no dimensions $EMF = [ML^2T^{-3}A^{-1}]$ (c) Unit but no dimensions (d) Dimensions but no units (e) Unit but no dimensions (f) Dimensions but no units NEET (f) Conductance (g) conductance (d) conductivity $UP CPMT-2012$ (g) $P = \frac{AR}{l}$ $P = \frac{Radian}{Solid angle}$ $P = \frac{Radian}{Solid angle}$	
$EMF = [ML^2T^{-3}A^{-1}]$ (c) Unit but no dimensions $EMF = [ML^2T^{-3}A^{-1}]$ (d) Dimensions but no units (e) Unit but no dimensions (f) Dimensions but no units (f) Dimensions but no units (h) Conductance (h) resistivity (c) conductance (h) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ (c) Unit but no dimensions (h) Dimensions but no units (h) Dimensions but no units (h) Dimensions (h) Dimensio	
$EMF = [ML^2T^{-3}A^{-1}]$ (c) Unit but no dimensions $EMF = [ML^2T^{-3}A^{-1}]$ (d) Dimensions but no units (e) Unit but no dimensions (f) Dimensions but no units (f) Dimensions but no units (h) Conductance (h) resistivity (c) conductance (h) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ (c) Unit but no dimensions (h) Dimensions but no units (h) Dimensions but no units (h) Dimensions (h) Dimensio	
68. $[ML^3T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductanceNEETAns. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ Name (c) ConductanceRadianAns. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ Solid angleSteradian• Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^3T^{-3}A^{-2}]$ The dimension of Conductance C = $[ML^2T^{-3}A^{-2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{1}]$ NEET69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) WavelengthNEETWB JEE 2015Match the following A. Angular momentum1. $[M^{-1}L^{2}$ WB JEE 2015B. Torque2. $[M^{1}T^{-2}$	
68. $[ML^3T^{-3}A^{-2}]$ is the dimensional formula of (a) resistance (b) resistivity (c) conductanceNEETAns. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ Name (c) ConductanceRadianAns. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ Solid angleSteradian• Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^3T^{-3}A^{-2}]$ The dimension of Conductance C = $[ML^2T^{-3}A^{-2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{1}]$ NEET69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) WavelengthNEETWB JEE 2015Match the following A. Angular momentum1. $[M^{-1}L^{2}$ WB JEE 2015B. Torque2. $[M^{1}T^{-2}$	
(a) resistance (b) resistivity (c) conductance (d) conductivity UP CPMT-2012 Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. <i>l</i> is the length of the wire. <i>l</i> is the length of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity $= [M^{-1}L^{-2}T^{3}A^{2}]$ (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 Ans. (c) : Unit but no dimensions Plane angle Radian Solid angle Steradian 72. The dimensions [MLT^{-2}A^{-2}] belong ta (a) Magnetic permeability (b) Electric permitivity (c) Magnetic Permeability $[M^{-1}L^{-2}T^{-4}A^{2}]$ (b) Electric Permeability $[M^{-1}L^{-3}T^{-4}A^{2}]$ (c) Magnetic flux $[M^{1}L^{2}T^{-2}A^{-2}]$ (d) Self Inductance $[ML^{2}T^{-2}A^{-2}]$ 73. Match the following A. Angular momentum 1. $[M^{-1}L^{2}$ B. Torque 2. $[M^{1}T^{-2}$	17.07.2022
(a) resistance(b) resistanceRadian(c) conductance(d) conductivityUP CPMT-2012Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ Solid angle• Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^3T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^3A^2]$ The dimension of Conductivity $= [M^{-1}L^{-2}T^3A^2]$ The dimension of Conductivity $= [M^{-1}L^{-2}T^3A^2]$ The dimension of Conductivity $= [M^{-1}L^{-2}T^3A^2]$ (a) Velocity (b) Amplitude (c) FrequencyNamplitude (c) FrequencyNamplitude (d) WavelengthWB JEE 2015Watch the following A. Angular momentum1. $[M^{-1}L^2$ B. Torque2. $[M^{1}T^{-2}$	
$\frac{UP \ CPMT-2012}{UP \ CPMT-2012}$ Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ • Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Resistance R = $[ML^{2}T^{-3}A^{-2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ (a) When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 B. Torque 2. $[M^{1}T^{-2}$	
Ans. (b) : The formula of resistivity is given by $\rho = \frac{AR}{l}$ 72. The dimensions $[MLT^{-2}A^{-2}]$ belong to (a) Magnetic permeability (b) Electric permittivity (c) Magnetic flux (d) Self inductance• Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Resistance $R = [ML^{2}T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{1}]$ Ans. (a) :69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) WavelengthMatch the following A. Angular momentum 1. $[M^{-1}L^{2}$ 73. Match the following A. Angular momentumVB JEE 2015	
$\rho = \frac{AR}{l}$ (a) Magnetic permeability (b) Electric permittivity (c) Magnetic flux (d) Self inductance (a) Velocity (c) Magnetic flux (d) Self inductance (a) Velocity (c) Magnetic flux (d) Self inductance (e) MEET (e) Magnetic Permeability (f) Self inductance (f) Se	o the
$\rho = \frac{1}{l}$ (b) Electric permittivity (c) Magnetic flux (d) Self inductance (d) Self inductance (e) Mean light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (c) Frequency (c) Frequency (c) Magnetic flux (d) Self Inductance (mlt2T ⁻² A ⁻²] (d) Self Inductance (mlt2T ⁻² A ⁻¹] (d) Self Inductance (mlt2T ⁻² A ⁻²) (d) Self Inductance (mlt2T ⁻² A ⁻²) (d) Self Inductance (mlt2T ⁻² A ⁻²) (d) Self Inductance (ml	5 the
• Here, ρ is the resistivity of the wire A is Area of cross section- of wire R is the resistance of the wire. <i>l</i> is the length of the wire. The dimension of Resistivity $\rho = [ML^{3}T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{1}]$ 69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 (c) Magnetic flux (d) Self Inductance $[ML^{2}T^{-2}A^{-2}]$ 73. Match the following A. Angular momentum 1. $[M^{-1}L^{2}$	
$\begin{array}{c} \text{Here, p is the resistance of the wire interval of errors is section- of wire R is the resistance of the wire.} \\ l is the length of the wire. \\ The dimension of Resistance R = [ML3T-3A-2] \\ The dimension of Conductance C = [M-1L-2T3A2] \\ The dimension of Conductivity = [M-1L-2T3A1] \\ \hline \textbf{69. When light is refracted from a surface, which of its following physical parameters does not change? \\ (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength \\ \hline \textbf{WB JEE 2015} \\ \hline \textbf{WB JEE 2015} \\ \hline \textbf{Warrendown a surface of the wire.} \\ \hline \textbf{Mas. (a) : } \\ \hline \textbf{Mas. (b) : } \\ \hline \textbf{Mas. (c) : } \\ \hline$	
NEETNEETInterview of the wire.The dimension of Resistance $R = [ML^{2}T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{2}]$ Colspan="2">Colspan="2">NEETAns. (a) :NEETAns. (a) :Colspan="2">NEETAns. (a) :Colspan="2">NEETAns. (a) :Colspan="2">NEET(a) When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) WavelengthColspan="2">Match the following A. Angular momentum 1. $[M^{-1}L^{2}$ B. Torque2. $[M^{1}T^{-2}]$	
The dimension of Resistivity $\rho = [ML^3T^{-3}A^{-2}]$ The dimension of Resistance $R = [ML^2T^{-3}A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^3A^2]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^3A^1]$ Ans. (a) :List-IList-II (a) Magnetic Permeability(a) When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency(b) Amplitude (c) FrequencyWB JEE 2015Mans. (a) :List-IList-II(a) Velocity (b) Amplitude (c) Frequency(b) Amplitude (c) FrequencyWB JEE 2015B. Torque2. $[M^{1}T^{-2}]$	17.07.2022
The dimension of Resistance $R = [ML^2T^3A^{-2}]$ The dimension of Conductance $C = [M^{-1}L^{-2}T^3A^2]$ The dimension of Conductivity = $[M^{-1}L^{-2}T^3A^1]$ List–IList–II(a) When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) FrequencyList–IList–II(a) Magnetic Permeability $[M^{1}LT^{-2}A^{-2}]$ (b) Electric Permeability $[M^{1}L^{2}T^{-2}A^{-1}]$ (c) Magnetic flux $[ML^2T^{-2}A^{-2}]$ (d) Self Inductance $[ML^2T^{-2}A^{-2}]$ (d) Self Inductance $[ML^2T^{-2}A^{-2}]$ (d) Self Inductance $[ML^2T^{-2}A^{-2}]$ (e) WB JEE 2015B. Torque2. $[M^{1}T^{-2}$	
The dimension of Conductance $C = [M^{-1}L^{-2}T^{3}A^{2}]$ (a) Welocity(b) Amplitude(c) Frequency(b) Amplitude(c) Frequency(b) Amplitude(c) Frequency(c) Frequency(d) WavelengthWB JEE 2015(a) Magnetic Permeability $[M^{1}LT^{-2}A^{-2}]$ (b) Electric Permeability $[M^{1}L^{-2}T^{-4}A^{-1}]$ (c) Magnetic flux $[M^{1}L^{2}T^{-2}A^{-1}]$ (d) Self Inductance $[ML^{2}T^{-2}A^{-2}]$ (e) Frequency(f) Wavelength(f) The state of the	
The dimension of Conductivity = $[M^{-1}L^{-2}T^{3}A^{1}]$ (b) Electric Permeability $[M^{-1}L^{-3}T^{4}A^{2}]$ (b) Electric Permeability $[M^{-1}L^{-3}T^{4}A^{2}]$ (b) Electric Permeability $[M^{-1}L^{-3}T^{4}A^{2}]$ (c) Magnetic flux $[M^{1}L^{2}T^{-2}A^{-1}]$ (d) Velocity(b) Amplitude(c) Frequency(d) WavelengthWB JEE 2015B. Torque2. $[M^{1}T^{-2}$	
 69. When light is refracted from a surface, which of its following physical parameters does not change? (a) Velocity (b) Amplitude (c) Frequency (d) Wavelength WB JEE 2015 (e) Diverse Control of United and the following in the integral of the	1
of its following physical parameters does not change? (a) Velocity (c) Frequency (b) Amplitude (d) Wavelength (c) Self Inductance $[ML^2T^{-2}A^{-2}]$ 73.Match the following A. Angular momentum $1. [M^{-1}L^2]$ B. Torque $2. [M^{1}T^{-2}$	
change?(d) Sen Inductance $[ML T A]$ (a) Velocity(b) Amplitude(c) Frequency(d) WavelengthWB JEE 2015B. Torque2. $[M^{1}T^{-2}]$	1
(a) Velocity (b) Amplitude (c) Frequency (d) Wavelength MB JEE 2015 A. Angular momentum $1. [M^{-1}L^2]$	
$\frac{1}{1} \frac{1}{1} \frac{1}$	
B. Lordue 2. M. L	
	T ⁻²]
source so it does not change in case of reflection or C . Gravitational constant 3 . $[M^1L^2]$	2
70. Match the List I with List II. D. Tension 4. $[M^1L^2]$	$\left[\Gamma^{-2} \right]$
List-I List-II (a) C -2, D -1 (b) A -4, B -	$\left[\Gamma^{-2} \right]$
A. Boltzmann I. $[ML^0T^0]$ (c) A -3, C -2 (d) B -2, A -	Γ ⁻²]
constant JIP	$\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ $\begin{bmatrix} -2 \\ -3 \end{bmatrix}$
B. Coefficient of II. $[ML^{-1}T^{-1}]$ viscosity Ans. (b) : Dimensional formula of angular manual angular momentum $= mvr$	$\begin{bmatrix} 2 \\ -2 \end{bmatrix}$ $\begin{bmatrix} -2 \\ -3 \end{bmatrix}$
C. Water III. $[MLT^{-3}K^{-1}]$ = kg (m/s)m equivalent = [M][LT^{-1}] [L]	2] T ⁻²] T ⁻¹] -3 -1 MER-2014
D. Coefficient of IV. $[ML^2T^{-2}K^{-1}]$ = $[ML^2T^{-1}]$	2] T ⁻²] T ⁻¹] -3 -1 MER-2014
b. Coefficient of TV . [IVIL TK] thermal conductivity Dimensional formula of Torque Torque $\tau = F.r = ma.r$	2] T ⁻²] T ⁻¹] -3 -1 MER-2014

= kg (m/s ²)m = $[M] [LT^{-2}] [L] = [ML^{2}T^{-2}]$	C. Gravitational (i) $[L^2T^{-2}]$ Potential
Dimensonal formula of Gravitiational constant -	D. Gravitational (iii) [LT ⁻¹]
Gravitational constant (G) = $\frac{F.r^2}{M.m}$	Intensity
$M_{e}.m$	76. The dimensions of $(\mu_0 \epsilon_0)^{-1/2}$ are
$\begin{bmatrix} \mathbf{M} \mathbf{I} \mathbf{T}^2 \end{bmatrix} \begin{bmatrix} \mathbf{I}^2 \end{bmatrix}$	(a) $[L^{1/2}T^{-1/2}]$ (b) $[L^{-1}T]$ (c) $[LT^{-1}]$ (d) $[L^{1/2}T^{1/2}]$
$= \frac{\lfloor MLT^{-2} \rfloor \lfloor L^2 \rfloor}{\lceil M \rceil \lceil M \rceil} = \lceil M^{-1}L^3T^{-2} \rceil$	(c) $[LT^{-1}]$ (d) $[L^{1/2}T^{1/2}]$
[M][M]	[AIPMT 2012]
Dimensional formula of Tension -	Ans. (c) : We know that,
Tension force = Gravity force = mg	
= kg. (m/s ²)	Velocity of electromagnetic wave (c) = $\frac{1}{\sqrt{\mu_0 \epsilon_0}}$
$= [M] [LT^{-2}] = [MLT^{-2}]$	$\sqrt{\mu_0 \varepsilon_0}$
74. The Physical quantity having the dimensions	Then, $(\mu_0\epsilon_0)^{-1/2}$ have same dimension of
[$M^{-1}L^{-3}T^3A^2$] is	
(a) Resistance (b) Resistivity	velocity is [LT ⁻¹]
(c) Electrical conductivity (d) Electromotive force	77. The dimensions of $\frac{1}{2}\varepsilon_0 E^2$, where ε_0 is
• • •	77. The dimensions of $\frac{1}{2}\varepsilon_0 E$, where ε_0 is
JIPMER-2011	permittivity of free space and E is electric field,
Ans. (c) : We know that,	are
Resistivity $\rho = \frac{RA}{1}$	(a) $[ML^{2}T^{-2}]$ (b) $[ML^{-1}T^{-2}]$ (c) $[ML^{2}T^{-1}]$ (d) $[MLT^{-1}]$
1	(c) $[ML^2T^{-1}]$ (d) $[MLT^{-1}]$
$\left[ML^{2}T^{-3}A^{-2} \right] \left[L^{2} \right]$	[AIPMT 2010]
$\rho = \frac{\left[ML^2 T^{-3} A^{-2} \right] \left[L^2 \right]}{\left[L \right]}$	AIIMS-2014
[L]	
$\rho = \frac{[M]}{\Gamma^{-3}[AT][T]} = [ML^{3}A^{-2}T^{-3}]$	Ans. (b) : The given equation is $\frac{1}{2} \varepsilon_0 E^2$
$\rho = \frac{1}{L^{-3}[AT][T]} = [ML A I]$	2
1	Where,
So, Electrical conductivity $\sigma = \frac{1}{2}$	$\varepsilon_0 = \text{permittivity}$
ρ	E = Electric field
$\rho = [ML^3A^{-2}T^{-3}]$	\therefore Dimension of $\varepsilon_0 = [M^{-1}L^{-3}T^4A^2]$
1	and
$\sigma = \frac{1}{2} \Rightarrow \sigma = [M^{-1}L^{-3}A^2T^3]$	F F
p	Dimension of electric field $E = \frac{F}{a}$
75. Match list-I with List-II	Ч т. т. т
List-I List-II	$E = \frac{[MLT^{-2}]}{[AT]}$
(a) Gravitational constant (i) $[L^2T^{-2}]$	[AT]
(b) Gravitational potential (ii) $[M^{-1}L^{3}T^{-2}]$	$\mathbf{E} = [\mathbf{M}\mathbf{L}\mathbf{T}^{-3}\mathbf{A}^{-1}]$
energy	D_{1}^{1} D_{2}^{1} D_{3}^{2} D_{4}^{1} D_{4}^{2} D_{4}^{2} D_{4}^{2} D_{5}^{2} D_{5}^{2} D_{5}^{2}
(c) Gravitational potential (iii) $[LT^{-1}]$:. Dimension of $\frac{1}{2} \varepsilon_0 E^2 = [M^{-1}L^{-3}T^4A^2] [MLT^{-3}A^{-1}]^2$
(d) Gravitational intensity (iv) $[ML^2T^{-2}]$	1
Choose the correct answer from the options	$\frac{1}{2}\varepsilon_0 E^2 = [M^{-1}L^{-3}T^4A^2] [M^2L^2T^{-6}A^{-2}]$
given below	2
(a) (a)-(ii), (b)-(iv), (c)-(iii), (d)-(i)	$\frac{1}{2}\varepsilon_0 E^2 = [\mathbf{M} \mathbf{L}^{-1} \mathbf{T}^{-2}]$
(b) (a)-(iv), (b)-(ii), (c)-(i), (d)-(iii)	2
(c) (a)-(ii), (b)-(i), (c)-(iv), (d)-(iii)	78. Which two of the following five physical
(d) (a)-(ii), (b)-(iv), (c)-(i), (d)-(iii)	parameters have the same dimensions?
NEET 17.07.2022	(i) Energy density
Ans. (d) : (a) – (ii) , (b) – (iv), (c) – (i), (d) – (iii)	(ii) Refractive index
	(iii) Dielectric constant
List-I List-II	(iv) Young's modulus
A. Gravitational (ii) $[M^{-1}L^3T^{-2}]$	(v) Magnetic field
constant	(a) (ii) and (iv) (b) (iii) and (v)
B. Gravitational (iv) $[ML^2T^{-2}]$	(c) (i) and (iv) (d) (i) and (v)
Potential Energy	[AIPMT 2008]




(a) Mass (b) Length Work done by an object is given by. (c) Time (d) Angle $W = F \times d$ AP EAMCET (Medical)-24.04.2019, Shift-I $= \mathbf{F} \times \mathbf{v} \times \mathbf{t}$ Ans. (d) : Given. $t = \frac{W}{Fv}$ Let quantity is x $\left[\frac{Q^5S^2}{PR^2}\right]$(i) $\mathbf{t} = \left[\mathbf{W}^{1} \mathbf{F}^{-1} \mathbf{v}^{-1} \right]$ So, Hence, the dimensional formula of the time will be Where, $P \rightarrow energy$ $[WF^{-1}v^{-1}]$ $Q \rightarrow mass$ If energy (E), force (F) and linear momentum 89. $R \rightarrow$ angular momentum (P) are fundamental quantities, then match the $S \rightarrow Gravitational constant$ following and give the correct answer. Dimension of . (A) **(B)** Energy $[P] = [ML^2T^{-2}]$ Physical quantity Dimensional formula (d) $[E^0 F^{-1} P^1]$ (a) Mass Mass [Q] = [M](e) $[E^{-1} F^0 P^2]$ (b) Length Angular momentum $[R] = [ML^2T^{-1}]$ (f) $[E^1 F^{-1} P^0]$ (c) Time Gravitational constant $[S] = [M^{-1}L^{3}T^{-2}]$ (a) a-d, b-e, c-f (b) a-f, b-e, c-d Substituting dimension of each quantity in equation (1) (c) a-e, b-f, c-d (d) a-e, b-d, c-f $[\mathbf{x}] = \frac{[\mathbf{M}]^{5} [\mathbf{M}^{-1} \mathbf{L}^{3} \mathbf{T}^{-2}]^{2}}{[\mathbf{M} \mathbf{L}^{2} \mathbf{T}^{-2}] [\mathbf{M} \mathbf{L}^{2} \mathbf{T}^{-1}]^{2}}$ **AP EAMCET(Medical)-2015** Ans. (c) : (A) **(B) Physics** quantity Dimensional $=\frac{M^{3}L^{6}T^{-4}}{M^{3}L^{6}T^{-4}}=\left[M^{0}L^{0}T^{0}\right]$ formula (E) $E^{-1} F^0 p^2$ (A) Mass (F) $E^1 F^{-1} \hat{p}^0$ Angle is dimension less quantity (B) Length So, dimension formula of angle = $[M^0L^0T^0]$ (D) $E^0 F^{-1} p^1$ (C) Time If E and G respectively denote energy and The dimensional formula of coefficient of 94. 90. kinematic viscosity is: gravitational constant. Then has the (b) $[M^0L^2T^{-1}]$ (a) $[M^0L^{-1}T^{-1}]$ (c) $[ML^2T^{-1}]$ (d) $[ML^{-1}T^{-1}]$ dimensions of (a) $[M^2] [L^{-1}] [T^0]$ **AP EAMCET(Medical)-2002** (b) $[M] [L^{-1}] [T^{-1}]$ Ans. (b) : The dimensional formula of kinematic (c) $[M] [L^0] [T^0]$ viscosty is $[M^0L^2T^{-1}]$. (d) $[M^2] [L^{-2}] [T^{-1}]$ 91. The dimensional formula of magnetic induction [NEET 2021] is: (a) $[MT^{-1}A^{-1}]$ (b) $[MT^{-2}A^{-1}]$ Ans. (a) (c) $[MTA^{-2}]$ (d) $[MTA^{-2}]$ Energy (E) = $\frac{1}{2}$ mv² **AP EAMCET(Medical)-2000** Ans. (b) : The dimensional formula of magnetic Dimension of $E = [ML^2T^{-2}]$ induction is $[MT^{-2}A^{-1}]$. and gravitational constant (G) = $\frac{Fr^2}{m_1m_2}$ 92. What is the dimension of Luminous flux? (a) $[cd^1]$ (b) $[cd^{1}T^{-1}]$ $G = \frac{\left[MLT^{-2}\right]\left[L^{2}\right]}{\left[M^{2}\right]}$ (c) $[cd^{1}L^{-2}]$ (d) $[cd^{1}L^{1}T^{-1}]$ AIIMS-26.05.2019(M) Shift-1 Ans. (a): The unit of luminous intensity is Candela and $G = [M^{-1}L^3T^{-2}]$ denoted as cd. So, the unit of luminous flux = [cd] Now, P, Q, R and S denote energy, mass, angular 93. Dimension of $\frac{E}{G} = \frac{\left[ML^2T^{-2}\right]}{\left[M^{-1}L^3T^{-2}\right]}$ momentum and gravitational constant respectively, the quantity has the $\frac{E}{G} = \left[M^2 L^{-1} T^0 \right]$ dimensions of

 $h = \frac{\left[ML^2T^{-2}\right]}{\left[M^0L^0T^{-1}\right]}$ Then, dimensional formula of $\frac{1}{\mu_0 \varepsilon_0}$ is given as – $\frac{1}{\mu_0\epsilon_0} = c^2 = [LT^{-1}]^2 = [L^2T^{-2}]$ $h = \left[ML^2T^{-1} \right]$ Dimension of Angular momentum Dimensional formula for ε_0 is 105. (a) $[M^{-1}L^{-2}A^{2}T^{2}]$ (b) $[ML^2A^{-2}T^4]$ = MVr $= [M][LT^{-1}][L]$ (c) $[M^{-1}L^{-3}A^2T^4]$ (d) $[ML^{3}A^{-2}T^{4}]$ AP EAMCET (17.09.2020) Shift-II $= [ML^2T^{-1}]$ **AIIMS-2004** Hence, option (b) is correct. Ans. (c) : From Coulomb's law, 102. Dimensions of Planck's constant is : $\mathbf{F} = \frac{1}{4\pi\varepsilon_0} \cdot \frac{\mathbf{q}_1 \mathbf{q}_2}{\mathbf{r}^2}$ (a) $[ML^2T^{-1}]$ (b) $[MLT^{-2}]$ (c) $[ML^{-2}T]$ (d) $[ML^{-1}T^2]$ AIIMS-1997 $\varepsilon_0 = \frac{1}{4\pi F} \cdot \frac{q_1 q_2}{r^2}$ **UPCPMT-1999** Ans. (a) : Formula, E = hv: Dimensions of $\varepsilon_0 = \frac{1}{[MLT^{-2}]} \times \frac{[AT]^2}{[L^2]}$ Planck's Constant $(h) = \frac{\text{Energy in each Photon}}{\text{Frequency of radiation}}$ $= \left[M^{-1}L^{-3}A^2T^4 \right]$ 106. The dimension of light year $=\frac{\mathrm{E}}{\mathrm{v}}=\frac{\left[\mathrm{ML}^{2}\mathrm{T}^{-2}\right]}{\left[\mathrm{T}^{-1}\right]}$ (a) $[LT^{-1}]$ (b) [T] (c) $\left[ML^2T^{-2} \right]$ (d) [L] $= [ML^2T^{-1}]$ **UPCPMT-1991** 103. The dimension of magnetic flux is Ans. (d) : Light year is a distance that light can travel in (a) $[MLT^{-1}A^{-1}]$ (b) $[ML^{-1}TA^{-2}]$ one year since its unit is in meter. (c) $[ML^{-2}T^{2}A^{-2}]$ (d) $[ML^2T^{-2}A^{-1}]$.: Dimension of light year is [L] **AP EAMCET (Medical)-2003** 107. The dimensional formula for Young's modulus is AIPMT-1999, 89, AIIMS-1998 OR Ans. (d) : Magnetic flux $(\phi_{\mathbf{R}}) = \mathbf{B} \times \mathbf{A} \times \cos\theta$ The dimensional formula of modulus of rigidity is OR Where, B = Magnetic Field The dimensional formula of pressure is A = Surface AreaOR θ = Angle between the magnetic field and The dimensional formula for volume elasticity is normal to the surface. OR Therefore, dim. $(\phi_{\mathbf{B}}) = \left[\mathbf{M}^{1} \mathbf{T}^{-2} \mathbf{A}^{-1} \right] \left[\mathbf{M}^{0} \mathbf{L}^{2} \mathbf{T}^{0} \right]$ The dimensional formula of modulus of elasticity is $\phi_{\mathbf{B}} = \left[\mathbf{M}^{1} \mathbf{L}^{2} \mathbf{T}^{-2} \mathbf{A}^{-1} \right]$ OR Dimension of Bulk modulus is Since, θ is a dimensionless quantity. OR 104. Dimensions of $1/\mu_0 \epsilon_0$, where symbols have their What is the dimension of stress? usual meaning, are (a) $ML^{-1}T^{-2}$ (b) M^0LT^{-2} (a) $\left[L^{-1}T \right]$ (b) $\left[L^2 T^2 \right]$ (c) MLT^{-2} (d) ML^2T^{-2} (c) $\left[L^2 T^{-2} \right]$ NEET (Sep.) 2020 (d) $\left[LT^{-1} \right]$ **JIPMER-2005**, AFMC-1986, AIIMS-1993 **UP CPMT-2004, 1991** AIPMT-1992, UPCPMT-1997, 1992 AP EAMCET (Med.)-1995 Ans. (c) : We know, AIPMT-1990, IIT-1982 $c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$ **Ans. (a) :** Young's modulus = $\frac{\text{stress}}{2}$ strain $Stress = \frac{Force}{Area} = \frac{\left[MLT^{-2}\right]}{\left[L^{2}\right]} = \left[ML^{-1}T^{-2}\right]$ $\mu_0 \varepsilon_0$

· · · · · · · · · · · · · · · · · · ·	۰ ۲
Ans. (a) : The dimensional formula for permeability of	Ans. (c): Given,
free space,	Molecular formula weight = 180
$\mu_0 = \frac{2\pi \times \text{force} \times \text{distance}}{\text{current} \times \text{current} \times \text{length}}$	Empirical formula weight of CH_2O is = $12+2+16=30$
	We know that,
Dimension of force = $[MLT^{-2}]$	$n = \frac{\text{Molecular formula weight}}{\text{Emperical formula weight}} = \frac{180}{30} = 6$
Dimension of current = [A]	Emperical formula weight 30
Dimension of length and distance = [L]	Molecular formula = $6 \times CH_2O$
$\cdot \mu = \frac{[MLT^{-2}][L]}{[MLT^{-2}][L]}$	$= C_6 H_{12} O_6$
$\therefore \mu_0 = \frac{[MLT^{-2}][L]}{[A][A][L]}$	Therefore, Molecular formula of compound is $C_6H_{12}O_6$
$\mu_0 = [MLT^{-2}A^{-2}]$	116. 60g of an organic compound on analysis is
113. [ML ⁻¹ T ⁻¹] stand for dimension of	found to have, C=24 g, H=4 g and O=32g. The
(a) work	empirical formula of compound is:
(b) torque	(a) CH_2O (b) C_2H_4O (c) C_2H_2O (d) $C_2H_2O_2$
(c) linear momentum	
(d) coefficient of viscosity	AIIMS-1998
AIIMS-2010, UP CPMT-2001	Ans. (a): Given, Organic compound = 60g
Ans. (d) :	Mass of $C = 24$ g, mass of $H = 4$ g, mass of $O=32$ g
(i) Dimension of work	The ratio of number of gram atoms
W = f.d	C : H:O
$W = [MLT^{-2}][L] = [ML^2T^{-2}]$	$\frac{24}{12}:\frac{4}{1}:\frac{32}{16}$
(ii) Dimension of torque	$\overline{12} \cdot \overline{1} \cdot \overline{16}$
$T = f \times r$	2 : 4 : 2
$= [MLT^{-2}][L]$	The Empirical formula is $= C_2H_4O_2 = CH_2O$
$\mathbf{T} = [\mathbf{M}\mathbf{L}^2\mathbf{T}^{-2}]$	117. The percentage of oxygen in NaOH is
(iii) Linear momentum	(a) 16% (b) 4%
P = m.v.	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$= [M] [LT^{-1}] = [MLT^{-1}]$	AIIMS-1996
	A11VIS-1990
(iv) Dimension of coefficient of viscosity	
$F = 6\pi\eta rv$	Ans. (c): Given that,
$F = 6\pi\eta rv$	Ans. (c): Given that, Molar mass of sodium atom = 23
· · ·	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{\text{Mass of oxygen}}{\text{Mass of NaOH}} \times 100$ = $\frac{16}{40} \times 100$
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{\text{Mass of oxygen}}{\text{Mass of NaOH}} \times 100$ = $\frac{16}{40} \times 100$ = 40 %
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40 %118. Which of the following fertilizers has the
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage?
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40 %118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) UreaMass of NaOHMass of NaOHMass of NaOHMass of NaOHTable the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) UreaNEET-1993Ans. (c):
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) UreaNEET-1993Ans. (c): (a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea(a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = 132 g
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom.	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea(a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = 132 g
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom. 115. The empirical formula of a compound is CH ₂ O.	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40 %118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea(d) Ammonium nitrate NEET-1993Ans. (c): (a) Mass of N in (NH4)2 SO4 = 28 g Mass of (NH4)2 SO4 = 132 g % of N in (NH4)2 SO4 = $\frac{28}{132} \times 100 = 21.2\%$
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom. 115. The empirical formula of a compound is CH ₂ O. Its molecular weight is 180. The molecular	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) UreaNEET-1993 Ans. (c): (a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = $\frac{28}{132} \times 100 = 21.2\%$ (b) Mass of N in CaCN ₂ = 28 g.
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom. 115. The empirical formula of a compound is CH ₂ O. Its molecular weight is 180. The molecular formula of compounds is:	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40 %118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea(a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = 132 g % of N in (NH ₄) ₂ SO ₄ = $\frac{28}{132} \times 100 = 21.2\%$ (b) Mass of N in CaCN ₂ = 28 g Mass of CaCN ₂ = 80 g
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom. 115. The empirical formula of a compound is CH ₂ O. Its molecular weight is 180. The molecular formula of compounds is: (a) C ₂ H ₄ O ₂ (b) C ₃ H ₆ O ₃	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40% composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40 %118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) Urea(a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = 132 g % of N in (NH ₄) ₂ SO ₄ = $\frac{28}{132} \times 100 = 21.2\%$ (b) Mass of N in CaCN ₂ = 28 g Mass of CaCN ₂ = 80 g
$F = 6\pi\eta rv$ $\eta = \frac{F}{6\pi r.v}$ $= \frac{[MLT^{-2}]}{[L][LT^{-1}]} = [ML^{-1}T^{-1}]$ 114. Percentage of Se in peroxidase anhydrous enzyme is 0.5% by weight (at wt. = 78.4) then minimum molecules weight of peroxidase anhydrous enzyme is (a) 1.568 × 10 ⁴ (b) 1.568 × 10 ³ (c) 15.68 (d) 2.136 × 10 ⁴ NEET-2001 Ans. (a) : Since, 0.5g Se = 100 gm peroxidase anhydrous enzyme 78.4g Se = $\frac{100 \times 78.4}{0.5} = 1.568 \times 10^4$ Minimum molecular mass of peroxidase anhydrous enzyme means molecule atleast contains one selenium atom. 115. The empirical formula of a compound is CH ₂ O. Its molecular weight is 180. The molecular formula of compounds is:	Ans. (c): Given that, Molar mass of sodium atom = 23 Molar mass of oxygen atom = 16 Molar mass of hydrogen atom = 1 Total molar mass of NaOH = 40 % composition of oxygen = $\frac{Mass of oxygen}{Mass of NaOH} \times 100$ = $\frac{16}{40} \times 100$ = 40% 118. Which of the following fertilizers has the highest nitrogen percentage? (a) Ammonium sulphate (b) Calcium cyanamide (c) UreaNEET-1993 Ans. (c): (a) Mass of N in (NH ₄) ₂ SO ₄ = 28 g Mass of (NH ₄) ₂ SO ₄ = $\frac{28}{132} \times 100 = 21.2\%$ (b) Mass of N in CaCN ₂ = 28 g.

Ans. (d) : Given
Number of particles
$$(n) = -D \frac{n_x - n_1}{x_2 - x_1}$$

 $n_x = n_2 = number of particles per unit volume = [I^{-3}]$
So,
 $n = \frac{Number of particles $per unit volume = [I^{-3}]$
Now, from formula
 $[D] = [n] [x_1, -x_1] = [L^{-2}T^{-1}] [L] = [L^{2}T^{-1}]$
Now, from formula
 $[D] = [n] [x_1, -x_1] = [L^{-2}T^{-1}] [L] = [L^{2}T^{-1}]$
12. An object is moving through the liquid they
is proportional to the velocity. then dimensional
formula of constant of proportionality is
(a) $[ML^{-1}T^{-1}]$ (b) $[HL^{-T}T^{-1}]$
12. If velocity $[V]$, time $[T]$ and force $[F]$ are
choosen as the base quantities, the dimensions
of the mass will be
(a) $[PT^{-1}T^{-1}]$ (b) $[HT^{-1}T^{-1}]$
12. If $V = (ML^{-T^{-1}}]$ (c) $[ML^{T^{-1}}]$
 $[ML^{T^{-1}}]$
 $[ML^{T^{-1}}]$ (c) $[ML^{T^{-1}}]$
 $[M$$

129. If energy (E), velocity (v) and time (T) are $||For M, M^0 = M^{x+y}|$ chosen as the fundamental quantities, the $\begin{array}{c} x = -y \\ \text{For } T, \quad T^{-1} = T^{-x} \end{array}$ dimensional formula of surface tension will be (a) $[Ev^{-2}T^{-1}]$ (b) $[Ev^{-1}T^{-2}]$ -1 = -xx = 1, y = -1For L, $L^1 = L^{-x - 3y + z}$ (c) $[Ev^{-2}T^{-2}]$ (d) $[E^{-2}v^{-1}T^{-3}]$ [AIPMT 2015] 1 = -1 + 3 + z**AP EAMCET(Medical)-2009** z = -1Ans. (c) : We know that, So, Force Surface Tension [T] =x = 1, y = -1, -1Length If the dimensions of a physical quantity are 131. $[T] = \frac{Mass \times Acceleration}{Length} \dots \dots (i)$ given by $[M^a L^b T^c]$, then the physical quantity will be (a) pressure if a = 1, b = -1, c = -2and Energy (E) = $\frac{1}{2}$ mv² (b) velocity if a = 1, b = 0, c = -1(c) acceleration if a = 1, b = 1, c = -2(d) force if a = 0, b = -1, c = -2 $m = \frac{E}{v^2} \times 2$ [AIPMT 2009] $[M] = [Ev^{-2}]$ Ans. (a) : We know that-Now, in equation (i) $P = \frac{F}{A}$ $[T] = \frac{\left[Ev^{-2}\right]\left[LT^{-2}\right]}{[L]}$ Where, P = PressureF = Force $[T] = [Ev^{-2}T^{-2}]$ A = Area $\mathbf{P} = \frac{[\mathbf{MLT}^{-2}]}{[\mathbf{L}^2]} \qquad \left(\because \quad \mathbf{F} = [\mathbf{MLT}^{-2}]\right)$ 130. If dimensions of critical velocity V_c of a liquid flowing through a tube are expressed as $P = [ML^{-1}T^{-2}]$ $[\eta^{x}\rho^{y}r^{z}]$ r, where η , ρ and r are the coefficient or of viscosity of liquid, density of liquid and The value of a, b and c are 1, -1 and -2 respectively. radius of the tube respectively, then the values $V = \frac{S}{t}$ of x, y and z are given by (a) 1, -1, -1(b) -1, -1, 1Where, v = velocity (c) -1, -1, -1(d) 1, 1, 1 s = displacement[AIPMT 2015] t = timeAns. (a) : We know that, $\mathbf{V} = \frac{[\mathbf{L}]}{[\mathbf{T}]}$ $[V_c] = [M^0 L T^{-1}]$ $\eta = \frac{F \times r}{A \times v}$ $v = [M^0 L T^{-1}]$ Here, a = 0, b = 1 and c = -1 $[\eta] = \frac{\left[MLT^{-2}\right] \times [L]}{\left[L^{2}\right] \times \left[LT^{-1}\right]}$ $a = \frac{v}{t}$ Where a = acceleration $[\eta] = [ML^{-1}T^{-1}]$ v = velocityt = time $\rho = \frac{\text{Mass}[M]}{\text{Volume}[L^{-3}]}$ $a = \frac{[LT^{-1}]}{[T]}$ $\left[\rho\right] = \left[ML^{-3}\right]$ or $a = [M^0 L T^{-2}]$ $[\mathbf{r}] = [\mathbf{L}]$ Here, a = 0, b = 1 and c = -2We have given that the critical velocity is given as, F = maWhere, $V_{c} = |\eta^{x} \rho^{y} r^{z}|$ F = force $\left[M^{0}LT^{-1}\right] = \left[ML^{-1}T^{-1}\right]^{x}\left[ML^{-3}\right]^{y}\left[L\right]^{z}$ m = Massa = Acceleration $[M^{0}LT^{-1}] = [M^{x+y}L^{-x-3y+z}T^{-x}]$ ÷. $F = [M] [LT^{-2}]$ Now, comparing the power of M, L and T on the both or $F = [MLT^{-2}]$ a = 1, b = 1 and c = -2Here, sides, we get

(a) $[M^0L^0T^0]$ (c) $[ML^2T^{-2}]$ (b) $[MLT^{-1}]$ 132. The velocity u of a particle at time t is given by (d) $[ML^{-1}T^{-1}]$ $v = at + \frac{b}{t+C}$, where a, b and c are constants. [AIPMT 1993] Ans. (d) : Given, The dimensions of a b, and c are respectively (a) $[LT^{-2}], [L]$ and [T] (b) $[L^{2}], [T]$ and $[LT^{2}]$ $\eta = \frac{P(r^2 - x^2)}{4v!}$ (c) $[LT^2],[LT]$ and [L] (d) [L],[LT] and $[T^2]$ [AIPMT 2006] Where. Ans. (a) : Given, P = Pressure difference $v = at + \frac{b}{t+c}$ r = radiusl = lengthThe dimension of v = The dimension of a.t = the v = velocitvx = distancedimension of $\frac{b}{t+c}$ The dimension of $P = [ML^{-1}T^{-2}]$ The dimension of $(r^2 - x^2) = [L^2]$ Then, The dimension of velocity = $[LT^{-1}]$ The dimension of v = dimension of a.t The dimension of distance = [L] $[LT^{-1}] = a.t$ $[\eta] = \frac{[\mathbf{P}][\mathbf{r}^2 - \mathbf{x}^2]}{[\mathbf{v}][\mathbf{L}]} \Rightarrow [\eta] = \frac{\left[\mathbf{M}\mathbf{L}^{-1}\mathbf{T}^{-2}\right]\left[\mathbf{L}^2\right]}{[\mathbf{L}\mathbf{T}^{-1}][\mathbf{L}]}$ $a = \frac{[LT^{-1}]}{[T]}$ The dimension of $a = [LT^{-2}]$ $[\eta] = \frac{[ML'T^{-2}]}{[L^2T^{-1}]} = [ML^{-1}T^{-1}]$ The dimension of b = [V] [T] $= [LT^{-1}] [T]$ = [L] The velocity of light 'c', the constant of 135. The dimension of c = [T]gravitation 'G' and Planck's constant 'h' be Hence, option (a) is correct. chosen as fundamental units, the dimensions of 133. According to Newton, the viscous force acting mass in terms of c, G and h is between liquid layers of area A and velocity (a) $\left[h^{\frac{1}{2}}c^{-\frac{3}{2}}G^{\frac{1}{2}}\right]$ (b) $\left[h^{\frac{1}{2}}c^{\frac{1}{2}}G^{-\frac{1}{2}}\right]$ gradient $\frac{\Delta v}{\Delta z}$ is given by $F = -\eta A \frac{dv}{dz}$, where η (c) $\left[h^{\frac{1}{2}}c^{-\frac{5}{2}}G^{\frac{1}{2}}\right]$ (d) $\left[h^{\frac{1}{2}}c^{-\frac{1}{2}}G^{\frac{1}{2}}\right]$ is constant called coefficient of viscosity. The dimensional formula of n is **AP EAMCET -2014** (b) $[M^0L^0T^0]$ (a) $[ML^{-2}T^{-2}]$ Ans. (b): We know that, dimensional formula of (c) $[ML^2T^{-2}]$ (d) $[ML^{-1}T^{-1}]$ Speed of light $[c] = [LT^{-1}]$ [AIPMT 1990] Gravitational constant [G] = $[M^{-1}L^{3}T^{-2}]$ Ans. (d) : Given, Planck's constant $[h] = [ML^2T^{-1}]$ $F = -\eta A \frac{dv}{dz}$ Let formula of mass in term of c G and h be $M = c^{x} G^{y} h^{z}$ where η is coefficient of viscosity $[M] = [LT^{-1}]^{x} [M^{-1}L^{3}T^{-2}]^{y} [ML^{2}T^{-1}]^{z}$ $[M] = [M^{-y+z} L^{x+3y+2z} T^{-x-2y-z}]$ The dimensions of $F = [MLT^{-2}]$ The dimensions of $A = [L^2]$ where, The dimensions of dz = [L]-y + z = 1, x + 3y + 2z = 0, -x - 2y - z = 0The dimensions of $dv = [LT^{-1}]$ On solving, we get \therefore The dimensions of n $x = \frac{1}{2}, y = -\frac{1}{2}, z = \frac{1}{2}$ $= \frac{\left[MLT^{-2}\right]\left[L\right]}{\left[L^{2}\right]\left[LT^{-1}\right]} = \frac{\left[ML^{2}T^{-2}\right]}{\left[L^{3}\right]\left[T^{-1}\right]}$ So, dimension of $[M] = [h^{1/2} c^{1/2} G^{-1/2}]$ 136. If m is mass Q is charge and B is magnetic $\eta = [ML^{-1}T^{-1}]$ induction, then $\frac{m}{BO}$ has the same dimensions 134. Turpentine oil is flowing through a tube of length I and radius r. The pressure difference between the two ends of the tube is p. The as: viscosity of oil is given by $\eta = \frac{p(r^2 - x^2)}{4 - 1}$ where, (b) $\frac{1}{\text{frequency}}$ (a) frequency v is the velocity of oil at distance x from the (c) velocity (d) acceleration axis of the tube. The dimensions of η are **AP EAMCET(Medical)-1999**

Ans. (b) : Magnetic induction (B) = $ML^0T^{-2}A^{-1}$	So, dimensional formula of $gh = [L_{1}^{-2}][L]$
Charge $(Q) = TA$	$= [L^2 T^{-2}]$
Mass $(m) = M$	$= [M^0 L^2 T^{-2}]$
Hence,	139. The van der Waal's equation for n moles of a
	real gas is
$\frac{\mathrm{m}}{\mathrm{BQ}} = \frac{\left\lfloor \mathrm{M} \right\rfloor}{\left\lceil \mathrm{ML}^{0} \mathrm{T}^{-2} \mathrm{A}^{-1} \right\rceil \left\lceil \mathrm{TA} \right\rceil}$	
$BQ [ML^0T^{-2}A^{-1}][TA]$	$\left(p+\frac{a}{V^2}\right)(V-b) = nRT$
	$\begin{pmatrix} \mathbf{P} & \mathbf{V}^2 \end{pmatrix}$ $\begin{pmatrix} \mathbf{V} & \mathbf{O} \end{pmatrix}$ $\begin{pmatrix} \mathbf{V} & \mathbf{O} \end{pmatrix}$
m 1	Where p is pressure, V is volume, T is absolute
$\frac{\mathrm{m}}{\mathrm{BQ}} = \frac{1}{\left\lceil \mathrm{L}^{0}\mathrm{T}^{-1}\mathrm{A}^{0}\right\rceil}$	temperature, R is molar gas constant a, b and c
	are van der Waal's constants. The dimensional
m	formula for ab is
$\frac{\mathrm{III}}{\mathrm{BQ}} = [\mathrm{T}]$	
БŲ	(a) $[ML^8L^{-2}]$ (b) $[ML^6L^{-2}]$ (c) $[ML^4L^{-2}]$ (d) $[ML^2L^{-2}]$
1	(c) $[ML^4L^{-2}]$ (d) $[ML^2L^{-2}]$
$Time = \frac{1}{frequency}$	AP EAMCET(Medical)-2012
1 5	2
137. The dimensional formula of the product of two	Ans. (a) : P must be same as $\frac{a}{V^2}$
physical quantities P and Q is $[ML^2T^{-2}]$. The	V^2
dimensional formula of $\frac{P}{Q}$ is [MT ⁻²] P and Q	Hence, $\frac{[m]}{r_6} = ML^{-1}T^{-2} $
×	
respectively are:	$\left[a\right] = \left[ML^5T^{-2}\right]$
(a) force, velocity	
(b) momentum, displacement	The dimension of b must be same as that of V
(c) force, displacement	Hence, $[b] = L^3$
(d) work, velocity	$[ab] = [ML^8T^{-2}]$
AP EAMCET(Medical)-2001	
Ans. (c) : Given, $PQ = [ML^2T^{-2}]$	140. In the equation $\left(\frac{1}{p\beta}\right) = \frac{y}{K_pT}$, where p is the
	140. In the equation $\left \frac{1}{n\beta}\right = \frac{1}{KT}$, where p is the
$\frac{P}{Q} = [MT^{-2}]$	
Q	pressure, y is the distance, $K_{\rm B}$ is Boltzmann
$P = P + r^{2} r^{-2} + r^{-2}$	constant and T is the temperature Dimensions
$PQ \times \frac{P}{Q} = ML^2T^{-2} \times MT^{-2}$	of β are
$P^2 = M^2 I^2 T^{-4}$	(a) $[M^{-1}L^{1}T^{2}]$ (b) $[M^{0}L^{2}T^{0}]$ (c) $[M^{1}L^{-1}T^{-2}]$ (d) $[M^{0}L^{0}T^{0}]$
1 101121	(c) $[M^{1}L^{-1}T^{-2}]$ (d) $[M^{0}L^{0}T^{0}]$
$P = MLT^{-2} = Force$	AP EAMCET(Medical)-2013
Now,	
$PO PO MI^2T^{-2}$	Ans. (b) : From the equation $= \frac{1}{p.\beta} = \frac{y}{K_B T}$
$\frac{PQ}{(P)} = \frac{PQ}{P} \times Q = \frac{ML^2T^{-2}}{MT^{-2}}$	$p.\beta K_BT$
$\left(\overline{\mathbf{Q}}\right)$	$\beta = \frac{K_{B}T}{p.y} = \frac{[ML^{2}T^{-3}][T]}{[ML^{-1}T^{-2}][L]}$
$O^2 = L^2$	$p.y [ML^{-1}T^{-2}][L]$
	$[MI^{2}T^{-2}]$
Q = L = Displacement	$=\frac{[ML^2T^{-2}]}{[ML^0T^{-2}]}=[M^0L^2T^0]$
138. According to Bernoulli's theorem	$[ML^{\nu}T^{-2}]$
$\mathbf{P} \cdot \mathbf{V}^2$	Hence, the dimension of β is $[L^2]$
$\frac{P}{d} + \frac{V^2}{2} + gh = constant.$ The dimensional	
u 2	141. Which of the following physical quantities
formula of the constant is: $(P = pressure, d = density, h = height, V = velocity, and g = density height (P = velocity) and g = density height ($	represent the dimensions of $\frac{b}{a}$ in the relation
density, $h = height$, $V = velocity$ and $g = acceleration due to gravity)$	
acceleration due to gravity)	$P = \frac{x^2 - b}{at}$, where P is power, x is distance and
(a) $[M^0L^0T^0]$ (b) $[M^0LT^0]$	P =
(c) $[M^0L^2T^{-2}]$ (d) $[M^0L^2T^{-4}]$	
	t is time
AP EAMCET(Medical)-2005	(a) Power (b) Surface tension
$\mathbf{p} \cdot \mathbf{V}^2$	(c) Torsional constant (d) Force
Ans. (c) : Bernoulli's theorem $\frac{P}{d} + \frac{V^2}{2} + gh = constant$	AP EAMCET(Medical)-2016
d 2	Ans. (c) : Given,
Dimensional formula of the constant is same as	
$\mathbf{P} \mathbf{V}^2$	$P = \frac{X - b}{2}$
dimensional formula of $\frac{P}{r}$, $\frac{V^2}{2}$, gh.	$P = \frac{x^2 - b}{at}$
dimensional formula of $\frac{P}{d}$, $\frac{V^2}{2}$, gh.	$P = \frac{X - b}{at}$

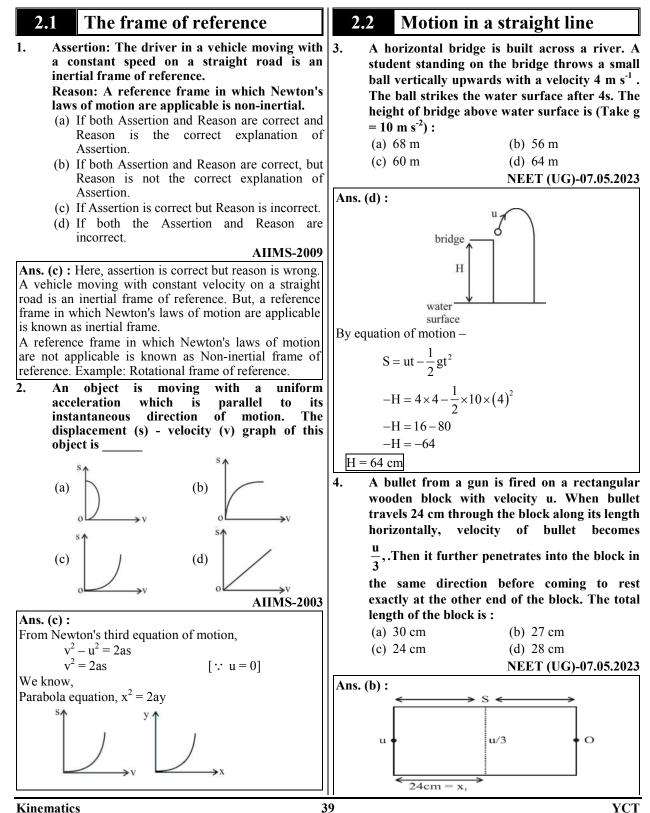
The dimension of b = The dimension of x^2 Ans. (a) : dimension $[b] = [L^2]$ -----(1) *.*.. $[C] = LT^{-1}$ Also, $[G] = M^{-1}L^{3}T^{-2}$ $[P] = [M^{1}L^{2}T^{-3}]$ $[t] = [T^1]$ $[h] = M^{1}L^{2}T^{-1}$ $[a] = \frac{[b]}{[P][t]} = \frac{[L^2]}{[ML^2T^{-3}][T]}$ Let $t \propto c^x G^y h^z$ $T = (LT^{-1})^{x} (M^{-1}L^{3}T^{-2})^{y} (ML^{2}T^{-1})^{z}$ $[a] = [M^{-1}T^2]$ -----(2) $\frac{[b]}{[a]} = \frac{[L^2]}{[M^{-1}T^2]} = [ML^2T^{-2}]$ -----(3) $= [M]^{-y+z} [L]^{x+3y+2z} [T]^{-x-2y-z}$ ÷. By equating -y + z = 0 _ (i) Torsional constant $k = \frac{\tau}{2}$ x + 3y + 2z = 0 ____(ii) -x - 2y - z = 1 (iii) ... $[k] = [\tau]$ $[k] = [ML^2T^{-2}]$ -----(4) By Solving eq^n (i), (ii) & (iii) From 3 and 4, We get, $x = \frac{-5}{2}$, $y = \frac{1}{2}$, $z = \frac{1}{2}$ $\frac{[b]}{[a]} = k$ $[t] = [C^{-5/2}G^{1/2}h^{1/2}]$ 142. The velocity of water waves (v) may depend on 144. If the force is given by $F = at + bt^2$ with t as their wavelength λ , the density of water ρ and time. The dimensions of a and b are the acceleration due to gravity g. The method (a) $[MLT^{-4}]$ and $[MLT^{-2}]$ of dimensions gives the relation between these (b) $[MLT^{-3}]$ and $[MLT^{-4}]$ quantities is (c) $[ML^2T^{-3}]$ and $[ML^2T^{-2}]$ (a) v (b) $v^2 \propto g\lambda$ (d) $[ML^2T^{-3}]$ and $[ML^3T^{-4}]$ (c) $v^2 \propto g\lambda^2$ (d) $v^2 \propto g^{-1}\lambda^2$ JIPMER-2013, 2005, AIIMS-26.05.2018(E) **AP EAMCET -2010, BCECE-2003** Ans. (b) : Let, $v \propto \lambda^a \rho^b g^c$ **Ans. (b) :** Given, $F = at + bt^2$ The dimensional formula for all quantities we get, Dimension of F = Dimension of at $[LT^{-1}] \propto [L]^{a} [ML^{-3}]^{b} [LT^{-2}]^{c}$ $\left[MLT^{-2} \right] = a \left[T \right]$ $[M^{0}L^{1}T^{-1}] \propto [M^{b}L^{a-3b+c}T^{-2c}]$ $a = \frac{\left[MLT^{-2}\right]}{\left[T\right]}$ Comparing power of M,L and T a - 3b + c = 1, and -2c = -1 a - 3 × 0 + $\frac{1}{2}$ = 1 c = $\frac{1}{2}$ b = 0, $a = [MLT^{-3}]$ Dimension of $F = Dimension of bt^2$ $F = bt^2$ $a = 1 - \frac{1}{2} = \frac{1}{2}$ $\left[MLT^{-2} \right] = b \left[T \right]^2$ $a = \frac{1}{2}$ $b = \frac{\left\lfloor MLT^{-2} \right\rfloor}{\left\lceil T^2 \right\rceil}$ $v \propto \lambda^{1/2} \rho^0 g^{1/2}$... $v = \sqrt{\lambda g}$ $b = [MLT^{-4}]$ $v^2\propto \lambda g$ The equation of state of some gases can be So, 145. expressed as The speed of light (c), gravitation constant (G), 143. $\left(\mathbf{p} + \frac{\mathbf{a}}{\mathbf{V}^2}\right)(\mathbf{V} - \mathbf{b}) = \mathbf{RT}$ and Plank's constant (h) are taken as the fundamental units in a system. The dimension of time in this new system should be: where, p is the pressure, V the volume, T the (a) $\left[G^{\frac{1}{2}} h^{\frac{1}{2}} c^{-\frac{5}{2}} \right]$ (b) $\left[G^{-\frac{1}{2}} h^{\frac{1}{2}} c^{\frac{1}{2}} \right]$ absolute temperature and a and b are constants. The dimensional formula of a is (c) $\left[G^{\frac{1}{2}} h^{\frac{1}{2}} c^{-\frac{3}{2}} \right]$ (d) $\left[G^{\frac{1}{2}} h^{\frac{1}{2}} c^{\frac{1}{2}} \right]$ (b) $[M^{-1}L^5T^{-2}]$ (a) $[ML^5T^{-2}]$ (c) $[ML^{-1}T^{-2}]$ (d) $[ML^{-5}T^{-2}]$ AIIMS-2008 **UPCPMT-1997**

The dimension of $C = [LT^{-1}]$ Ans. (a) : According to the principle of dimensional Putting the dimension in equation (i) homogeneity the dimensions of each the terms of a $[ML^{-1}T^{-2}]^{x} [MT^{-3}]^{y}$. $[LT^{-1}]^{z} = [M^{0}L^{0}T^{0}]$ dimensional equation on both sides are the same. $[M^{x+y}.L^{-x+z}.T^{-2x-3y-z}] = [M^0L^0T^0]$ So, dimension of p and $\frac{a}{V^2}$ will be same $\mathbf{x} + \mathbf{y} = \mathbf{0}$...(ii) z - x = 0...(iii) $p = \left| \frac{a}{V^2} \right|$ -2x - 3y - z = 0...(iv) From equation (iii) $a = [p][V^2]$ $\mathbf{x} = \mathbf{z}$ $a = \left[ML^{-1}T^{-2} \right] \left[L^{6} \right]$ From equation (ii) *.*.. z = -y $a = \left[ML^5 T^{-2} \right]$ By solving, we get, 146. The frequency of vibration f of a mass m x = 1, y = -1, z = 1suspended from a spring of spring constant k is Hence, option (c) is correct. given by a relation of the type $f = Cm^x k^y$, 148. If the capacitance of a nanocapacitor is where C is a dimensionless constant. The values measured in terms of a unit 'u' made by of x and y are combining the electric charge 'e', Bohr radius (a) $x = \frac{1}{2}, y = \frac{1}{2}$ (b) $x = -\frac{1}{2}, y = -\frac{1}{2}$ 'a₀', Planck's constant 'h' and speed of light 'c' then (c) $x = \frac{1}{2}, y = -\frac{1}{2}$ (d) $x = -\frac{1}{2}, y = \frac{1}{2}$ (a) $u = \frac{e^2 h}{a_0}$ (b) $u = \frac{hc}{e^2 a_0}$ (a) $u = \frac{c \cdot n}{a_0}$ (b) $u = \frac{c \cdot c}{e^2 a_0}$ (c) $u = \frac{e^2 c}{h a_0}$ (d) $u = \frac{e^2 a_0}{h c}$ [AIPMT 1990] Ans. (d) : Given, $f = Cm^{x}K^{y}$ where, C = dimensionless constant**Ans.** (d) : Let 'u' related with $e_1 a_0$, h and c as m = mass $[u] = [e]^{a} [a_{0}]^{b} [h]^{c} [c]^{d}$ K = spring constantThe dimension of frequency, $f = [T^{-1}]$ Using dimension formula. The dimension of mass, m = [M] $[M^{-1}L^{-2}T^{4}A^{2}] = [A^{1}T^{1}]^{a}[L]^{b}[ML^{2}T^{-1}]^{c}[LT^{-1}]^{d}$ The dimension of spring constant, $k = [MT^{-2}]$ $[M^{-1}L^{-2}T^{4}A^{2}] = [M^{c}L^{b+2c+d}T^{a-c-d}A^{a}]$ $F = Cm^{x}.K^{y}$ $[M^{0}L^{0}T^{-1}] = [M]^{x} [MT^{-2}]^{y}$ Comparing power $[M^0L^0T^{-1}] = [M^{x+y}. T^{-2y}]$ a = 2, c = -1,x + y = 0 and -2y = -1a - c - d = 4x = -y and $y = \frac{1}{2}$ d = -4 + 3 = -1Putting the value of d, \Rightarrow x = $-\frac{1}{2}$, y = $\frac{1}{2}$ b + 2c + d = -2b = 1Hence, a = 2, b = 1, c = -1, d = -1147. If p represents radiation pressure, c represents Putting the value of a, b, c, d in equation (i) speed of light and S represents radiation energy striking unit area per sec. The non-zero $u = e^2 a_0^1 h^{-1} c^{-1}$ integers x, y, z such that $p^x S^y c^z$ is $u = \frac{e^2 a_0}{hc}$ dimensionless are (a) x = 1, y = 1, z = 1 (b) x = -1, y = 1, z = 1(c) x = 1, y = -1, z = 1 (d) x = 1, y = 1, z = -1149. The equation $\left(p + \frac{a}{V^2}\right)(V-b) = \text{constant. The}$ [AIPMT 1992], UPCPMT-1992, 1981 Ans. (c) : Given, units of a is P = radiation pressure(a) Dyne \times cm⁵ (b) Dyne \times cm⁴ C = speed of light (c) Dyne/cm³ (d) $Dyne/cm^2$ S = radiation energyx, y and z are non zero intezers. Ans. (b) : Given that, $[P^{x} S^{y} C^{z}] = [M^{0}L^{0}T^{0}]$...(i) $\left(P + \frac{a}{V^2}\right)(V - b) = \text{constant}$ The dimension of $P = [ML^{-1}T^{-2}]$ The dimension of $S = [MT^{-3}]$

YCT

UP CPMT-2014

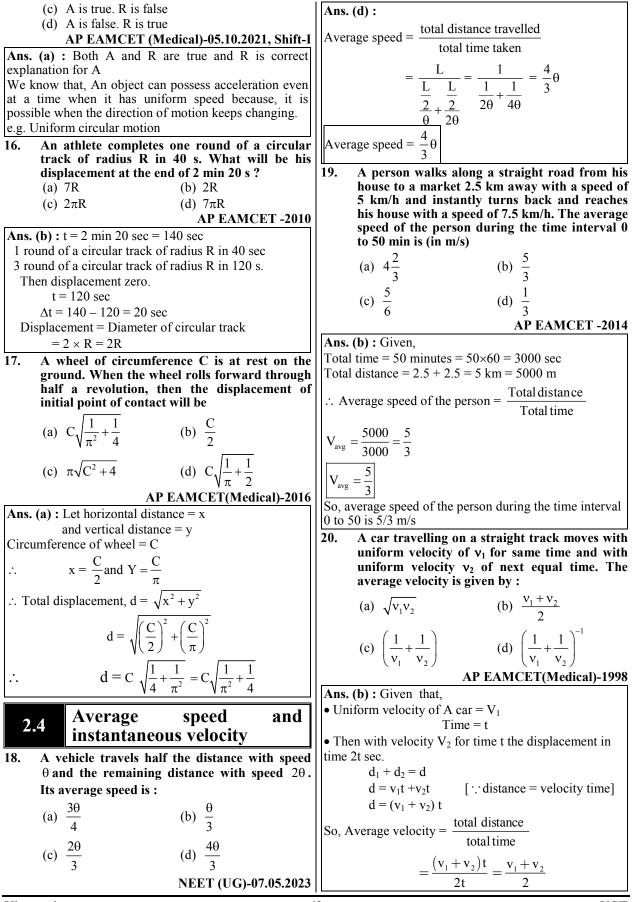
AIIMS-2016

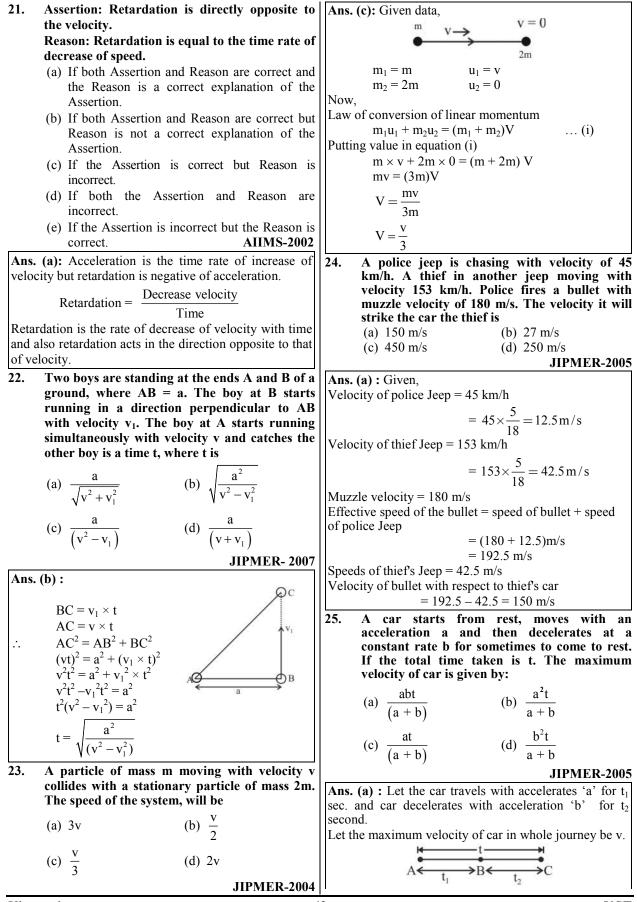

.....(i)

Objective Physics Volume-I

In the term $\left(P + \frac{a}{V^2}\right)$, the units of p and $\frac{a}{V^2}$ are the	\therefore 8 gm of Ca, on complete reaction with water will
	liberates = $\frac{2}{40} \times 8 \text{ gm H}_2 = 0.40 \text{ gm H}_2$
same \therefore a = PV ² [here v is the volume]	At STP, 2g of H_2 have the volume = 22.4 litre = 22400
\therefore Unit of a = unit of P × unit of v ²	cm ³
	$\therefore 0.40 \text{ gm of H}_2 \text{ having} = \frac{0.40}{2} \times 22400 \text{ cm}^3$
\therefore Unit of $a = \frac{dyne}{cm^2} \times (cm^3)^2$	2
dvne	$= 4480 \text{ cm}^3 \text{ of } \text{H}_2 \text{ at S.T.P.}$
$=\frac{\mathrm{dyne}}{\mathrm{cm}^2}\times\mathrm{cm}^6$	153. What is the stoichiometric coefficient of Ca in the reaction?
= dyne × cm ⁴	$Ca+Al^{3+} \rightarrow Ca^{2+} + Al$
Note:- Here we use CGS system. In SI system unit of a	(a) 2 (b) 1
is N-m ⁴	(a) 2 (b) 1 (c) 3 (d) 4 UP CPMT-2007 Ans. (c) : Ca \rightarrow Ca ²⁺ + 2e ⁻ (i)
150. If $x = at + bt^2$, where x is the distance travelled	$\begin{vmatrix} Ans. (c) : Ca \rightarrow Ca^{2^{+}} + 2e^{-} & \dots \\ Al^{3^{+}} + 3e^{-} \rightarrow Al & \dots \\ (ii) \end{vmatrix}$
by the body in kilometer while t is the time in	[eq. (i) multiply by 3 and Eq. (ii) multiply by 2,
second, then the unit of b is (a) km/s (b) km-s	and add Eqs. (i) and (ii)
(c) km/s^2 (d) km-s^2	$3Ca \rightarrow 3Ca^{2+}+6e^{-1}$
[AIPMT 1989]	$2\mathrm{Al}^{3+} + 6\mathrm{e}^{-} \to 2\mathrm{Al}$
Ans. (c) : Given that,	$\overline{3Ca + 2Al^{3+} \rightarrow 3Ca^{2+} + 2Al}$
$x = at + bt^2$ (where x is distance)	Therefore, the stoichiometric coefficient of Ca in the
From principle of Homogeneity	given reaction is 3.
$[x] = [at] = [bt^2]$	154. Value of x in potash alum, K ₂ SO ₄ .Al _x (SO ₄) ₃
$[L] = b[T^{2}] \Rightarrow b = [LT^{-2}]$ So, Unit of b = km/s ²	$24H_2O$ is (b) 1
	(a) 4 (b) 1 (c) 2 (d) None of these
151. 20.0 g of magnesium carbonate sample decomposes on heating to give carbon dioxide	(c) 2 (d) None of these UP CPMT-2007
and 8.0 g magnesium oxide. What will be the	Ans. (c) : Potash alum is double salt.
percentage purity of magnesium carbonate in	Given Potash alum, $K_2SO_4 \cdot Al_x(SO_4)_3 \cdot 24H_2O \dots (1)$
the sample?	But formula of potash alum is
(At. wt. of $Mg = 24$) (a) 96 (b) 60	$K_2SO_4 \cdot Al_2(SO_4)_3 \cdot 24H_2O \qquad \dots (2)$
(a) 90 (b) 00 (c) 84 (d) 75 NEET-2015	After comparing both equations, Value of $x = 2$
Ans. (c) : MgCO ₃ (s) $\xrightarrow{\Delta}$ MgO(s) + CO ₂ (g)	155. During electrolysis of water the volume of O
	liberated is 2.24 dm ³ . The volume of hydrogen
Molar mass of $MgCO_3 = 24 + 12 + 48 = 84g/mol$ Molar mass of $MgO = 24 + 16 = 40g/mol$	liberated, under same conditions will be (a) $2, 24 \text{ dm}^3$ (b) $1, 12 \text{ dm}^3$
$\therefore 84g \text{ of } MgCO_3 \equiv 40g \text{ of } MgO$	(a) 2.24 dm^3 (b) 1.12 dm^3 (c) 4.48 dm^3 (d) 0.56 dm^3
	(d) 0.50 diff
And 20g of MgCO ₃ $\equiv \frac{40}{84} \times 20 = 9.52$ g of MgO	Ans. (c): $2H_2O \xrightarrow{\text{Electrolysis}} 2H_2 + O_2$
But actual yield = 8g of MgO	
:. % purity = $\frac{8}{9.52} \times 100 = 84\%$	The volume of hydrogen liberated is twice that of the volume of oxygen liberated. When 2.24 dm ³ of oxygen
9.52	is liberated the volume of hydrogen liberated will be $2 \times$
152. The reaction of calcium with water is	2.24 dm ³ or 4.48 dm ³ .
represented by the equation: $Ca + 2H, O \rightarrow Ca(OH), + H,$	156. The weight of one molecule of a compound of molecular formula C_{60} H ₁₂₂ is
What volume of H_2 at STP would be liberated	(a) 1.2×10^{-20} g (b) 5.025×10^{-23} g
when 8 g of calcium completely reacts with	(c) 1.4×10^{-21} g (d) 6.023×10^{-20} g
water? (a) 0.2cm^3 (b) 0.4cm^3	AIIMS-2002
(a) 0.2cm^3 (b) 0.4cm^3 (c) 2240cm^3 (d) 4480cm^3	Ans. (c) : The molecular weight of $C_{60}H_{122}$ is 842g/mol
(c) 2240cm (d) 4400cm AIIMS-2010	one mole of $C_{60}H_{122}$ weight 6.02×10^{23} g.
Ans. (d): $Ca + 2H_2O \rightarrow Ca(OH)_2 + H_2$	Weight of one molecule of $C_{60}H_{122}$ is
40 gm of Ca on complete reaction with water liberates =	$\frac{842}{6.02 \times 10^{23}} = 1.4 \times 10^{-21} \text{g}$
2 gm H ₂	0.02×10
0	

Objective Physics Volume-I





By using eq² of motion –

$$(\frac{u}{3})^2 = u^2 - 2a \times 24$$

 $(\frac{u}{3})^2 = u^2 - 2a \times 24$
 $24 \times 2a = \frac{8u^2}{9}$...(i)
Now, again using eq² of motion –
 $v^2 = u^2 + 2as$ (i)
 $24 \times 2a = \frac{8u^2}{9}$...(i)
Now, again using eq² of motion –
 $v^2 = u^2 + 2as$ (ii)
 $u^2 = 2as$ (iii)
 $u^2 = 2as$ (iii)
 $u^2 = 2as$ (iii)
 $2\frac{24 + 2a}{2as} = \frac{8u^2}{9} \times \frac{1}{2}$
 $\frac{24 + 2a}{2as} = \frac{8u^2}{9} \times \frac{1}{2}$
 $\frac{2}{(c)} 1.25J$ (d) $0.5J$
 $\frac{10}{3} (b) - 1.25J$
 $\frac{10}{(c)} 1.25J$ (d) $0.5J$
 $\frac{10}{(c)} 1.25J$ (d) $0.5J$
 $\frac{10}{(c)} 1.25J$
 $\frac{10}{(c)} \frac{10}{\sqrt{3}} m$ (b) $(200\sqrt{3})m$
From third equation of motion, $\frac{10}{\sqrt{2}} \frac{10}{\sqrt{3}} m$
Work done by gravity (W_g) = -mph
 $\frac{10}{25J} \frac{10}{\sqrt{3}} m$
 $\frac{10}{(c)} \frac{10}{\sqrt{3}} \frac{10}{(c)} \frac{10}{\sqrt{3}} \frac{10$

$$\begin{array}{l} \Rightarrow & \frac{1}{\sqrt{3}} = \frac{100}{1 \text{ AB + BC}} \\ \Rightarrow & x + y = 100\sqrt{3} \\ \hline & x + y = \frac{100}{\sqrt{3}} \\ \Rightarrow & x + y = 100\sqrt{3} \\ \hline & x + \frac{100}{\sqrt{3}} = 100\sqrt{3} \\ \hline & x = \frac{100\sqrt{3}}{\sqrt{3}} \\ \hline & x = \frac{200}{\sqrt{3}} \\ \hline &$$

Since total time taken by the car in whole journey is t. Again, differentiating equation (ii) w.r.t 't' we get, $t_2 = (t - t_1)$ *.*.. $\frac{d^2x}{dt^2} = (a) = \frac{2}{(t+5)^3}$ (iii) Using the Newton's 1st law of motion for A to B v = u + atComparing equation (ii) and (iii), we get \therefore u = 0, and t = t₁ $a \propto v^{3/2}$ $\therefore \mathbf{v} = \mathbf{0} + \mathbf{at}$ A car covers the first-half of the distance 28. $t_1 = \frac{v}{a}$...(i) between two places at 40 km/h and other half at 60 km/h. The average speed of the car is Again for B to C -(a) 40 km/h (b) 48 km/h v = u + at(c) 50 km/h (d) 60 km/h \therefore v = 0 at C, [AIPMT 1990] $a = -b, t = t_2$ Ans. (b) : Given, And $\mathbf{u} = \mathbf{v}$ Speed in first half, $v_1 = 40 \text{ km/h}$ $\therefore 0 = v - bt_2 \Longrightarrow v = b(t - t_1)$...(ii) Speed in second half, $v_2 = 60 \text{ km/h}$ From equation (i) and (ii) Car covers equal distance with different speeds. $\mathbf{v} = \mathbf{b} \left(\mathbf{t} - \frac{\mathbf{v}}{\mathbf{a}} \right) \Longrightarrow \frac{\mathbf{v}}{\mathbf{b}} = \left(\mathbf{t} - \frac{\mathbf{v}}{\mathbf{a}} \right)$ Average speed of car $(v_{av}) = \frac{2v_1 \times v_2}{v_1 + v_2}$ $v\left(\frac{a+b}{ab}\right) = t$ $=\!\frac{2\!\times\!40\!\times\!60}{40+60}$ $=\frac{4800}{100}$ A bus is moving with a speed of 10 ms⁻¹ on a 26. straight road. A scooterist wishes to overtake = 48 km/hthe bus in 100 s. If the bus is at a distance of 1 29. A car moves a distance of 200 m. It covers the km from the scooterist, with what speed should first-half of the distance at speed 40 km/h and the scooterist chase the bus? the second-half of distance at speed v km/h. (a) 20 ms^{-1} (b) 40 ms^{-1} The average speed is 48 km/h. Find the value (c) 25 ms^{-1} (d) 10 ms^{-1} of v. [AIPMT 2009] (a) 56 km/h (b) 60 km/h Ans. (a): Given, distance = 1 km = 1000 m. (d) 48 km/h (c) 50 km/h Velocity of bus, $v_{B} = 10 \text{m/s}$ [AIPMT 1991] Let us assume the velocity of scooter is v_s . Ans. (b) : Given data, Distance covered by scooterist in 100s = Position of the Distance = 200mbus at 100s Speed in 1^{st} half distance = 40 km/h =(1000 + x)Average speed = 48km/h Distance covered by scooterist in (100s) Average speed = $\frac{\text{Total distance}}{-}$ \Rightarrow x = 100×10 = 1000m Velocity of the scooter: $48 = \frac{200}{\frac{100}{40} + \frac{100}{20}}$ $1000m + 1000m = 100 \times v_s$ $v_s = \frac{2000}{1}$ $v_{s} = 20 \text{ m/s}$ $\frac{1}{40} + \frac{1}{v} = \frac{1}{24}$ A particle moves a distance x in time t 27. according to the equation $x = (t + 5)^{-1}$. The $v = \frac{120}{5-3} \Longrightarrow v = \frac{120}{2}$ acceleration of particle is proportional to (a) $(velocity)^{3/2}$ (b) $(distance)^2$ (c) $(distance)^{-2}$ (d) $(velocity)^{2/3}$ v = 60 km/h[AIPMT 2010] 30. A bus travelling the first one-third distance at a Ans. (a) : Given speed of 10 km/h, the next one-third at 20 km/h Distance, $x = (t+5)^{-1}$ and the last one-third at 60 km/h. The average ...(i) Differentiating equation (i) w.r.t 't' we get, speed of the bus is (a) 9 km/h (b) 16 km/h $\frac{\mathrm{dx}}{\mathrm{dt}} = \mathbf{v} = \frac{-1}{\left(t+5\right)^2}$...(ii) (c) 18 km/h (d) 48 km/h [AIPMT 1991]

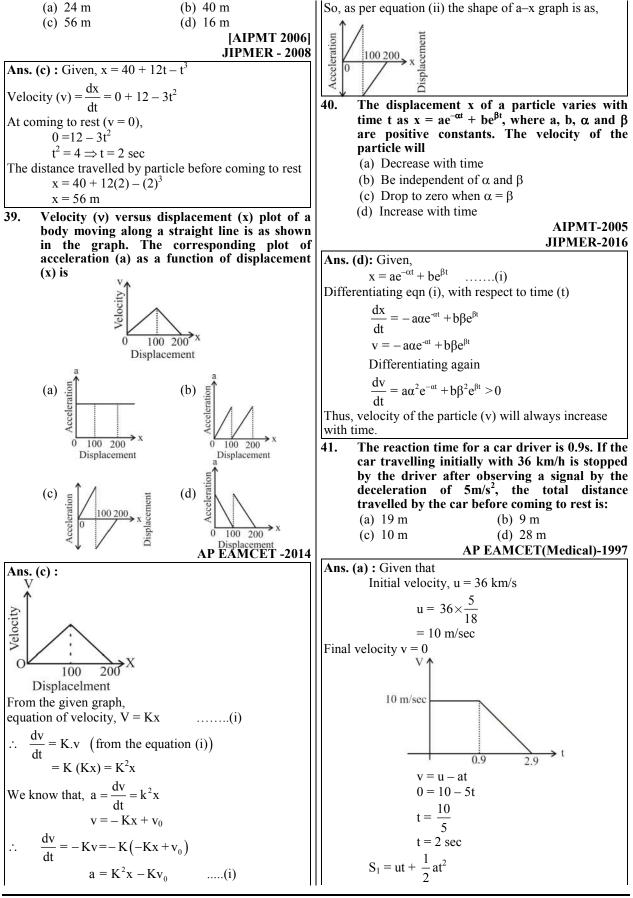
Ans. (c):

$$\frac{10kmh}{\frac{3}{3}} \leftrightarrow \frac{20kmh}{\frac{3}{5}} \leftrightarrow \frac{60kmh}{\frac{3}{5}} \rightarrow \frac{3}{3}$$

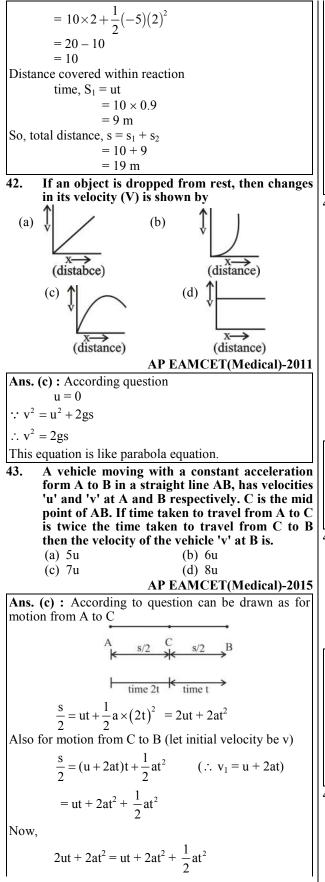
$$\frac{1}{10} + \frac{1}{2} + \frac{1}{10}$$
Average speed = $\frac{1}{10}$ distance
Total time
Average speed = $\frac{1}{\frac{1}{10}}$ distance

$$\frac{1}{\frac{1}{10}} = \frac{1}{\frac{1}{10}} + \frac{1}{10} + \frac{1}{10}$$

$$\frac{1}{10} + \frac{1}{20} + \frac{1}{60}$$


$$\frac{1}{\frac{1}{2}} + \frac{1}{10} + \frac{1}{20} + \frac{1}{60}$$

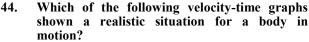
$$\frac{1}{\frac{1}{2}} + \frac{1}{10} + \frac{1}{20} + \frac{1}{60}$$

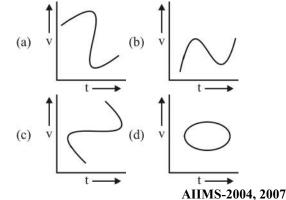

$$\frac{1}{\frac{1}{2}} + \frac{1}{20} + \frac{1}{60}$$

$$\frac{1}{2} + \frac{1}{2} +$$

$$\begin{aligned} & [\operatorname{civen}_{\mathbb{R}^{N}}(-g), \\ & [\operatorname{Rec}, \operatorname{black} will \operatorname{lose contact and freely fall.} \\ & s = ut + \frac{1}{2} \operatorname{gl}^{12} \\ & s = 0 \times 0.2 + \frac{1}{2} \times 10(0.2)^{2} \\ & s = \frac{1}{2} \times 10 \times \frac{2}{10} \times \frac{2}{10} \\ & s = 0.2 \text{ m} \\ \hline \text{2.5} \quad Velocity-time and Position-time graph \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2}^{2} + 5t_{1}^{2} \\ & \text{Welocity-time and Position-time graph \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{Welocity-time and Position-time graph \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{Welocity-time and Position-time graph \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{Welocity-time and Position-time graph \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{Welocity of a particle is given by} \\ & f(t) = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{Welocity (t)} = 4t_{1}^{2} + 2t_{1}^{2} + 5t_{1}^{2} \\ & \text{(a) } 3\sqrt{2}\text{m}^{-1}, 30^{\circ} \\ & \text{(b) } 3\sqrt{2}\text{m}^{-1}, 45^{\circ} \\ & (c) & 4\sqrt{2}\text{m}^{-1}, 45^{\circ} \\ & (c) & 4\sqrt{2}\text{m}^{-1}, 45^{\circ} \\ & (d) & 4\sqrt{2}\text{m}^{-1}, 60^{\circ} \\ & \text{RE-NEET (UC)-06.06.0223 (Manipur)} \\ & \text{Ans. (b) : Given: tit) - (4t_{1} + 2t_{1}^{2} + 5t_{1}^{2}) \\ & \frac{dt}{dt} = 4t_{1} + 4t_{1}^{2} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{32^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2} + 4^{2}} = \sqrt{2^{2} + 7^{2} + 7^{2}} \\ & \overline{|\nabla|} = \sqrt{4^{2}$$

YCT


$$ut = \frac{1}{2} at^{2}$$


$$\Rightarrow \quad u = \frac{1}{2} at$$
For over all motion
$$v = u + 3at$$

$$= \frac{at}{2} + 3at$$

$$= \frac{7at}{2} \qquad \left(\therefore u = \frac{at}{2} \right)$$

$$v = 7u$$
Which of the following velocity-time graph

Ans. (b) : Time cannot reverse itself if or it can only go forward. In graph (a) and (d) some portion of graph has show time changing in such a way or time is going from high volume to law volume which is not practical. In realistic situation, the body can't have more than one velocity at the same instant.

45. The coordinates of a moving particle at any time t are given by $x = a t^2$ and $y = b t^2$. The speed of the particle is

(a)
$$2t(a+b)$$
 (b) $2t\sqrt{a^2+b^2}$
(c) $2t\sqrt{a^2-b^2}$ (d) $\sqrt{a^2+b^2}$

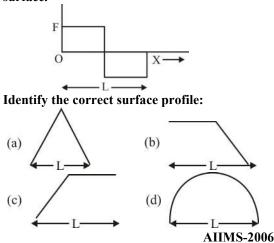
AIIMS-2012

Ans. (b): Given,
$$x = at^2$$
 and $y = bt^2$

Velocity along x – axis
$$v_x = \frac{dx}{dt} = 2at$$

Velocity along y – axis
$$v_y = \frac{dy}{dt} = 2bt$$

Magnitude of velocity of the particle -


$$v = \sqrt{(v_x)^2 + (v_y)^2} = 2t \sqrt{a^2 + b^2}$$

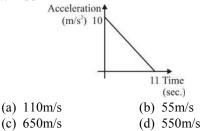
46. Assertion: Velocity-time graph for an object in uniform motion along a straight path is a straight line parallel to the time axis.
Reason: In uniform motion of an object velocity increases as the square of time elapsed.
(a) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.

- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.

AIIMS-2015 Ans. (c): In uniform motion, the object moves with uniform velocity. The magnitude of its velocity at different instant i.e at t = 0, t = 1 sec, t = 2 sec will always be constant in uniform motion along a straight path is a straight line parallel to time axis.

47. A person used force (F), shown in the figure to move a load with a constant velocity on a given surface.

Ans. (a) : The figure shows that the force is constant during loading and unloading. In figure (b) and (c) there are regions of constant slope. Thus no force is required in loading through those regions. But the force always has a magnitude. In figure (d), the force needs to change at every point as the inclination of the surface change at every point.]


The correct surface is option (a) where a loading force of mg sin θ is required, and mg sin θ acts in opposite direction while unloading.

- 48. Assertion : The position-time graph of a uniform motion in one dimension of a body can have negative slope.
 Reason: When the speed of body decreases with time, the position-time graph of the
 - moving body has negative slope.(a) If both Assertion and Reason are correct and Reason is the correct explanation of Assertion.
 - (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
 - (c) If Assertion is correct but Reason is incorrect.
 - (d) If both the Assertion and Reason are incorrect.

AIIMS-27.05.2018(M)

Ans. (c) : The negative slope of position-time graph represent that the body is moving towards the negative direction and if the slope of the graph decreases with time. Then, it represents the decrease in speed i.e retardation in motion.

A body starts from rest at time t = 0, the acceleration time graph is shown in the figure. The maximum velocity attained by the body will be

AIIMS-2014

Ans. (b) : Area under the acceleration - time graph determines the change in velocity i.e.

$$a = \frac{dv}{dt}$$
$$dv = \int adt$$

Area under the curve will gives us change in velocity

$$v_i = 0$$
, $v_f = v_{max}$
 $\Delta v = \text{area under the curve} = \frac{1}{2} \times 10 \times 11 = 55$

$$\Delta v = v_f - v_i$$
$$v_f = 55 \text{ m/s}$$
$$v_f = v_{max} = 55 \text{ m/s}$$

50. A particle moving along X-axis has acceleration

f at time t given by $f = f_0 \left(1 - \frac{t}{T}\right)$, where f_0 and T are constants. The particle at t = 0 has zero velocity. In the time interval between t = 0 and

the instant when f = 0, the particle's velocity is

(a)
$$\frac{1}{2} f_0 T^2$$
 (b) $f_0 T^2$
(c) $\frac{1}{2} f_0 T$ (d) $f_0 T$

AIPMT-2007

Ans. (c) : Acceleration of the particle is given as –

$$f = f_0 \left(1 - \frac{t}{T}\right)$$
 ...(i)

:. Velocity of particle is given as,

$$\mathbf{v} = \int \mathbf{f} \, d\mathbf{t} = \int \mathbf{f}_0 \left(1 - \frac{\mathbf{t}}{T} \right) d\mathbf{t} = \mathbf{f}_0 \left(\mathbf{t} - \frac{\mathbf{t}^2}{2T} \right) + \mathbf{c} \qquad \dots (ii)$$

Given that, at t = 0, v = 0

Hence, from Eq. (i), we get

$$0 = f_0 (0 - 0) + c \implies c = 0$$

: From Eq. (ii), we have

$$\mathbf{f} = \mathbf{f}_0 \left(\mathbf{t} - \frac{\mathbf{t}^2}{2\mathbf{T}} \right) \qquad \dots (\mathbf{i}\mathbf{i}\mathbf{i})$$

Suppose, acceleration of the particle becomes zero at time $t = t_1$.

Hence, from Eq. (i),

$$\begin{array}{c} 0 = f_0 \left(-\frac{1}{1} \right) \Rightarrow 1 - \frac{t}{1} = 0 \Rightarrow t_1 = T \\ \text{Hence, velocity of particle at $t = t = T$, from Eq. (iii),

$$v = f_0 \left(T - \frac{T^2}{2t} \right) = f_0 \left(T - \frac{T}{2} \right) = \frac{1}{2} f_0 T \\ \hline v = f_0 \left(T - \frac{T^2}{2t} \right) = f_0 \left(T - \frac{T}{2} \right) = \frac{1}{2} f_0 T \\ \hline v = f_0 \left(T - \frac{T^2}{2t} \right) = f_0 \left(T - \frac{T}{2} \right) = \frac{1}{2} f_0 T \\ \hline s = ds = \frac{bt^2}{2} + v_0 \\ \hline s = ds = \frac{bt^2}{2} + v_0 \\ \hline s = ds = \frac{bt^2}{2} + v_0 \\ \hline the gravity constants. The velocity of the particle will care so with time (b) be independent of a and $\beta \\ (c) drop to zero when $a = \beta \\ dt \\ \hline (d) go on increasing with time JIPMER-2007 \\ \hline Ans. (d) : Given, \\ x = ae^{ct} - be^{th} \\ \hline 0 \text{ fforemations we can the best we determine the some time in a straight line and their positions are represented by $x_0(1) = at + bt^2$ and $X_0(0) = f_0 - f_0 \\ \hline (a = f - t_0) \\ \hline (b = a - f - t_0) \\ \hline (b = a - bt) \\ \hline (c) v_0 t = \frac{1}{6} bt^3 \\ \hline (c) c dt = a - bt \\ \Rightarrow \frac{dv}{dt} = bt \\ \hline (c) \frac{dv}{dt} = bt \\ \Rightarrow \frac{dv}{dt} = bt \\ \hline (c) \frac{dv}{dt} = bt \\ \hline (c) \frac{2}{dt} - \frac{1}{2} bt \\ \hline (c) \frac{2$$$$$$$