National Medical Commission All India Medical Entrance Examination

CHENISTRY Objective Chapterwise Solved Papers Based on NMC Reduced & Updated Syllabus

Chief Editor A.K. Mahajan

Compiled and Edited by

Subject Expert Group

Computer Graphics by

Balkrishna, Charan Singh

Editorial Office

12, Church Lane Prayagraj-211002

9415650134 9415650134

Email: yctap12@gmail.com

website: www.yctbooks.com/www.yctfastbook.com

© All rights reserved with Publisher

Publisher Declaration

Edited and Published by A.K. Mahajan for YCT Publications Pvt. Ltd. and printed by Om Sai Offset In order to Publish the book, full care has been taken by the Editor and the Publisher, still your suggestions and queries are welcomed.

In the event of any dispute, the judicial area will be Prayagraj.

SOME BASIC CONCEPTS IN CHEMISTRY	
Matter and its nature.	
■ Dalton's atomic theory: Concept of atom, molecule, element and compound,	
□ Laws of chemical combination □ Atomic and molecular masses	
■ Atomic and morecular masses. ■ Mole concept, molar mass, percentage composition, empirical and molecular formulae.	
□ Chemical equations and stoichiometry.	
ATOMIC STRUCTURE	
Nature of electromagnetic radiation,	
Photoelectric effect	
Spectrum of the hydrogen atom	
Bohr model of a hydrogen atom and its postulates.	
Derivation of the relations for the energy of the electron and radii of the different orbits for Bohr's model	41
Dual nature of matter	42
De-de Broglie's relationship	
Heisenberg uncertainty principle	45
I Variation of Ψ and Ψ^2 with r for ls and 2s orbitals	
Various quantum numbers (principal, angular momentum, and magnetic) and their significance	48
Shapes of s, p, and d – orbitals	
Electron spin and spin quantum number.	
Rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule	
Electronic configuration of elements, extra stability of half-filled and completely filled orbitals	
HEMICAL BONDING AND MOLECULAR STRUCTURE	
Sossel-Lewis approach to chemical bond formation.	
The concept of ionic and covalent bonds.	
I lonic Bonding: Formation of ionic bonds and factors affecting its formation	
Calculation of lattice enthalpy.	
Covalent Bonding: concept of electronegativity	
Fajan's rule	
Dipole moment	
VSEPR theory and shapes of simple molecules	
Valence bond theory and its important features	
The concept of hybridization involving s, p, and d orbitals	
Resonance	81
Molecular orbital Theory	82
☐ Its important features.	
LCAOs, types of molecular orbitals (bonding, antibonding)	85
Molecular orbital electronic configurations of homonuclear diatomic molecules	86
The concept of bond order, Bond length and bond energy	
■ Elementary idea of metallic bonding	
☐ Hydrogen bonding and is applications	
CHEMICAL THERMODYNAMICS	94-127
☐ Fundamentals of thermodynamics: system and surroundings, Extensive and intensive properties	94
3 State functions	
Types of processes	
The first law of thermodynamics	
Concept of work	
Heat internal energy and enthalpy	
Heat capacity and Molar heat capacity	
Hess's law of constant heat summation	
Enthalpies of bond dissociation, Combustion, Formation, Atomization. Sublimation	
Phase transition, Hydration, Ionization and solution	
The second law of thermodynamics	119
\square Spontaneity of processes; $\triangle S$ of the universe and $\triangle G$ of the system as criteria for spontaneity	
ΔG^{o} (Standard Gibbs energy change)	
☐ Equilibrium constant	127

SOLUTIONS	
■ Expressing the concentration of solution: Molality, molarity, mole fraction, percentage (by ve	olume and mass both)128
☐ The vapour pressure of solutions	
■ Raoult's Law–Ideal and non-ideal solutions	
□ Colligative properties of dilute solutions	
■ A relative lowering of vapour pressure	
□ Depression of freezing point	
☐ The elevation of boiling point and osmotic pressure	
☐ Abnormal value of molar mass and Van't Hoff factor and its significance	
■ EQUILIBRIUM	
☐ Equilibrium involving chemical processes	
■ Law of chemical equilibrium.	
■ Equilibrium constants (K _p and K _c) and their significance	
■ The significance of ΔG and ΔG° in chemical equilibrium	159
☐ Factors affecting equilibrium concentration: Pressure, temperature and catalyst	160
■ Le Chatelier's principle	
☐ Ionic equilibrium	
■ Weak and strong electrolytes	
☐ Ionization of electrolytes	
■ Various concepts of acids and bases (Arrhenius. Bronsted - Lowry and Lewis) and their	
■ Acid-base equilibria (including multistage ionization) and ionization constants	
☐ Ionization of water, pH scale, common ion effect	
☐ Hydrolysis of salts and pH of their solutions	
☐ The solubility of sparingly soluble salts and solubility products	
■ Buffer solutions	
■ REDOX REACTIONS AND ELECTROCHEMISTRY	
■ Electronic concepts of oxidation and reduction	
■ Redox reactions	
Oxidation number and Rules for assigning oxidation number	
■ Balancing of redox reactions	
☐ Electrolytic and metallic conduction	
☐ Conductance in electrolytic solutions	211
■ Molar conductivities and their variation with concentration : Kohlrausch's law and its a	applications
■ Electrochemical cells - Electrolytic and Galvanic cells	
■ Different types of electrodes	
■ Electrode potentials including standard electrode potential.	
■ Half - cell and cell reactions	217
■ Emf of a Galvanic cell and its measurement	
■ Nernst equation and its applications	
■ Relationship between cell potential and Gibbs' energy change	
☐ Dry cell and lead accumulator. Fuel cells	
■ CHEMICAL KINETICS	
■ Rate of a chemical reaction	
■ Factors affecting the rate of reactions: concentration, Temperature, pressure and cataly	
■ Elementary and complex reactions.	
□ Order and molecularity of reactions	
·	
Rate law, rate constant and its units.	
□ Differential and integral forms of zero and first-order reactions	
☐ Characteristics and half-lives of zero and first-order reactions	
☐ The effect of temperature on the rate of reactions	
☐ Arrhenius theory, Activation energy and its calculation	
☐ Collision theory of bimolecular gaseous reactions (no derivation)	
INODO ANIO CHEMICEDA	
INORGANIC CHEMISTRY	
■ CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES	253-281
■ Modern periodic law and present form of the periodic table	
s,p,d and f block elements	
Periodic trends in properties of elements atomic and ionic radii, Ionization enthalpy, E.	
■ P-BLOCK ELEMENTS	
☐ Group-13 to Group 18 Elements	
☐ General Introduction	
■ Electronic configuration	

	☐ General trends in physical and chemical properties of elements	
	☐ Unique behaviour of the first element in each group	
	D-AND F-BLOCK ELEMENTS	334-347
	□ Transition Elements	
	☐ General introduction and Electronic configuration.	
	□ Occurrence and characteristics	336
	☐ General trends in properties of the first-row transition elements - physical properties, Ionization enthalpy,	
	Oxidation states Atomic radii, Colour, catalytic behaviour, Magnetic properties	337
	□ Complex formation	342
	□ Interstitial compounds	343
	□ Alloy formation	343
	□ Inner Transition Elements	
	CO-ORDINATION COMPOUNDS	348-373
	■ Introduction to coordination compounds.	
	■ Werner's theory; ligands, coordination number, denticity, chelation	
	■ IUPAC nomenclature of mononuclear co-ordination compounds	353
	□ Isomerism	
	■ Bonding-Valence bond approach	
	■ Basic ideas of Crystal field theory and Colour and magnetic properties	
	☐ Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).	
	importance of co-ordination compounds (in quantative analysis, extraction of metals and in biological systems)	3/1
	ORGANIC CHEMISTRY	
	PURIFICATION AND CHARACTERISATION OF ORGANIC COMPOUNDS	374 275
_	□ Purification□ Purification□	
	□ Qualitative analysis	
_	Quantitative analysis	
	SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY	
	Tetravalency of carbon: Shapes of simple molecules and hybridization (s and p)	
	Classification of organic compounds based on functional groups containing X (Halogen) O, N and S	
	☐ Isomerism - structural and stereoisomerism	
	■ Nomenclature (Trivial and IUPAC)	
	☐ Covalent bond fission - Homolytic and heterolytic	
	☐ Free radicals, carbocations, and carbanions	
	■ Stability of carbocations and free radicals	
	☐ Electrophiles and nucleophiles	400
	☐ Electronic displacement in a covalent bond	
	□ Inductive effect	402
	□ Electromeric effect	403
	■ Resonance and hyperconjugation	403
	□ Common types of organic reactions	
	HYDROCARBONS	
	□ Classification	
	□ Isomerism	
	■ IUPAC nomenclature	
	☐ General methods of preparation and Properties, and reactions.	
	□ Alkanes	
	□ Conformations : Sawhorse and newman projections (of ethane)	
	■ Mechanism of halogenation of alkanes	
	□ Alkenes	
	☐ Geometrical isomerism : Mechanism of electrophilic addition	
	□ Addition of hydrogen, halogens □ Water, hydrogen halides (Markownikoffs and peroxide effect)	
	Ozonolysis and polymerization)	
	□ Alkynes	
	Acidic character.	
	Addition of hydrogen, halogens, water, and hydrogen halides	
	□ Polymerization	
	Aromatic hydrocarbons	
	Nomenclature	
	■ Benzene - structure and aromaticity	
	■ Mechanism of electrophilic substitution: Halogenation, nitration	
	☐ Friedel - Craft's alkylation and acylation	
	☐ Directive influence of the functional group in mono-substituted benezene	446

ORGANIC COMPOUNDS CONTAINING HALOGENS	447-459
☐ General methods of preparation	447
□ Properties and reactions	449
■ Nature of C-X bond	454
■ Mechanisms of substitution reactions.	
■ Environmental effects of chloroform, Iodoform freons, and DDT	458
ORGANIC COMPOUNDS CONTAINING OXYGEN	
☐ General methods of preparation, properties, Reactions and uses	460
☐ Alcohols, Phenols and Ethers	461
□ Aldehyde and Ketones	486
■ Nature of carbonyl group	
■ Nucleophilic addition to > C = O group	
☐ Relative reactivities of aldehydes and ketones	489
☐ Important reactions: Nucleophilic addition reactions (addition of HCN, NH ₃ , and its derivatives)	
Grignard Reagent, Oxidation, Reduction (Wolf Kishner and Clemmensen)	492
☐ The acidity of α-hydrogen	501
☐ Chemical tests to distinguish between aldehydes and Ketones	505
□ Carboxylic Acids	508
ORGANIC COMPOUNDS CONTAINING NITROGEN	513-529
□ Amines	513
■ Nomenclature and Classification structure	519
■ Basic character and identification of primary, secondary, and tertiary amines and their basicity	519
□ Diazonium Salts: Importance in synthetic organic chemistry	526
BIOMOLECULES	530-547
☐ General introduction and importance of biomolecules	530
□ CARBOHYDRATES	531
□ Classification; aldoses and ketoses	532
■ Monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides	
(sucrose, lactose, and maltose)	532
□ Proteins	537
■ Elementary idea of α-amino acids, Peptide bond and polypeptides	537
☐ Proteins: Primary, secondary, tertiary, and quaternary structure (qualitative idea only)	
■ Denaturation of proteins	
■ Enzymes	542
□ Vitamins–Classification and functions	543
■ Nucleic Acids–Chemical constitution of DNA and RNA	
☐ Hormones (General introduction)	547
PRINCIPLES RELATED TO PRACTICAL CHEMISTRY	
□ Detection of extra elements (N, S and X) in organic compounds	548
■ Detection of the following functional groups- Hydroxyl (alcoholic and phenolic), Carbonyl (aldehyde and	
carboxyl and amino groups in organic compounds	
☐ The chemistry involved in the preparation of the following	551
☐ Inorganic compounds: Mohr's salt, potash alum	551
□ Organic compounds : Acetanilide, p-nitro acetanilide, Aniline yellow, Iodoform	553
☐ The chemistry involved in the titrimetric exercises	554
☐ Acids, bases and the use of indicators	554
□ Oxalic-acid vs KMNO ₄ ,	556
■ Mohr's salt vs KMnO ₄ .	
□Chemical principles involved in the qualitative salt analysis	557
\square Cations – Pb ²⁺ , Cu ²⁺ , A I^{3+} , Fe ³⁺ , Zn ²⁺ , Ni ²⁺ , Ca ²⁺ , Ba ²⁺ , Mg ²⁺ , NH ₅	
a. Anions - S^{2-} , SO_4^{2-} , NO^{3-} , NO^{2-} , CO_3^{2-} , Cl^{-} , Br^{-} , I^{-} (Insoluble salts)	
☐ Chemical principles involved in the following experiments	574
■ Enthalpy of solution of CuSO ₄	574
■ Enthalpy of neutralization of strong acid and strong base.	574
☐ Preparation of lyophilic and lyophobic sols.	
☐ Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature.	576

SYLLABUS

PHYSICAL CHEMISTRY

UNIT-1

SOME BASIC CONCEPTS IN CHEMISTRY

Matter and its nature.

Dalton's atomic theory: Concept of atom, molecule, element and compound,

Laws of chemical combination.

Atomic and molecular masses.

Mole concept, molar mass, percentage composition, empirical and molecular formulae.

Chemical equations and stoichiometry.

UNIT 2 **ATOMIC STRUCTURE**

Nature of electromagnetic radiation,

Photoelectric effect;

Spectrum of the hydrogen atom.

Bohr model of a hydrogen atom and its postulates.

Derivation of the relations for the energy of the electron and radii of the different orbits for Bohr's model

Limitations of Bohr's model.

Dual nature of matter.

De-de Broglie's relationship.

Heisenberg uncertainty principle.

Elementary ideas of quantum mechanics and The first law of thermodynamics Quantum mechanics.

The quantum mechanical model of the atom its and important features.

Concept of atomic orbitals as one-electron wave functions.

Variation of Ψ and Ψ^2 with r for ls and 2s orbitals.

Various quantum numbers (principal, angular momentum, and magnetic quantum numbers) and their significance.

Shapes of s, p, and d – orbitals.

Electron spin and spin quantum number:

Rules for filling electrons in orbitals - Aufbau principle, Pauli's exclusion principle and Hund's rule. Electronic configuration of elements, extra stability of half-filled and completely filled orbitals.

UNIT-3

CHEMICAL BONDING AND MOLECULAR **STRUCTURE**

Kossel-Lewis approach to chemical bond formation. The concept of ionic and covalent bonds.

Ionic Bonding: Formation of ionic bonds and factors affecting its formation.

Calculation of lattice enthalpy.

Covalent Bonding: concept of electronegativity.

Fajan's rule.

Dipole moment.

VSEPR theory and shapes of simple molecules.

Quantum mechanical approach to covalent bonding.

Valence bond theory and its important features.

The concept of hybridization involving s, p, and d orbitals.

Resonance.

Molecular orbital Theory

Its important features.

LCAOs, types of molecular orbitals (bonding, antibonding),

Sigma and pi-bonds,

Molecular orbital electronic configurations of homonuclear diatomic molecules,

The concept of bond order, Bond length and bond energy.

Elementary idea of metallic bonding.

Hydrogen bonding and is applications.

UNIT-4

CHEMICAL THERMODYNAMICS

Fundamentals of thermodynamics: system and surroundings, Extensive and intensive properties.

State functions.

Types of processes.

Concept of work.

Heat internal energy and enthalpy.

Heat capacity and Molar heat capacity.

Hess's law of constant heat summation:

Enthalpies of bond dissociation, Combustion, Formation, Atomization. Sublimation.

Phase transition, Hydration, Ionization and solution.

The second law of thermodynamics

Spontaneity of processes: ΔS of the universe and ΔG of the system as criteria for spontaneity.

 ΔG° (Standard Gibbs energy change).

Equilibrium constant.

Unit-5

SOLUTIONS

Expressing the concentration of solution: Molality, molarity, mole fraction, percentage (by volume and mass both).

The vapour pressure of solutions.

Raoult's Law-Ideal and non-ideal solutions.

Vapour pressure composition and Plots for ideal and non-ideal solutions.

Colligative properties of dilute solutions:

A relative lowering of vapour pressure.

Depression of freezing point.

The elevation of boiling point and osmotic pressure.

Determination of molecular mass using colligative properties.

Abnormal value of molar mass and Van't Hoff factor and its significance.

UNIT-6

EQUILIBRIUM

Equilibrium and the concept of dynamic equilibrium.

Equilibria involving physical processes:

Solid-liquid, Liquid - gas and solid-gas equilibria, Henry's law.

General characteristics of equilibrium involving physical processes.

Equilibrium involving chemical processes:

Law of chemical equilibrium,

Equilibrium constants (K_p and K_c) and their significance,

The significance of ΔG and ΔG° in chemical equilibrium,

Factors affecting equilibrium concentration: Pressure, temperature and catalyst.

Le Chatelier's principle.

Ionic equilibrium:

Weak and strong electrolytes.

Ionization of electrolytes.

Various concepts of acids and bases (Arrhenius. Bronsted - Lowry and Lewis) and their ionization.

Acid-base equilibria (including multistage ionization) and ionization constants.

Ionization of water, pH scale, common ion effect.

Hydrolysis of salts and pH of their solutions.

The solubility of sparingly soluble salts and solubility products.

Buffer solutions.

UNIT-7

REDOX REACTIONS AND ELECTROCHEMISTRY

Electronic concepts of oxidation and reduction.

Redox reactions.

Oxidation number and Rules for assigning oxidation number.

Balancing of redox reactions.

Electrolytic and metallic conduction.

Conductance in electrolytic solutions.

Molar conductivities and their variation with concentration: Kohlrausch's law and its applications.

Electrochemical cells - Electrolytic and Galvanic cells.

Different types of electrodes.

Electrode potentials including standard electrode potential.

Half - cell and cell reactions.

Emf of a Galvanic cell and its measurement.

Nernst equation and its applications.

Relationship between cell potential and Gibbs' energy change.

Dry cell and lead accumulator. Fuel cells.

UNIT-8

CHEMICAL KINETICS

Rate of a chemical reaction.

Factors affecting the rate of reactions: concentration,

Temperature, pressure and catalyst.

Elementary and complex reactions.

Order and molecularity of reactions.

Rate law, rate constant and its units.

Differential and integral forms of zero and first-order reactions.

Characteristics and half-lives of zero and first-order reactions.

The effect of temperature on the rate of reactions.

Arrhenius theory, Activation energy and its calculation.

Collision theory of bimolecular gaseous reactions (no derivation).

INORGANIC CHEMISTRY

UNIT-9

CLASSIFICATION OF ELEMENTS AND PERIODICITY IN PROPERTIES

Modern periodic law and present form of the periodic table

s,p,d and f block elements.

Periodic trends in properties of elements atomic and ionic radii, Ionization enthalpy, Electron gain enthalpy.

Valency, Oxidation states and chemical reactivity.

UNIT-10

P-BLOCK ELEMENTS

Group-13 to Group 18 Elements General Introduction :

Electronic configuration

General trends in physical and chemical properties of elements

Unique behaviour of the first element in each group.

UNIT-11

D-AND F-BLOCK ELEMENTS

Transition Elements

General introduction and Electronic configuration.

Occurrence and characteristics,

General trends in properties of the first-row transition elements - physical properties, Ionization enthalpy, Oxidation states, Atomic radii, Colour, catalytic behaviour, Magnetic properties. Complex formation.

Interstitial compounds.

Alloy formation.

Preparation, properties, and uses of $K_2Cr_2O_7$, and $KMnO_4$.

Inner Transition Elements

Lanthanoids - Electronic configuration, oxidation states, and lanthanoid contraction.

Actinoids - Electronic configuration and oxidation states.

UNIT-12

CO-ORDINATION COMPOUNDS

Introduction to coordination compounds.

Werner's theory; ligands, coordination number, denticity, chelation.

IUPAC nomenclature of mononuclear co-ordination compounds,

Isomerism.

Bonding-Valence bond approach.

Basic ideas of Crystal field theory and Colour and magnetic properties.

Importance of co-ordination compounds (in qualitative analysis, extraction of metals and in biological systems).

ORGANIC CHEMISTRY

UNIT-13

Purification -

Crystallization,

Sublimation,

Distillation,

Differential Extraction

Chromatography - principles and their applications.

Qualitative analysis -

Detection of nitrogen.

Detection of Sulphur.

Detection of Phosphorus.

Detection of Halogens.

Quantiative analysis (basic principles only) -

Estimation of carbon.

Estimation of Hydrogen.

Estimation of Nitrogen.

Estimation of Halogens.

Estimation of Sulphur.

Estimation of Phosphorus.

Calculations of empirical formulae and molecular formulae : Numerical problems in organic quantitative analysis.

UNIT-14

SOME BASIC PRINCIPLES OF ORGANIC CHEMISTRY

Tetravalency of carbon: Shapes of simple molecules and hybridization (s and p).

Classification of organic compounds based on functional groups containing X (Halogen) $O,\ N$ and S

Homologous series.

Isomerism - structural and stereoisomerism.

Nomenclature (Trivial and IUPAC)

Covalent bond fission - Homolytic and heterolytic.

Free radicals, carbocations, and carbanions.

Stability of carbocations and free radicals.

Electrophiles and nucleophiles.

Electronic displacement in a covalent bond-

Inductive effect.

Electromeric effect.

Resonance and hyperconjugation.

Common types of organic reactions-

Substitution reaction.

Addition reaction.

Elimination and rearrangement.

UNITS-15 HYDROCARBONS

Classification.

Isomerism.

IUPAC nomenclature.

General methods of preparation and Properties, and reactions.

Alkanes -

Conformations : Sawhorse and newman projections (of ethane) :

Mechanism of halogenation of alkanes.

Alkenes -

Geometrical isomerism : Mechanism of electrophilic addition :

Addition of hydrogen, halogens,

Water, hydrogen halides (Markownikoffs and peroxide effect):

Ozonolysis and polymerization).

Alkynes -

Acidic character:

Addition of hydrogen, halogens, water, and hydrogen halides:

Polymerization.

Aromatic hydrocarbons -

Nomenclature.

Benzene - structure and aromaticity.

Mechanism of electrophilic substitution: Halogenation, nitration.

Friedel - Craft's alkylation and acylation.

Directive influence of the functional group in monosubstituted benezene.

UNIT-16

ORGANIC COMPOUNDS CONTAINING HALOGENS

General methods of preparation,

Properties and reactions;

Nature of C-X bond:

Mechanisms of substitution reactions.

Environmental effects of chloroform, Iodoform freons, and DDT.

UNIT-17

ORGANIC COMPOUNDS CONTAINING OXYGEN

General methods of preparation.

Properties, Reactions and uses.

ALCOHOLS, PHENOLS, AND ETHERS

Alcohols:

Identification of primary, secondary, and tertiary alcohols.

Mechanism of dehydration.

Phenols:

Acidic nature.

Electrophilic substitution reactions : Halogenation, nitration and sulphonation.

Reimer - Tiemann reaction.

Ethers: Structure.

Aldehyde and Ketones:

Nature of carbonyl group.

Nucleophilic addition to >C = O group.

Relative reactivities of aldehydes and ketones.

Important reactions: Nucleophilic addition reactions (addition of HCN, NH₃, and its derivatives), Grignard Reagent, Oxidation, Reduction (Wolf Kishner and Clemmensen).

The acidity of α -hydrogen:

Aldol condensation.

Cannizzaro reaction.

Haloform reaction.

Chemical tests to distinguish between aldehydes and Ketones.

Carboxylic Acids

Acidic strength and factors affecting it.

UNIT-18

ORGANIC COMPOUNDS CONTAINING NITROGEN

Amines:

Nomenclature.

Classification structure.

Basic character and identification of primary, secondary, and tertiary amines and their basicity.

Diazonium Salts: Importance in synthetic organic chemistry.

UNIT-19

BIOMOLECULES

General introduction and importance of biomolecules. CARBOHYDRATES -

Classification; aldoses and ketoses.

Monosaccharides (glucose and fructose) and constituent monosaccharides of oligosaccharides (sucrose, lactose, and maltose).

PROTEINS -

Elementary idea of α -amino acids, Peptide bond and polypeptides.

Proteins: Primary, secondary, tertiary, and quaternary structure (qualitative idea only).

Denaturation of proteins.

Enzymes.

VITAMINS - Classification and functions.

NUCLEIC ACIDS – Chemical constitution of DNA and RNA.

Biological functions of nucleic acids.

Hormones (General introduction)

UNIT-20

PRINCIPLES RELATED TO PRACTICAL CHEMISTRY

Detection of extra elements (N, S and X) in organic compounds.

Detection of the following functional groups-Hydroxyl (alcoholic and phenolic).

Carbonyl (aldehyde and ketones), carboxyl and amino groups in organic compounds.

• The chemistry involved in the preparation of the following:

Inorganic compounds: Mohr's salt, potash alum.

Organic compounds : Acetanilide, p-nitro acetanilide, Aniline yellow, Iodoform.

• The chemistry involved in the titrimetric exercises:

Acids, bases and the use of indicators,

Oxalic-acid vs KMNO₄,

Mohr's salt vs KMnO₄.

 Chemical principles involved in the qualitative salt analysis.

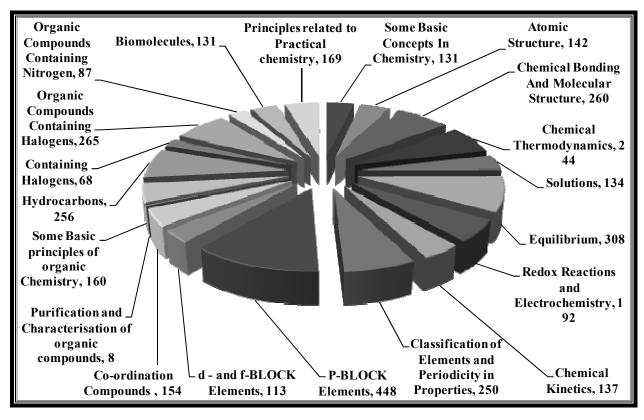
analysis:
Cations –
$$Pb^{2+}$$
, Cu^{2+} , Al^{3+} , Fe^{3+} , Zn^{2+} , Ni^{2+} , Ca^{2+} , Ba^{2+} , Mg^{2+} , NH_5^+

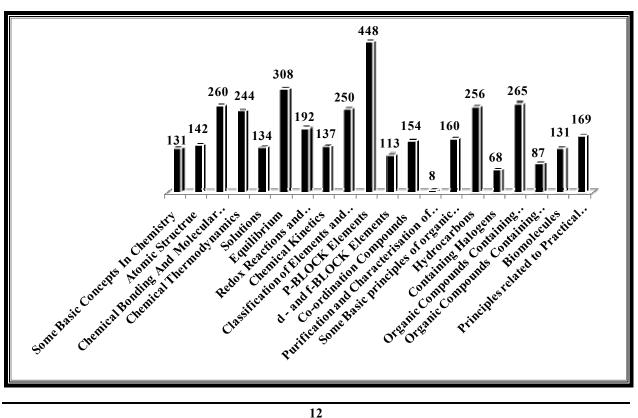
Anions -
$$S^{2-}$$
, SO_4^{2-} , NO^{3-} , NO^{2-} , CO_3^{2-} , Cl^{-} ,

Br⁻, I⁻ (Insoluble salts excluded).

Chemical principles involved in the following experiments:

- 1. Enthalpy of solution of CuSO₄
- 2. Enthalpy of neutralization of strong acid and strong base.
- 3. Preparation of lyophilic and lyophobic sols.
- 4. Kinetic study of the reaction of iodide ions with hydrogen peroxide at room temperature.


All India Medical Entrance Exam Chemistry Previous Years Exam Papers Analysis Chart


S. No	Exam	Proposed Vear	Question Paper	Total Question
5.110	National Eligibility Cum	Entrance Test /All Ind	ia Pre Medical Test ((NEET/AIPMT)
1.	RE NEET -Manipur	06.06.2023		50
2.	NEET	07.05.2023		50
3.	NEET	17.07.2022		50
4.	NEET	12.09.2021		50
5.	NEET	13.09.2020		50
6.	NEET	05.06.2019		50
7.	NEET	06.05.2018		50
8.	NEET	07.05.2017		50
9.	NEET	01.05.2016	Phase-I	50
10.	NEET	24.06.2016	Phase-II	50
11.	NEET/AIPMT	25.07.2015		50
12.	NEET	04.05.2014		50
13.	NEET	05.05.2013		50
14.	AIPMT	2012		50
15.	AIPMT	2011		50
16.	AIPMT	2010		50
17.	AIPMT	2009		50
18.	AIPMT	2008		50
19.	AIPMT	2007		50
20.	AIPMT	2006		50
21.	AIPMT	2005		50
22.	AIPMT	2004		50
23.	AIPMT	2003		50
24.	AIPMT	2002		50
25.	AIPMT	2001		50
26.	AIPMT	2000		50
27.	AIPMT	1999-1988		600
		ia Institute of Medical		
28.	AIIMS	26.05.2019	Shift-I	60
29.	AIIMS	26.05.2019	Shift-II	60
30.	AIIMS	25.05.2019	Shift-I	60
31.	AIIMS	25.05.2019	Shift-II	60
32.	AIIMS	2018		60
33.	AIIMS	2017		60
34.	AIIMS	2016		60
35.	AIIMS	2015		60
36.	AIIMS	2014		60
37.	AIIMS	2013		60
38.	AIIMS	2012		60
39.	AIIMS	2011		60
40.	AIIMS	2010		60
41.	AIIMS	2009		60
42.	AIIMS	2008		60
43.	AIIMS	2007		60
44.	AIIMS	2006		60
45.	AIIMS	2005		60
46.	AIIMS	2004		60
47.	AIIMS	2003		60
48.	AIIMS	2003		60
49.	AIIMS	2002		60
50.	AIIMS	2001		60
		1999-1994		
51.	AIIMS	1999-1994		300

	Andhra Pradesh Engineering, Ag	griculture and Medical	Common Entrance	Test (AP EAMCET)
52.	AP EAMCET Medical	2013		50
53.	AP EAMCET Medical	2012		50
54.	AP EAMCET Medical	2010		40
55.	AP EAMCET Medical	2009		40
56.	AP EAMCET Medical	2008		40
57.		2007		40
58.	AP EAMCET Medical	2006		40
59.	AP EAMCET Medical	2004		40
60.	AP EAMCET Medical	2003		50
61.	AP EAMCET Medical	2002		40
62.	AP EAMCET Medical	2001		40
63.	AP EAMCET Medical	1999		40
64.	AP EAMCET Medical	1998		50
65.	AP EAMCET Medical	1997		50
00.	Jawaharlal Institute of Po		ucation and Researc	
66.	JIPMER	2019		60
67.	JIPMER	2018		60
68.	JIPMER	2017		60
69.	JIPMER	2016		60
70.	JIPMER	2015		60
71.	JIPMER	2014		60
72.	JIPMER	2013		60
73.	JIPMER	2012		60
74.	JIPMER	2011		60
75.	JIPMER	2010		60
76.	JIPMER	2009		60
77.	JIPMER	2008		60
78.	JIPMER	2007		60
79.	JIPMER	2006		60
80.	JIPMER	2005		60
81.	JIPMER	2004		60
	Uttar Prades	sh Combined Pre Medi	cal Test (UPCPMT)	
82.	UPCPMT	2014		50
83.	UPCPMT	2013		50
84.	UPCPMT	2012		50
85.	UPCPMT	2011		50
86.	UPCPMT	2010		50
87.	UPCPMT	2009		50
88.	UPCPMT	2008		50
89.	UPCPMT	2007		50
90.	UPCPMT	2006		50
91.	UPCPMT	2005		50
92.	UPCPMT	2004		50
93.	UPCPMT	2003		50
94.	UPCPMT	2002		50
95.	UPCPMT	2001		50
		•	Total	5850
				1

Note: After detailed analysis of above mentioned papers of NEET and Other Medical and Engineering Examination Related to Chemistry 5850 have been presented chapterwise. Questions of repeated and similar nature have included so that the technique of asking question can benefit the competitors.

Trend Analysis of All Medical Entrance Exam Chemistry Questions through Pie Chart & Bar Graph

Some Basic Concepts in Chemistry

Matter and its nature

- $_{19}K^{40}$ and $_{20}Ca^{40}$ are known as
 - (a) isotopes
- (b) isobars
- (c) isotones
- (d) isodiaphers

UP CPMT-2002

Ans.(b): 19K⁴⁰ and 20Ca⁴⁰ both have same mass no but different atomic number, are called isobars.

- Isotopic pair is
 - (a) ${}_{20}X^{40}$, ${}_{21}Y^{40}$ (c) ${}_{40}X^{20}$, ${}_{41}Y^{20}$

- (b) $_{20}X^{40}$, $_{20}Y^{41}$ (d) None of these

UP CPMT-2005

Ans. (b): Key Idea: Isotopes are the atoms of same element which have different atomic masses (due to different number of neutrons). They had same atomic numbers.

 \therefore choice (b) is the correct answer because both ($_{20}X^{40}$ ₂₀X⁴¹) have same atomic number but different atomic mass.

- 3. O₂ and O₃ are
 - (a) allotropes
- (b) isotopes
- (c) isomorphs
- (d) polymorphs

UP CPMT-2010

Ans. (a): Since, in O₂ and O₃ different numbers of same element i.e. oxygen are present, these are

Note. Different crystalline structures, different number of atoms and different nuclear spins all result in allotropy.

- Isotones have
 - (a) same number of protons
 - (b) same number of electrons
 - (c) same number of neutrons
 - (d) same isotopic mass

UP CPMT-2010

Ans. (c): Species having the same number of neutron but different atomic number as well as atomic mass are called isotones. E.g. $^{39}_{18}$ Ar, $^{40}_{19}$ K.

Dalton's atomic theory Concept of atom, molecule, element and compound,

- 5. Select the correct statements following:
 - Atoms of all elements are composed of two fundamental particles.
 - The mass of the electron is B. 9.10939×10⁻³¹ kg.
 - All the isotopes of a given element C. show same chemical properties.

- Protons and electrons are collectively known as nucleons.
- E. Dalton's atomic theory, regarded the atom as an ultimate particle of

Choose the correct answer from the options given below:

- (a) B, C and E only
- (b) A, B and C only
- (c) C, D and E only
- (d) A and E only

NEET (UG) -07.05.2023

- Ans. (a): (A) Atoms of all elements are composed of two fundamental particles. It is incorrect statement.
- (B) The mass of the electron is 9.10939×10^{-31} kg. It is correct statement.
- (C) All the isotopes of a given element show same chemical properties is correct statement.
- (D) **Nucleons**-Nucleons are equal to number of proton and neutron in the nucleons.

eg-if the given atom of isotope is He⁴, He^A

z = 2 Number of proton.

A = 4 Number of nucleons

A-z = 4-2=2 Number of Neutrons.

(Hence nucleons = Number of protons + neutrons) So It is incorrect option.

- (E) Daltons atomic theory, regared the atom as an altimate particles of matter so It is correct statement.
- Assertion: Atoms can neither be created nor destroyed.

Reason: similar Under condition temperature and pressure, equal volume of gases does not contain equal number of atoms.

- (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the Assertion.
- (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the
- (c) If the Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.
- (e) If the Assertion is incorrect but the Reason is correct.

AIIMS-2002

Ans. (c): Dalton hypothesized the law of conservation of mass. According to this law atoms can neither be created nor destroyed.

Avogadro's law states that under similar condition of temperature and pressure, equal volume of gases contain equal number of atoms.

Therefore Assertion is correct but Reason is incorrect.

Laws of Chemical **Combination**

- 50 mL of each gas A and of gas B takes 150 and 200 seconds respectively for effusing through a pin hole under the similar conditions. If molecular mass of gas B is 36, the molecular mass of gas A will be
 - (a) 96
- (b) 128
- (c) 32
- (d) 20.2

NEET-2012

Ans. (d): Graham's law of effusion states that the rate of effusion of a gas is inversely proportional to the square root the molar mass of its particles.

$$V_A = V_B = 50 \text{mL}$$

$$T_{\Delta} = 150 s$$

$$T_{\rm R} = 200 \, \rm s$$

$$M_B = 36$$

$$M_A = ?$$

From Graham's law of effusion.

$$\frac{r_{\scriptscriptstyle B}}{r_{\scriptscriptstyle A}} = \sqrt{\frac{M_{\scriptscriptstyle A}}{M_{\scriptscriptstyle B}}} = \frac{V_{\scriptscriptstyle B} T_{\scriptscriptstyle A}}{T_{\scriptscriptstyle B}.V_{\scriptscriptstyle A}}$$

$$\sqrt{\frac{M_A}{36}} = \frac{V_A \times 150}{200 \times V_A}$$

or
$$\sqrt{\frac{M_A}{36}} = \frac{15}{20} = \frac{3}{4}$$

$$\frac{M_A}{36} = \frac{9}{16}$$

$$M_A = \frac{9 \times 36}{16} = \frac{81}{4} = 20.25 \approx 20.2$$

- A certain gas takes three times as long to effuse 8. out as helium. Its molecular mass will be
 - (a) 27 u (b) 36 u
- (c) 64 u (d) 9 u

NEET-2012

Ans. (b): The rate of effusion is inversely proportional to the molecular mass

$$\frac{r_{_1}}{r_{_2}}=\sqrt{\frac{Mw_{_2}}{Mw_{_1}}}$$

The rate of effusion is the ratio of the volume effused to the time taken

$$\frac{\mathbf{v}_1}{\mathbf{t}_1} \times \frac{\mathbf{t}_2}{\mathbf{v}_2} = \sqrt{\frac{\mathbf{M}\mathbf{w}_2}{\mathbf{M}\mathbf{w}_1}}$$

Here, volume is same.

So,
$$\frac{3}{1} = \sqrt{\frac{Mw_2}{4}}$$

$$9 = \frac{Mw_2}{4} \qquad Mw_2 = 36$$

$$Mw_2 = 36$$

- Two gases A and B having the same volume diffuse through a porous partition in 20 and 10 seconds respectively. The molecular mass of A is 49 u. Molecular mass of B will be
 - (a) 50.00 u
- (b) 12.25 u
- (c) 6.50 u
- (d) 25.00 u

NEET-2011

Ans. (b): Graham's law of diffusion states that the rate of diffusion of a gas is inversely proportional to the square root of its molecular weight.

According to the Graham's law

Rate of diffusion (r)
$$\propto \frac{1}{\sqrt{M}}$$

Rate of diffusion =
$$\frac{V}{t}$$

Where v is volume and t is time

$$\frac{\mathbf{r}_1}{\mathbf{r}_2} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}}$$

$$\frac{\frac{\mathbf{v}_1}{\mathbf{t}_1}}{\frac{\mathbf{v}_2}{\mathbf{t}_1}} = \sqrt{\frac{\mathbf{M}_2}{\mathbf{M}_1}} = \frac{\mathbf{t}_2}{\mathbf{t}_1} = \sqrt{\frac{\mathbf{M}_2}{49}}$$

$$\frac{1}{2} = \sqrt{\frac{M_2}{40}}$$

$$M_2 = \frac{49}{4}$$

$$M_2 = 12.254$$

- The density of a gas is found to be 1.56g/L at 745 mm pressure and 65°C. What is the molecular mass of the gas?
 - (a) 44.2 u
- (b) 4.42 u
- (c) 2.24 u
- (d) 22.4 u

JIPMER-2010

Ans. (a): Pressure is P = 745 mm = 0.98 atm (1 atm = 0.98 atm)760 mm Hg)

Temperature is $T = 65^{\circ}C = 65 + 273 = 338K$

Density is d = 1.56 g/L

From ideal gas equation,

$$PV = nRT$$

$$P = \frac{m}{M \times V} \times R \times T \begin{cases} Where, m = given mass. \\ M = molecular mass \end{cases}$$

$$M = \frac{d \times R \times T}{P}$$
 $(d = density = \frac{m}{v})$

$$M = \frac{1.56 \times 338 \times 0.0821}{0.98} = 44.2u$$

Hence, the molecular mass of the gas is 44.2u

- A 0.5 g/L solution of glucose is found to be isotonic with a 2.5 g/L solution of an organic compound. What will be the molecular weight of that organic compound?
 - (a) 300
- (b) 600
- (c) 900
- (d) 200

JIPMER-2009

Ans. (c): We know, two solutions are said to be isotonic when pressure are equal.

Osmotic pressure is given by (For glucose)

$$\frac{nRT}{V} = \frac{mRT}{MV} = \frac{0.5RT}{M} = \frac{RT}{360}$$

For other organic compound

$$\frac{nRT}{V} = \frac{mRT}{MV} = \frac{2.5RT}{M_1}$$

n = Moles of solute.

m = mass of solute.

M = Molecular weight of solute.

V = volume of solution.

T = Temperature

When both the pressures are equal.

$$\frac{RT}{360} = \frac{2.5RT}{M_1}$$

 $M_1 = 900$

12. Volume of water needed to mix with 10 mL 10N HNO₃ to get 0.1N HNO₃ is

- (a) 1000mL
- (b) 990mL
- (c) 1010mL
- (d) 10mL

AIIMS-2017

Ans. (b): Given,
$$N_1 = 10$$
 N, $V_1 = mL$, $N_2 = 0.1$ N and $V_2 = ?$
By law of conservation
$$N_1V_1 = N_2V_2$$
$$10 \times 10 = 0.1 \ (10 + V)$$
$$V = \frac{10 \times 10}{0.1} - 10 = 1000 - 10 = 990 \ mL$$

13. An aqueous solution of 6.3 g of oxalic acid dihydrate is made up to 250 mL. The volume of 0.1 N NaOH required to completely neutralise 10 mL of this solution is

- (a) 20 mL
- (b) 40 mL
- (c) 10 mL
- (d) 4 mL

AIIMS-2013

Ans. (b): As we know, n- factor for $H_2C_2O_4.2H_2O = 2$ Normality = $\frac{\text{weight} \times 2 \times 1000}{\text{molecular weight} \times 250} = \frac{6.3 \times 2000}{126 \times 250} = 0.4$ $N_1V_2 = N_2V_2$ $0.4 \times 10 = V_2 \times 0.1 \implies \text{Volume } (V_2) = 40 \text{ mL}.$

14. Liquid benzene burns according to $2C_6H_6(l) + 150_2(g) \rightarrow 1200_2(g) + 6H_2O$ (g) How many litres of oxygen are required for complete combustion of 39g of liquid C_6H_6 (atomic wt. of C=12, O=16)?

- (a) 11.2
- (b) 22.4
- (c) 42
- (d) 84

A.P.EAMCET-1998, 1996

Ans. (d):

$$2C_6H_6(l) + 15O_2(g) \rightarrow 12CO_2(g) + 6H_2O(g)$$

2×78gm 15×22.4L

For combustion of 2×78gm of C₆H₆

Volume of O_2 required = 15 ×22.4L

: For combustion of 39 gm of C₆H₆

Volume of O₂ required =
$$\frac{15 \times 22.4 \times 39}{2 \times 78}$$
 = 84 L

15. The mass of carbon anode consumed (giving only carbon dioxide) in the production of 270 kg of aluminium metal from bauxite by the Hall process is

- (a) 270 kg
- (b) 540 kg
- (c) 90 kg
- (d) 180 kg

NEET-2005

Ans. (c):
$$2Al_2O_3 + 3C \longrightarrow 4AI + 3CO_2$$

 $3 \times 12 = 36 \longrightarrow 4 \times 27 = 108$

.. For 108 g of Al, 36 g of C is required in above reaction

... For 270 kg of Al require amount of C

$$=\frac{36}{108} \times 270 = 90 \text{ kg}$$

16. The number of moles of oxygen obtained by the electrolytic decomposition of 108 g water is

- (a) 2.5
- (b) 3

- (c) 5
- (d) 7.5

JIPMER-2008

Ans. (b):
$$2H_2O$$
 Electrolysis $2H_2 + O_2$
 2 mole 1 mole $2 \times 18 = 36$

- : 36 g of H₂O produce 1 mole of oxygen
- ∴ 108 g of water will produce oxygen

$$=\frac{108}{36} = 3 \text{ mole}$$

1.4 Atomic and molecular masses

17. The density of 1 M solution of a compound 'X' is 1.25 g mL⁻¹. The correct option for the molality of solution is (Molar mass of compound X=85 g).

- (a) 1.165m
- (b) 0.858 m
- (c) 0.705m
- (d) 1.208m

RE-NEET (UG) 06.06.2023 (Manipur)

Ans. (b):

$$d = \frac{m}{V}$$

Volume of solution = 1000 cm³

Density = 1.25gcm⁻³

$$m = d \times V$$

Mass of solution = $1000 \times 1.25 = 1250g$

Given Molar mass of compound X = 85g

mass of solvent = 1250 - 85 = 1165g

molality of solution:

m = 0.858m

$$m = \frac{1000M}{1000\rho - M \times M_{solute}}$$

$$\rho = density$$

$$M = Molarity = 1M$$

$$n = \frac{1000 \times 1}{1000 \times 1.25 - (1 \times 85)} = \frac{1000}{1165}$$

18. Assertion: Molecular weight of a compound is 180, if its vapour density is 90.

Reason: Molecular Weight = $\frac{\text{Vapour density}}{2}$

- (a) If both Assertion and Reason are correct and Reason is the correct explanation Assertion.
- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.

AIIMS 25 May 2019 (Morning)

Ans. (c): Relation between molecular weight and vapour density is,

Molecular weight of compound = $2 \times \text{vapour density}$

$$= 2 \times 90$$

= 180

Hence, assertion is correct but reason is incorrect.

- Suppose the elements X and Y combine to form two compounds XY₂ and X₃Y₂. When 0.1 mole of XY₂ weight 10 g and 0.05 mole of X₃Y₂ weights 9 g, the atomic weights of X and Y are
 - (a) 40, 30
- (b) 60, 40
- (c) 20, 30
- (d) 30, 20

NEET-2015

- Ans. (a): $M_1 \rightarrow Molecular mass of xy_2$
 - $M_2 \rightarrow Molecular mass of x_3y_2$
 - $a_1 \rightarrow$ Atomic weight of x
 - $a_2 \rightarrow \text{Atomic weight of y}$

$$\frac{10}{M_1} = 0.1$$

$$m_1 = 100$$

$$a_1 + 2a_2 = 100$$
 ... (i)

Similarly

$$\frac{9}{m_2} = 0.05$$

$$n_2 = \frac{900}{5}$$

$$3a_1 + 2a_2 = \frac{900}{5} = 180$$
 ...

Solving (i) & (ii) simultaneously

$$3a_1 + 2a_2 = 180$$

 $a_2 = 30$

Atomic weight of x & y are

40 & 30 respectively

- Specific volume of cylindrical virus particle is 6.02×10^{-2} cc/g whose radius and length are 7 Å and 10 Å respectively. If $N_A = 6.02 \times 10^{23}$, find molecular weight of virus.
 - (a) 15.4 kg/mol
 - (b) $1.54 \times 10^4 \text{ kg/mol}$
 - (c) $3.08 \times 10^4 \text{ kg/mol}$
 - (d) $3.08 \times 10^4 \text{ kg/mol}$

NEET-2001

Ans. (a): Given,

Radius (r) =
$$7 \text{Å} = 7 \times 10^{-8}$$

Length (L) =
$$10\text{Å} = 10 \times 10^{-8} \text{cm}$$

Specific volume (volume of 1g of cylindrical virus) = 6.02×10^{-2} cc/gm

Volume of virus
$$\pi r^2 L = \frac{22}{7} \times (7 \times 10^{-8})^2 \times 10 \times 10^{-8}$$

= 154 × 10⁻²³ cc

Wt. of one virus particle = $\frac{\text{Volume}}{\text{Specific volume}}$

: Molecular wt. of virus = wt. of N_A particle

$$= \frac{154 \times 10^{-23}}{6.02 \times 10^{-2}} \times 6.02 \times 10^{23}$$

- = 15400 g/mol = 15.4 kg/mol
- The weight of a single atom of oxygen is: 21.
 - (a) 1.057×10^{23} g
- (b) 3.556×10^{23} g
- (c) 2.656×10^{-23} g
- (d) 4.538×10^{-23} g

AIIMS-1998

Ans. (c): Molar mass of oxygen atoms = 16 g mol^{-1} Number of atom in 1 mole = 6.022×10^{23}

Therefore, 1 atom of oxygen weight = $\frac{16}{6.022 \times 10^{23}}$ $= 2.657 \times 10^{-23} \,\mathrm{g}$

- 22. Haemoglobin contains 0.334% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (Atomic weight of Fe is 56) present in one molecules of haemoglobin is
 - (a) 4
- (c) 3
- (d) 2

NEET-1998

Ans. (a): Given that,

Molecular weight of haemoglobin = 67200 It contains 0.334% of iron by weight.

Weight of iron = $\frac{0.334}{100} \times 67200 = 224.448$

=4.008

weight of iron in haemoglobin No. of atoms =

Atomic weight $=\frac{224.448}{}$

- 23. If active mass of a 6% solution of a compound is 2, its molecular weight will be
 - (a) 30
- (b) 15
- (c) 60
- (d) 22

AIIMS-1996

Ans. (a): Given, 6% of solution contains 6g of Compound in 100 ml of solution.

Then, mass of Compound present in 1 liter of Solution = 60 g

 \Rightarrow No. of moles = $\frac{\text{given mass}}{\text{molar mass}} = \frac{60\text{g}}{\text{M}}$

 \Rightarrow Active mass is defined as number of moles per litre.

So, Active mass =
$$\frac{60g}{M}$$
/litre

$$2 = \frac{60}{M} \times \frac{1}{1L}$$

Then, M (molar mass) = 30

- A bivalent metal has the equivalent weight of 12. The molecular weight of its oxide will be
 - (a) 36
- (b) 24
- (c) 40
- (d) 32

AIIMS-1994

Ans. (c): Molecular weight = equivalent weight \times nfactor

(Where, n-factor of the metal ion = 2.)

So molecular weight = $12 \times 2 = 24$

Since it is bivalent ion it requires only one oxygen combine to form oxide.

Therefore, the molecular wt. of the oxide is molecular wt. = molecular wt. of metal + molecular wt. of oxygen i.e. molecular wt. = 24 + 16 = 40

- The molecular mass of a volatile substance may be measured by
 - (a) Liebig's method
 - (b) Hofmann's method
 - (c) Victor Meyer's method
 - (d) none of these

AIIMS-1994

- Ans. (c): The molecular mass of volatile substances can be determined by Victor Meyar. In this method primary, secondary and tertiary alcohols are subjected to a series of chemical analysis and the colour of resulting solution observed. A known mass of the compound is vaporized in an instrument called Victor Meyar tube.
- Boron has two stable isotopes, ¹⁰B(19%) and ¹¹B(81%). Calculate average at. wt. of boron in the periodic table.
 - (a) 10.8
- (b) 10.2
- (c) 11.2
- (d) 10.2

NEET-1990

Ans. (a): Average atomic weight
$$= \frac{\sum \% \text{ abundant} \times \text{atomic mass}}{100}$$

$$= \frac{19 \times 10 + 81 \times 11}{100} = 10.81$$

- 27. How many neutrons are present in tritium nucleus?
 - (a) 2
- (b) 3
- (c) 1
- (d) 0

UP CPMT-2003

- **Ans.** (a): Tritium $\binom{3}{1}$ H) is an isotope of hydrogen
- \therefore atomic number = 1
- \therefore protons = electrons = 1

No. of neutrons = Atomic mass–No. of protons = 3-1= 2

Carbon atom consists of electrons, protons and 28. neutrons. If the mass attributed to neutron were halved and that attributed to the electron were doubled, the atomic mass of ${}_{6}C^{12}$ would be approximately

- (a) same
- (b) doubled
- (c) halved
- (d) reduced by 25%

UP CPMT-2013

- **Ans.** (d): (i) There is no change by doubling mass on electrons, because there are only 6-electrons in carbon atom which have negligible mass (6/1837 of the mass of a proton).
- (ii) However, by reducing mass of neutron half, total atomic mass becomes 6 (protons) +3 (neutrons) instead 6 (protons) +6 (neutrons).

Thus, the new atomic mass of 6C12 would be

$$\frac{3}{12} \times 100 = 25\%$$

Thus, the atomic mass of ${}_{6}C^{12}$ is reduced by 25%.

- Arrange the following in the order increasing mass (atomic mass O = 16, Cu = 63, N = 14)
 - I. One molecule of oxygen
 - II. One atom of nitrogen

III. 1×10^{-10} gram molecule of oxygen IV. 1×10^{-10} g of copper

- (a) II < I < IV < III
- (b) I < II < III < IV
- (c) III < II < IV < I
- (d) IV < II < III < I
- (e) II < IV < I < III

AIIMS-2016

- Ans. (a): Comparing the masses, we get correct order of increasing mass is (II) \leq (IV) \leq (III)
- (I) 1 molecule of oxygen = O_2
- \therefore Mass of O_2

$$= \frac{16 \times 2}{N_A} = \frac{32g}{N_A} = \frac{32}{6.22 \times 10^{23}} = 5.3 \times 10^{-23} g$$

(II) Mass of 1 atom of Nitrogen = $1.66 \times 10^{-24} \times 14$

$$= 23.2 \times 10^{-24} g$$

(III) 1×10^{-24} gm molecule of oxygen = 1×10^{-10} moles of O₂

Mass of 1×10^{-10} gm molecule of oxygen $1\times10^{-10}\times32$

$$= 3.2 \times 10^{-9} g$$

(IV) Mass of copper = 1×10^{-10} g

Comparing the masses in (I), (II), (III) and (IV)

We get, (II), < (I), < (IV), < (III)

Therefore, answer is (II) < (I) < (IV) < (III)

- The equivalent weight of KMnO₄ in acidic medium is
 - (a) 158
- (b) 52.67
- (c) 31.6
- (d) 49

UP CPMT-2002

Ans. (c): Equivalent weight of $KMnO_4 = 158$ KMnO4 as an oxidizer in acidic media

 $MnO_4^- + 8H^+ + 5e^- \rightarrow Mn^{+2} + 4H_2O$

In Acidic medium

$$= \frac{\text{Molecular weight}}{\text{No.of electron lost or gained}} = \frac{158}{5} = 31.6$$

In Basic Medium =
$$\frac{\text{Molecular weight}}{3} = \frac{158}{3} = 52.67$$

In Neutral Medium =
$$\frac{\text{Molecular weight}}{1} = 158$$

1.5 Mole concept, molar mass, percentage composition, empirical and molecular formulae

- 31. The correct option in which the density of argon (Atomic mass = 40) is highest
 - (a) 0° C,4 atm
- (b) 273° C, 4 atm
- (c) STP
- (d) 0^{0} C, 2 atm
- RE-NEET (UG) 06.06.2023 (Manipur)

$$PV = nRT$$

$$n = \frac{W}{M}$$

where, w = weight

$$M = Molar mass$$

$$PV = \frac{W}{M}RT$$

$$PM = \frac{W}{V}RT$$

as you know $\frac{w}{V}$ is density

$$PM = dRT$$

$$d = \frac{PM}{RT}$$

Density is directly proportional to pressure and inversely proportional to temperature.

from this equation

$$\Rightarrow$$
 d = $\frac{PM}{RT}$

for higher density, pressure will be high and temperature should be low.

- 32. Weight (g) of two moles of the organic compound, which is obtained by heating sodium ethanoate with sodium hydroxide in presence of calcium oxide is:
 - (a) 18
- (b) 16
- (c) 32
- (d) 30

NEET (UG) -07.05.2023

Ans. (c):

O
$$CH_3$$
 CH_3
 CH_4
 CaO/Δ
 CH_4
 CaO/Δ

1 mole of $CH_4 = 16$

2 mole of $CH_4 = 2 \times 16$

= 32

33. The right option for the mass of CO_2 produced by heating 20 g of 20% pure limestone is (Atomic mass of Ca = 40)

$$\left[\text{CaCO}_3 \xrightarrow{1200\text{K}} \text{CaO} + \text{CO}_2 \right]$$

- (a) 1.32 g
- (b) 1.12 g
- (c) 1.76 g
- (d) 2.64 g

NEET (UG) -07.05.2023 Where, $N_A = Avogadro's$ number

Ans. (c): Sample of
$$CaCO_3 = 20\%$$

$$= 20 \times \frac{20}{100} = 4$$
 gram

$$CaCO_3 \xrightarrow{1200k} CaO + CO_2$$

1 mole CaCO₃ gives 1 mole CO₂.

 $100 \text{gram CaCO}_3 \longrightarrow 44 \text{gram CO}_2$

4gram Ca CO₃
$$\longrightarrow \frac{44}{100} \times 4 = \frac{176}{100} = 1.76$$
gram

34. Assertion: The normality of 0.3 M aqueous solution of H₃PO₃ is equal to 0.6N.

Reason: Equivalent weight of H₃PO₃

 $= \frac{\text{Molecular weight of H}_3\text{PO}_3}{}$

3

- (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.

AIIMS-2018, 2013, 2011

Ans. (c): H₃PO₃ is a divalent. This is because it has two ionizable hydrogen atoms bonded to two oxygen atom and one non-ionizable hydrogen atom bonded directly to phosphorus.

 $\therefore \text{ Equivalent weight} = \frac{\text{Molecular weight}}{\text{Valency factor}}$

(Where, valency factor = no. of replaceable H⁺ ions)

equivalent weight = $\frac{M}{q}$, since, no. of replaceable H⁺ ions in H₃PO₃ = 2

- 35. Assertion: Equal moles of different substances contain same number of constituent particles.

 Reason: Equal weights of different substance contain the same number of constituent particles.
 - (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
 - (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
 - (c) If Assertion is correct but Reason is incorrect.
 - (d) If both the Assertion and Reason are incorrect.

AIIMS-2017

Ans. (c): Equal moles of different substances contain same number of constituent particles. But equal weights of different substances do not contain the same number of constituent particles. Hence, Assertion is correct but reason is incorrect.

Number of moles =
$$\frac{\text{Weight}}{\text{Molecular weight}}$$

$$\text{Number of moles} = \frac{\text{Number of particle}}{\text{N}}$$

- 36. Sulphur forms the chlorides S₂Cl₂ and SCl₂. 39. The equivalent mass of sulphur in SCl₂ is
 - (a) 8 g/ mol
- (b) 16 g/mol
- (c) 64.8 g/mol
- (d) 32 g/mol

AIIMS-2015

Ans. (b): Equivalent mass of sulphur $\Rightarrow \frac{\text{atomic mass of sulphur}}{\text{valency}}$ $\text{SCl}_{2} = x + 2(-1) = 0$ x = 2 $\Rightarrow \frac{32}{2} = 16$

- 37. In acidic medium, dichromatic ion oxidizes ferrous ion to 'ferric ion'. If the gram molecular weight of potassium dichromate is 294g, its gram equivalent weight (in grams) is
 - (a) 24.5
- (b) 49
- (c) 125
- (d) 250

JIPMER-2015

Ans. (b) : In acidic medium $K_2Cr_2O_7$ acts as a strong oxidising agent and itself gets reduced to Cr^{3+} .

$$Cr_2O_7^{-2} + 6e^- \rightarrow 2Cr^{3+}$$

The oxidation state of K₂Cr₂O₇

$$2(+1) + 2x + 2(-7) = 0$$

2x = +12
x = +6

Equivalent weight of

$$K_2Cr_2O_7 = \frac{\text{Molecular weight}}{\text{Valency}} = \frac{294}{6} = 49$$

- 38. Which of the following is correctly arranged in order of increasing weight?
 - (a) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.625$ g of Fe < 0.006 g atom of Ag $< 6.0 \times 10^{21}$ atoms of Zn
 - (b) 0.625 g of Fe < 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom of Ag
 - (c) 0.625 g of Fe $< 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom of Ag < 0.0105 equivalent of $H_2C_2O_4$. $.2H_2O$
 - (d) 0.0105 equivalent of $H_2C_2O_4$. $2H_2O < 0.006$ g atom of Ag $< 6.0 \times 10^{21}$ atoms of Zn < 0.625 g of Fe

JIPMER-2015

- **Ans. (c) :** Here, the correct order of increasing weight, -0.625 g of Fe $< 6.0 \times 10^{21}$ atoms of Zn < 0.006 g atom of Ag < 0.0105 equivalent of $H_2C_2O_4$. $2H_2O$.
- 6.0×10^{21} atoms of Zn (atomic weight 65.4 g/mol)

Corresponds to
$$\frac{6.0 \times 10^{21}}{6.0 \times 10^{23}} \times 65.4 = 0.654 \text{ g}$$

0.006 g atom of Ag (atomic mass 108 g/mol)

Corresponds to $0.006 \times 108 = 0.648$ g

0.0105 equivalent of $H_2C_2O_4$.2 H_2O (equivalent mass 63 g/eq)

Corresponds to $0.0105 \times 63 = 0.662 \text{ g}$

39. What is the mass of the precipitate formed when 50 mL of 16.9% solution of AgNO₃ is mixed with 50mL of 5.8% NaCl Solution?

$$(Ag = 107.8, N = 14, O = 16 Na = 23, Cl = 35.5)$$

- (a) 3.5 g
- (b) 7 g
- (c) 14 g
- (d) 28 g

NEET-2015

Ans. (b): 16.9 g AgNO₃ is present in 100 mL solution. ∴ 8.45 g AgNO₃ is present in 50 mL solution. 5.8 g NaCl is present in 100 mL solution. 2.9 g NaCl is present in 50 mL solution. Initial mole

$$AgNO_3 + NaCl \rightarrow AgCl + NaNO_3$$

$$\frac{8.45}{169.5} \quad \frac{2.9}{58.5} \quad 0 \quad 0$$

$$= 0.049 \quad = 0.049$$

After reaction 0 0 0.049

Therefore, mass of AgCl precipitated = $0.049 \times 143.5 = 7$ g

- 40. Which has the maximum number of molecules among the following?
 - (a) $44g CO_2$
- (b) 48 g O_3
- (c) $8 g H_2$
- (d) 64 g SO_2

AIIMS-2014

0.049

Ans. (c): 8g H₂ has the maximum number of molecules.

No. of moles =
$$\frac{\text{weight of the substance}}{\text{Molecular weight of the substance}}$$

Moles of
$$CO_2 = \frac{44}{44} = 1 \text{ mol.}$$

Moles of
$$O_3 = \frac{48}{48} = 1 \text{ mol.}$$

Moles of
$$H_2 = \frac{8}{2} = 4 \text{ mol}$$

Moles of
$$SO_2 = \frac{64}{64} = 1 \text{ mol.}$$

Maximum no. of moles will corresponds to maximum number of molecules.

4 moles of H_2 i.e. $4 \times 6.023 \times 10^{23}$ molecules.

41. Equivalent weight of (NH₄)₂Cr₂O₇ in the change is

$$(NH4)2Cr2O7 \rightarrow N2 + Cr2O3 + 4H2O$$

- (a) Mol. wt./6
- (b) Mol. wt./3
- (c) Mol. wt./4
- (d) Mol. wt./2

UP CPMT-2013

Ans. (a): 1 mole
$$(NH_4)_2Cr_2O_7 \equiv 1$$
 mole of $Cr_2O_3 \equiv 1 \times 6$ eq. of Cr_2O_3

 \therefore Reduction of $\operatorname{Cr_2O_7^{2-}}$ to $\operatorname{Cr^{3+}}$ is a $\operatorname{6e^-}$ change.

$$\left[\left(Cr^{6+} \right)_2 + 6e^- \rightarrow \left(Cr^{3+} \right)_2 \right]$$

Therefore, equivalent weight of $(NH_4)_2Cr_2O_7 = M/6$

- 42. 0.126 g of an acid is titrated with 0.1 N 20 mL of an base. The equivalent weight of the acid is
 - (a) 63
- (b) 50
- (c) 53
- (d) 23

UP CPMT-2009

$$w = \frac{E \times NV}{1000}$$

$$\therefore \text{ Eq. wt. of acid} = \frac{\text{w} \times 1000}{\text{NV}}$$
$$= \frac{0.126 \times 1000}{0.1 \times 20}$$
$$= 63$$

- 43. 1.520 g of hydroxide a metal on ignition gave 0.995 g of oxide. The equivalent weight of metal is
 - (a) 1.52
- (b) 0.995
- (c) 190
- (d) 9

UP CPMT-2006

Ans. (d): Since hydroxide and oxide both are involving in same reaction, the ratio of their molecular weight is equal to the ratio of their equivalent weight.

$$\begin{split} \frac{E_{\text{Hydroxide}}}{E_{\text{metal}} + E_{\text{OH}^-}} &= \frac{E_{\text{oxide}}}{E_{\text{metal}} + E_{\text{O}}} \\ &\frac{1.520}{E + 17} = \frac{0.995}{E + 8} \\ &E = 9 \end{split}$$

44. Assertion : Equivalent weight of a base

= Molecular weight

Acidity

Reason: Acidity is the number of replaceable hydrogen atoms in one molecule of the base.

- (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.

AIIMS-2008

Ans. (c):

Equivalent weight of base = $\frac{\text{Molecular weight}}{\text{Acidity}}$

Acidity of base is defined as the number of ionizable hydroxyl group present in base. So, reason is incorrect.

- 45. The oxygen obtained from 72 kg water is
 - (a) 72 kg
- (b) 46 kg
- (c) 50 kg
- (d) 64 kg

UP CPMT-2002

Ans. (d) : Molecular weight of $H_2O = 18$

Atomic weight of oxygen = 16

- : 18 gm H_2O contain = 16 gm Oxygen
- ∴ 72 kg H₂O contain = $\frac{72 \times 16}{18}$ = 64000 gm or 64 kg.

- 46. The oxide of an element contains 67.67% oxygen and the vapour density of its volatile chloride is 79. Equivalent weight of the element is
 - (a) 2.46
- (b) 3.82
- (c) 4.36
- (d) 4.96

AIIMS-1998

Ans. (b): Equivalent weight of an element is its weight which reacts with 8 gm of oxygen to form oxide. 67.67 g of oxygen combines with 32.33 g of the element to form oxide.

1 g of oxygen will combine with $\frac{32.33}{67.67}$ g of element to form oxide.

8 g of oxygen will combine with $8 \times \frac{32.33}{67.67} = 3.82$ g of element to form oxide.

Hence, the equivalent weight of the element is 3.82 g.

- 47. The weight to a metal of equivalent weight 12, which will give 0.475 g of its chloride, is
 - (a) 0.18 g
- (b) 0. 12 g
- (c) 0. 24 g (d) 0. 16 g

AIIMS-1994

Ans. (b): Equivalent weight of metal chloride =

Equivalent weight of Metal + Equivalent wt. of

Cl = 12 +35.5 = 47.5

47.5 g of metal chloride will give 12g of metal Then, 0.475g of metal chloride will give -

$$\equiv \frac{12 \times 0.475}{47.5}$$
$$= 0.129$$

- 48. What is the weight of oxygen required for the complete combustion of 2.8 kg of ethylene?
 - (a) 2.8 kg
- (b) 6.4 kg
- (c) 9.6 kg
- (d) 96 kg

NEET-1989

Ans. (c): C_2H_4 (ethylene) + $3O_2 \longrightarrow 2CO_2 + 2H_2O$

To oxidise 1 mol of ethylene we required 3 moles of oxygen.

Then,

For oxidising 28g of C_2H_4 ,

We need $3 \times 32 = 96g$ of oxygen.

For 2.8kg of C_2H_4 ,

We need = $\frac{96}{28} \times 2.8 = 9.6 \text{kg of oxygen.}$

- 49. The maximum number of molecules is present in
 - (a) 15 L of H₂ gas at STP
 - (b) 5 L of N₂ gas at STP
 - (c) $0.5 \text{ g of H}_2 \text{ gas}$
 - (d) $10 \text{ g of H}_2 \text{ gas}$

NEET-2004

Ans. (a)

1 mole of gas at STP occupies a volume of 22.4 L

Option (a)- 15 L of gas corresponds to

$$\frac{15L}{22.4L} = 0.67 \, \text{moles}$$

Option (b)- 5L of N_2 gas at STP:

5L of gas corresponds to $\frac{5L}{22.4L} = 0.22$ moles

Option (c)- 0.5g of H₂ gas (molecular weight 2g/mole)

corresponds to $\frac{0.5g}{2g/\text{mol}} = 0.25 \text{ moles}$

Option (d)- 10g of O₂ gas (molecular weight 3g/ mol)

corresponds to $\frac{10g}{32g/\text{mol}} = 0.3125 \text{ moles}$

Higher is the number of moles of a gas, higher will be its number of molecules.

- 10 gm of hydrogen and 64 g of oxygen were kept in a steel vessel and exploded. Amount of water produced in this reaction will be
 - (a) 2 mol
- (b) 4 mol
- (c) 8 mol
- (d) 10 mol

UP CPMT-2012 NEET-2009

Ans. (b) :
$$2H_2 + O_2 \rightarrow 2H_2O$$

10g of hydrogen (molar mass 2g /mol) = $\frac{10g}{2g/\text{mol}}$

$$= 5 \text{ mol}$$

64g of oxygen (molar mass 32g/mol) = $\frac{64}{32g/\text{mol}}$

$$= 2 \text{ mo}$$

2 moles of oxygen will react with $2 \times 2 = 4$ moles of hydrogen to form 4 moles of water.

- The mass of one mole of electron is
 - (a) 9.1×10^{-28} g (c) 9.1×10^{-24} g
- (b) 0.55 mg
- (d) $6 \cdot 10^{-12}$ g

UP CPMT-2010 UPTU/UPSEE-2006

Ans. (b): As we know that,

Mass of one electron = 9.1×10^{-31} kg

$$= 9.1 \times 10^{-28} \text{ g}$$

1 mole = 6.023×10^{23} electron

So, 1 mole of electron has mass of

$$= 9.1 \times 10^{-28} \times 6.023 \times 10^{23}$$
$$= 5.48 \times 10^{-4}$$

- = 0.55mg
- The number of moles of KMnO₄ reduced by **52.** one mole of KI in alkaline medium is
 - (a) one fifth
- (b) five
- (c) one
- (d) two

JCECE-2012 JIPMER-2007

Ans. (d): In alkaline solution, KMnO₄ is reduced to MnO₂ (colourless).

$$2KMnO4 + 2H2O \longrightarrow MnO2 + 2KOH + 3[O]$$

$$KI + 3[O] \longrightarrow KIO3$$

$$\frac{2KMnO_4 + 2H_2O + KI \longrightarrow 2MnO_2 + 2KOH}{2KMnO_4 + 2H_2O + KI \longrightarrow 2MnO_2 + 2KOH}$$

+ KIO,

Hence, two moles of KMnO₄ are reduced by one mole of KI.

- 53. Which one of the following has maximum number of atoms?
 - (a) 1 g of $Ag_{(s)}$ [Atomic mass of Ag = 108]
 - (b) 1 g of $Mg_{(s)}$ [Atomic mass of Mg = 24]
 - (c) 1 g of $O_{2(s)}$ [Atomic mass of O = 16]
 - (d) 1 g of $Li_{(s)}$ [Atomic mass of Li = 7]

NEET-2020

Ans. (d):

Number of atoms in 1g of Li = $\frac{1}{7} \times N_A$

$$=\frac{1}{7}\times6.023\times10^{23}$$

 $=0.86\times10^{23}$

Number of atoms in 1g of Ag = $\frac{1}{108} \times N_A$

Number of atoms in 1g of Mg = $\frac{1}{24} \times N_A$ = 0.25 ×10²³

Number of atoms in 1g of $O_2 = \frac{1}{32} \times N_A \times 2$ $=\frac{N_A}{16}=0.37\times10^{23}$

Max. number of atoms are present in 1g of Li.

2KHCO₃ → ...+ CO₂ + H₂O find amount of gases formed (in lit).

When amount of KHCO₃ is 33 gm.

- (a) 5.6
- (b) 11.2
- (c) 7.39
- (d) 22.4

JIPMER-2019

Ans. (c):

$$2KHCO_{3}(s) \longrightarrow K_{2}CO_{3}(s) + CO_{2}(g) + H_{2}O$$

$$n = \frac{33}{100} \qquad 0.165 \qquad 0.166$$

Total moles of gas (0.165 + 0.165) mol

Total volume of gas = $0.33 \times 22.4 L$

= 7.39 L

- Which one of the following is the lightest?
 - (a) 0.2 mole of hydrogen gas
 - (b) 6.023×10^{22} molecules of nitrogen
 - (c) 0.1 g of silver
 - (d) 0.1 mole of oxygen gas

AIIMS 25 May 2019 (Evening)

Ans. (c):

Weight (a) Moles = -Molecular weight

Weight of $H_2 = \text{mole} \times \text{molecular wt.}$

$$= 0.2 \times 2 = 0.4 \text{ g}$$

(b) 6.023×10^{23} represents 1 mole

Thus 6.023×10^{22} will represent 0.1 mole

Weight of $N_2 = 0.1 \times 28 = 2.8 \text{ g}$

- (c) Weight of Silver = 0.1 g
- (d) Weight of oxygen = $32 \times 0.1 = 3.2$ g

Thus from the above, silver is lightest.

- Calculate molarity of a 63% w/w HNO₃ 59. **56.** solution if density is 1.4g/mL:
 - (a) 14 M
- (b) 12 M
- (c) 10 M
- (d) 8 M

AIIMS 26 May 2019 (Evening)

Ans. (a):

 HNO_3 solution = 63 % w/w

Density =
$$1.4 \text{ g/mL}$$

Molarity =
$$\frac{\% \text{ w/w} \times \text{d} \times 10}{\text{Molarity}}$$

$$M_{Solute}$$

$$M = \frac{63 \times 1.4 \times 10}{63} = 14 M$$

- Haemoglobin contains 0.33% of iron by weight. The molecular weight of haemoglobin is approximately 67200. The number of iron atoms (at. Wt. of Fe= 56) present in one molecule of haemoglobin is
 - (a) 6
- (b) 1
- (c) 2 (d) 4
- AIIMS-27 May, 2018 (E)

Ans. (d): Given,

% of Iron =
$$0.334$$
 %

Molecular weight of the haemoglobin = 67200 g / mol Weight of the Iron = 56 g

The number of iron atoms =

Molecular Weight of haemoglobin × % of iron

$$=\frac{67200\times0.334}{100\times56}=4$$

- A mixture of 2.3 g formic acid and 4.5 g oxalic **58.** acid is treated with conc. H₂SO₄. The evolved gaseous mixture is passed through KOH pellets. Weight (in) g of the remaining product at STP will be
 - (a) 1.4
- (b) 3.0
- (c) 2.8
- (d) 4.4

NEET-2018

Ans. (c)

$$HCOOH \xrightarrow{H_2SO_4} CO + H_2O$$

$$(COOH)_2 \xrightarrow{H_2SO_4} CO + CO_2 + H_2O$$

Conc. H₂SO₄ is a strong dehydrating agent

Moles of HCOOH =
$$\frac{2.3}{46}$$
 = 0.05 mole

Moles of (COOH)₂ =
$$\frac{2.3}{46}$$
 = 0.05 mole

From reaction (i),

Number of CO formed = 0.05 mole

From reaction (ii),

Number of CO formed = 0.05 mole

Number of CO_2 formed = 0.05 mole

Hence, Total CO formed = 0.05 + 0.05 = 0.1 mole

KOH pellets absorbs all CO₂, H₂O absorbed by H₂SO₄ thus CO is remaining product.

Thus the weight of the remaining product = 0.1×28

$$= 2.8g$$

- In which case is number of molecules of water maximum?
 - (a) 18 mL of water
 - (b) 0.18 g of water
 - (c) 0.00224 L of water vapours at 1 atm and 273 K
 - (d) 10^{-3} mol of water

NEET-2018

- **Ans.** (a): 1 moles of water contain = 6.023×10^{23} atom
- Mass of water = $18 \times 1 = 18g$ (H₂O = 18)

Molecules of water

= mole
$$\times$$
 N_A = $\frac{18}{18} \times 6.023 \times 10^{23} = 6.023 \times 10^{23}$

Molecules of water = mole \times N_A (ii)

$$= \frac{18}{18} \times 6.023 \times 10^{23}$$
$$= 6.023 \times 10^{21}$$

Molecules of water = mole $\times 6.023 \times 10^{23}$ (iii)

$$=10^{-4} \times 6.023 \times 10^{23}$$
$$=6.023 \times 10^{-19}$$

Molecules of water = mole \times N_A = (iv) $6.023\times10^{23}\times10^{-3}$

$$=6.023\times10^{20}$$

From above, It is clear that 18 mL of water has maximum molecules.

- Solid NaHCO₃ will be neutralized by 40.0mL of 0.1M H₂SO₄ solution. What would be the weight of solid NaHCO3 in gram?
 - (a) 0.672g
- (b) 6.07g
- (c) 17g
- (d) 20g

JIPMER-2016

Ans. (a):

2NaHCO₃ + H₂SO₄
$$\longrightarrow$$
 Na₂SO₄ + 2H₂O + 2CO₂

Mole 2mole 1 mole = 98 g

= 168g = 98 g

m- moles of
$$H_2SO_4 = M \times V_{mL} = 40.0 \times 0.01$$

Moles of
$$H_2SO_4 = M \times VmL = 40.0 \times 0.1 = 4m \text{ mol}$$

Also, it can written as m-moles of NaHCO3 when neutralised = $4 \times 2 = 8$ m-moles.

But m-mole =
$$\frac{W}{m} \times 1000$$

$$8 = \frac{\mathbf{w}}{84} \times 1000 \Rightarrow \mathbf{w} = \frac{84 \times 8}{1000} \Rightarrow \mathbf{w} = 0.672 \,\mathrm{g}.$$

- In order to prepare one liter 1N solution of KMnO₄, how many grams of KMnO₄ are required, if the solution to be used in acid medium for oxidation?
 - (a) 128 g
- (b) 41.75 g
- (c) 31.60 g
- (d) 62.34 g

JIPMER-2015

Ans. (c): Given,

Normality =
$$1 \text{ N}$$
, volume = 1L

Normality =
$$\frac{\text{No.of gram equivalence}}{\text{Volume of galution in (L)}}$$

No. of gram equivalence =
$$N \times V$$
 in (L) = $1 \times 1 = 1$

No. of gram equivalence =
$$\frac{\text{wt}}{\text{eq wt}}$$

Where, eq. wt = $\frac{\text{molecular wt}}{\text{n - factor}}$. m.w = 158g
5

+7

+2

KMnO₄ \longrightarrow Mn \Rightarrow n factor = 5

equal = $\frac{158}{5}$ = 31.6

Let of KMnO₄ = eq. wt × No. of gram equivalence = $31.6 \times 1 == 31.6$ g

- 62. A mixture of gases contains H₂ and O₂ gases in the ratio of 1:4 (w/w). What is the molar ratio of the two gases in the mixture?
 - (a) 16:1
- (b) 2:1
- (c) 1:4
- (d) 4:1

NEET-2015, cancelled

Ans. (d) Number of moles (n) =
$$\frac{\text{given mass}(m)}{\text{Molar mass}(M)}$$

As the ratio by weight of Hydrogen and Oxygen is 1: 4

Molar ratio will be
$$\frac{n_{H_2}}{n_{o_2}} = \frac{32}{8} = 4:1$$

The molar ratio of hydrogen and Oxygen is 4:1

- 63. 1.0 g of magnesium is burnt with 0.56 g O_2 in a closed vessel, Which reactant is left in excess and how much? (At. wt. Mg = 24, O = 16)
 - (a) Mg, 0.16 g
- (b) O_2 , 0.16 g
- (c) Mg, 0.44 g
- (d) O_2 , 0.28 g

NEET-2014

Ans. (a):

$$2Mg + O_2 \rightarrow 2MgO$$

2 moles of Mg require 1 mole of O_2 to produce 2 moles of MgO.

Mole of Mg =
$$\frac{\text{given mass}}{\text{molar mass}}$$

= $\frac{1}{24}$ = 0.041667
moles of O₂ = $\frac{\text{gives mass}}{\text{molar mass}}$
= $\frac{0.56}{32}$ = 0.0175

 \Rightarrow 0.0175 moles O₂ require 0.0175 × 2 = 0.035 moles of Mg.

Mass of Magnesium (Mg) that reacts:-

Mass = moles
$$\times$$
 molar mass
= 0.035×24
= 0.84 g

That means only 0.84 g magnesium is used. Therefore magnesium is in excess by 0.16 g

- 64. Calculate the normality of 10 volume H₂O₂?
 - (a) 1.7 N
- (b) 12 N
- (c) 30.3 N
- (d) 0.0303 N

AIIMS-2013

Ans. (a): Normality =
$$\frac{\text{Gram equivlent}}{\text{volume}}$$

 $Gram\ equivalent = \frac{Molar\ mass}{Normality\ factor}$

Molar mass of H_2O_2 is = 1 × 2 + 2 × 16 = 34 g

N. factor of H₂O₂ is 2.

Gram equivalent = $\frac{34}{2}$ = 17

Normality =
$$\frac{17}{10}$$
 = 1.7

- 65. The vapour density of a mixture containing NO₂ and N₂O₄ is 27.6 Mole fraction of NO₂ in the mixture is
 - (a) 0.8
- (b) 0.6
- (c) 0.4
- (d) 0.2

AIIMS-2012

Ans. (a): Let the moles of NO_2 be x.

Moles of N_2O_4 will be 1 - x

Molar mass = $2 \times \text{Vapour density}$

So, Molar mass = $2 \times 27.6 = 55.2 \text{ g}$

Molar mass of $NO_2 = 46$ g and $N_2O_4 = 92$ g

$$\frac{x \times 46 + (1 - x) \times 92}{1} = 55.2$$

$$46x + 92 - 92x = 55.2$$

$$x = \frac{36.8}{46} = 0.8$$

Here, mole fraction of NO₂ in the mixture is 0.8

- 66. For preparing 0.1 N solution of a compound from its impure sample of which the percentage purity is known, the weight of the substance required will be
 - (a) less than the theoretical weight
 - (b) more than the theoretical weight
 - (c) same as the theoretical weight
 - (d) none of these

AIIMS-2012

- Ans. (b): The sample contains impurity. The impurity won't contribute to the normality of the solution. So, we need to take more amount of sample than the theoretical weight so that the theoretical weight of compound equals weight of compound in the sample.
- 67. How many grams of sulphuric acid is to be dissolved to prepare 200 mL aqueous solution having concentration of [H₃O⁺] ions 1 M at 25⁰ C temperatures? [H=1, O=16, S=32g mol⁻¹]
 - (a) 4.9g
- (b) 19.6g
- (c) 9.8g
- (d) 0.98g

UP CPMT-2012

Ans. (c) \therefore 2 M [H₃O⁺] ions are obtained from 1M H₂SO₄ \therefore 1 M [H₃O⁺] ions are obtained from 0.5 M H₂SO₄ Molarity

$$M = \frac{m(H_2SO_4) \times 1000}{M(\text{molar mass } H_2SO_4)} \times \text{Volume of solution(mL)}$$

$$0.5 = \frac{m \times 1000}{98 \times 200} = \frac{0.5 \times 98 \times 200}{1000} = 9.8g$$

68. Which has the maximum number of molecules among the following?

- (a) 44 g CO_2
- (b) 48 g O₃
- (c) 8 g H₂
- (d) 64 g SO_2

NEET Mains-2011

Ans. (c): No. of moles
$$(n) = \frac{\text{weight in gram}}{\text{molecular weight}}$$

(i)
$$44 \operatorname{gram} CO_2 = \frac{44}{44}$$

$$\begin{cases} Molecular weight of CO_2 \\ = 12 + 2 \times 16 \\ = 12 + 32 \\ = 44 \end{cases}$$

=
$$N_A$$
 i.e. 6.022×10^{23} atoms

(ii)
$$48 \operatorname{gram} O_3 = \frac{48}{48} = 1 \operatorname{mol}$$

(iii) 8 gram
$$H_2 = \frac{8}{2} = 4 \text{ mol}$$

(iv)
$$64 \operatorname{gram SO}_2 = \frac{64}{(32 + 2 \times 16)}$$

= $\frac{64}{64} = 1 \operatorname{mol}$

So, maximum no. of moles present in H₂.

69. 6.02×10^{20} molecules of urea are present in 100 ml. of its solution. The concentration of solution is

- (a) 0.001 M
- (b) 0.1 M
- (c) 0.02 M
- (d) 0.01 M

NEET_2013

Ans. (d): Number of molecules of Urea = 6.02×10^{20}

Number of moles =
$$\frac{6.02 \times 10^{20}}{N_A}$$
$$= \frac{6.02 \times 10^{20}}{6.02 \times 10^{23}} = 1 \times 10^{-3} \text{ mol}$$

volume of the solution

$$= 100 \text{ mL} = \frac{100}{1000} \text{L} = 0.1 \text{L}$$

Concentration of Urea solution (in mol L⁻¹) =

$$\frac{1 \times 10^{-3}}{0.1} mol L^{-1} = 10^{-2} mol L^{-1} = 0.01 M$$

Hence the concentration of solution is 0.01M

70. How many moles of magnesium phosphate, Mg₃(PO₄)₂ will contain 0.25 mole of oxygen atoms.

- (a) 0.02
- (b) 3.125×10^{-2}
- (c) 1.25×10^{-2}
- (d) 2.5×10^{-2}

UP CPMT-2011

Ans. (b): 8 mol O-atoms are contained by 1 mole $Mg_3(PO_4)_2$.

: 0.25 mole of O-atoms are present in

$$Mg_3(PO_4) = \frac{1}{8} \times 0.25 \text{ mol}$$

= 3.125 × 10⁻² mol

71. 0.1 mol HCl is equal to

- (a) 3.65 g
- (b) 36.5 g
- (c) 18 g
- (d) 1.8 g

JIPMER-2011

Ans. (a): Given,

The number of moles of HCl = 0.1

The number of particles in one mole = 6.023×10^{23}

The molar mass of a substance is defined as the mass of 1 mole of that substance, expressed in gram per mole, and is equal to the mass of 6.022×10^{23} atoms, molecules, or formula units of that substance.

So the mass of one mole of HCl = 1 + 35.5 = 36.5 g

• So, the mass of 0.1 mole =
$$\frac{36.5}{10}$$
 = 3.65g

72. A solution is prepared by dissolving 24.5 g of sodium hydroxide in distilled water to give 1 L solution. The molarity of NaOH in the solution is (Given that molar mass of NaOH = 40.0 g mol⁻¹)

- (a) 0.2450 M
- (b) 0.6125 M
- (c) 0.9800 M
- (d) 1.6326 M

AIIMS-2010

Ans. (b): Given, $W_{NaOH} = 24.5 \text{ g}$

Molar mass of NaOH = 23 + 16 + 1 = 40

No. of moles of NaOH = $\frac{24.5}{40}$ moles

∴ Molarity of solution =
$$\frac{0.6125 \text{ moles}}{1\text{L}}$$

= 0.6125 M

73. The number of water molecules is maximum in

- (a) 1.8 gram of water
- (b) 18 gram of water
- (c) 18 moles of water
- (d) 18 molecules of water

NEET-2013

Ans. (c): No of moles of water in 1.8 g = 0.1 moles in 18 g = 1 moles.

- \therefore 1 mole water = 6.02×10^{23} molecules
- \therefore 18 mole water = $18 \times 6.02 \times 10^{23}$ molecules

Here, 18 mole water has maximum number of molecules.

74. 25.3 g of sodium carbonate, Na₂CO₃ is dissolved in enough water to make 250 ml. of solution. If sodium carbonate dissociates completely, molar concentration of sodium ion, Na⁺ and carbonate ions, CO₃⁻ are respectively

(Molar mass of $Na_2SO_3 = 106 \text{ g mol}^{-1}$)

- (a) 0.955 M and 1.910 M
- (b) 1.910 M and 0.955 M
- (c) 1.90 M and 1.910 M
- (d) 0.477 M and 0.477 M

NEET-2010

Ans. (b): Given that, weight of sodium carbonate =

Moles of Na₂CO₃ =
$$\frac{\text{Moles of solute}}{\text{litre of solution}}$$

= $\frac{25.3}{106}$ = 0.239 moles

Molarity of solution $=\frac{0.239}{0.25} = 0.956$ mol/litre

 $Na_2CO_3 \rightarrow 2Na^+ + CO_3^{2-}$

 \therefore Concentration of $CO_3^{2-} = 0.956 \text{ M}$ Concentration of $Na^+ = 2 \times 0.956$ = 1.912 M.

- 75. The number of atoms in 0.1 mol of triatomic gas is $(N_A=6.02 \times 10^{23} \text{ mol}^{-1})$
 - (a) 6.026×10^{22}
- (b) 1.806×10^{23}
- (c) 3.600×10^{23}
- (d) 1.800×10^{22}

NEET-2010

Ans. (b): 1 mole of triatomic gas has $3 \times 6.02 \times 10^{23}$ atoms

Therefore, no. of atoms 0.1 mol = $0.1 \times 3 \times 6.02 \times 10^{23}$ $= 1.806 \times 10^{23}$

Calculate the millimoles of SeO₃² in solution on **76.** the basis of following data: 70 mL of $\frac{M}{60}$ solution of KBrO₃ was added to SeO₃²⁻ solution. The bromine evolved was removed by boiling and excess of KBrO3 was back titrated with 12.5 mL of $\frac{M}{25}$ solution of NaAsO₂.

The reactions are given below.

I.
$$SeO_3^{2-} + BrO_3^- + H^+ \rightarrow SeO_4^{2-} + Br_2^+ + H_2O$$

II.
$$BrO_3^- + AsO_2^- + H_2O \rightarrow Br^- AsO_4^{3-} + H^+$$

- (a) 1.6×10^{-3}
- (b) 1.25
- (c) 2.5×10^{-3}
- (d) None of these

AIIMS-2009

Ans. (c): Given that,

$$SeO_3^{2-} + BrO_3^{-} + H^+ \rightarrow SeO_4^{2-} + Br_2^+ + H_2O$$

 $BrO_3^{-} + AsO_2^{-} + H_2O \rightarrow Br^-AsO_4^{3-} + H^+$

In reaction (i)

Moles of BrO₃⁻ Consumed = $\frac{70}{1000} \times \frac{1}{60} - \frac{10^{-3}}{6} = 10^{-3}$

gm. eq. of SeO_3^{2-} = gm. eq. of BrO_2^{-}

$$n_{SeO_3^{2-}} \ \times 2 = 10^{-3} \times 5$$

$$n_{SeO_2^{2-}} = 2.5 \times 10^{-3}$$

In reaction (ii)

Gm. Eq. of
$$BrO_3^- = gm$$
. Eq. of AsO_2^-

$$n_{BrO_{3}^{-}} \times 6 = n_{AsO_{2}^{-}} \times 2 = \frac{12.5}{1000} \times \frac{1}{25} \times 2 = 10^{-3}$$

$$n_{BrO_3^-} = \frac{10^{-3}}{6}$$

- Assertion: One molal aqueous solution of glucose contains 180 g of glucose in 1 kg water. Reason: The solution containing one mole of solute in 1000 g of solvent is called one molal
 - (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion.
 - (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
 - (c) If Assertion is correct but Reason is incorrect.
 - (d) If both the Assertion and Reason are incorrect.

AIIMS-2008

Ans. (a): Molality = No. of moles of solute /wt. of solvent in kg

If no. of moles of solute = 1

weight of solvent = 1 kg

then,

molality = 1

Glucose (C₆H₁₂O₆)

molecular weight = 180

Here, No. of mole =
$$\frac{\text{Molecular mass}}{\text{wt.of solvent}} = \frac{180}{180} = 1$$

Molality =
$$\frac{1}{1}$$

Hence, assertion and reason, both are Correct and reason is the correct explanation of assertion.

- One mole of fluorine reacted with two moles of hot concentrated KOH. The products formed are KF, H₂O and O₂. The molar ratio of KF, H₂O and O₂ respectively, is?
 - (a) 1:1:2
- (b) 2:1:0.5
- (c) 1:2:1
- (d) 2:1:2

AP EAMCET- 2002

Ans. (b): $F_2 + 2KOH \rightarrow 2KF + H_2O + 1/2O_2$

The molar ratios of KF, H₂O and O₂ is 2: 1: 0.5 respectively.

- Which has maximum molecules?
 - (a) $7 g N_2$
- (b) $2 g H_2$
- (c) 16 g NO₂
- (d) 16 g O_2

NEET-2002

Ans. (b): 1 mole of any element contain 6.022×10^{23} number of molecules so

(a) 28 g $N_2 = 1$ mole of N_2

$$7g N_2 = \frac{7}{28} = 0.25 \text{ mole}$$

$$7g N_2 = \frac{7}{28} = 0.25 \text{ mole}$$

$$(d) 32 g O_2 = 1 \text{ mole of } O_2$$

$$16 g O_2 = \frac{16}{32} = 0.5 \text{ mole}$$

$$(h) 2 g H_2 = 1 \text{ mole of } H_2$$

- (b) $2g H_2 = 1 \text{ mole of } H_2$
- (c) 46 g $NO_2 = 1$ mole of NO_2

$$16 \text{ g NO}_2 = \frac{16}{46} = 0.35 \text{ mole}$$

Maximum number of moles will corresponds to maximum number of molecules.

So, 2g H₂ contain maximum molecules

Number of atoms of He in 100 amu of He 80. (atomic wt. of He is 4) are

- (a) 25
- (b) 100
- (c) 50
- (d) 100

UP CPMT-2006

Ans. (a): Number of atom of a substance = Number of gram molecular weight $\times 6.05 \times 10^{23} \times$ atomicity

$$= \frac{\text{wt. of substance}}{\text{Number of g. molecules}} \times 6.02 \times 10^{23} \times \text{atomicity}$$

- $=1 \text{ amu} = 1.6 \times 10^{-24} \text{ g}$
- $=100 \,\mathrm{amu} = 1.6 \times 100 \times 10^{-24} \,\mathrm{g}$

$$=\frac{100\!\times\! 1.6\!\times\! 10^{-24}}{4}\!\times\! 6.023\!\times\! 10^{23}\!\times\! 1$$

$=25 \times 1.6 \times 10^{-24} \times 6.023 \times 10^{23} = 25$

The total number of protons in 10g of calcium carbonate is $(N_0=6.023\times10^{23})$ (a) 3.01×10^{24} (b)

- (b) 4.06×10^{24}
- (c) 2.01×10^{24}
- (d) 3.01×10^{24}

UP CPMT-2003

Ans. (a): Number of protons = Atomic number

- .. Protons in 1 mole CaCO₃
- = Atomic No. of Ca + atomic. No. of C + $3 \times atomic$ No. of O
- $= 20 + 6 + 3 \times 8$
- = 50

Atomic mass of CaCO₃

- $=40+12+3\times16$
- : 100 g of CaCO₃ has protons= 50
- ∴ 10 g of CaCO₃ has protons

$$= \frac{50}{100} \times 10 \times 6.02 \times 10^{23}$$

$$= \frac{50}{100} \times 10 \times 6.02 \times 10^{23}$$

$$= \frac{50}{100} \times 10 \times 6.02 \times 10^{23}$$

$$= 3.01 \times 10^{24}$$

82. One mole of CH₄ contains

- (a) 4 g atoms of hydrogen
- (b) 3.0 g atoms of carbon
- (c) 6.02×10^{23} atoms of hydrogen (d) 1.81×10^{23} molecules of CH₄

UP CPMT-2002

Ans. (a): 1 mole of CH₄ contains 1 gm of carbon and 4gm of mole of hydrogen. Methane (CH₄) is a colorless, odorless, flammable gas that is the simplest hydrocarbon and is the major constituent of natural gas.

The incorrect statement for 14g of CO is 83.

- (a) It occupies 2.24L at NTP
- (b) It corresponds to 1/2 mole of CO
- (c) It corresponds to same mole of CO and N₂
- (d) It corresponds to 3.01×10^{23} molecules of CO

UP CPMT-2002

No. of mole CO =
$$\frac{14}{28} = \frac{1}{2}$$
 mole.

for 14 gm of
$$N_2$$
 -

No. of mole
$$N_2 = \frac{14}{28} = \frac{1}{2}$$
 mole
 \therefore One mole of any gas occupies 2.24 litre.

- $\therefore \frac{1}{2}$ mole of CO gas occupies only 11.2 litre volume.

One mole of molecule contain = N_A molecule $=6.02 \times 10^{23}$ molecule

 $\therefore \frac{1}{2}$ mole of CO contain = 3.01×10²³ molecule of CO.

10²¹ molecules are removed from 200 mg of CO₂. The moles of CO₂ left are:

- (a) 2.84×10^{-3}
- (b) 28.4×10^{-3}
- (c) 284×10^{-3}
- (d) 28.4×10^3

AIIMS-2001

Ans. (a): Given mass =
$$200 \text{ mg} = 0.2 \text{ g}$$

Molar mass of $CO_2 = 44 \text{ g}$

Number of moles
$$=\frac{\text{Weight}}{\text{Mole weight}} = \frac{0.2}{44} = \frac{1}{220}$$

No. of molecules =
$$6.022 \times 10^{23} \times 1/220$$

= 2.73×10^{21}

As 10²¹ molecules are removed,

Hence, No. of Molecules left = $2.73 \times 10^{21} - 10^{21}$

$$= 1.73 \times 10^{21}$$

No. of moles = No. of molecules /Avogadro's number

$$= \frac{1.73 \times 10^{21}}{6.23 \times 10^{23}} = 2.88 \times 10^{-3}$$

The weight of NaCl decomposed by 4.9 g of H₂SO₄, if 6g of sodium hydrogen sulphate and 1.825 g of HCl, were produced in the reaction

- (a) 6.921g
- (b) 4.65g
- (c) 2.925g
- (d) 1.4 g

AIIMS-2001

Ans. (c): $NaCl(xg) + H_2SO_4(4.9g) \rightarrow NaHSO_4(6g) +$ HCl (1.825g)

The law of conservation of mass states that in a chemical reaction mass is neither created nor destroyed.

... Mass of the reactants = Mass of Products

$$x + 4.9 = 6 + 1.825 g$$

$$x = 2.925 g$$

Temperature does not affect: 86.

- (a) Molality
- (b) Formality
- (c) Molarity
- (d) Normality

AIIMS-1997-2001

Ans. (a): Since molality is defined in terms of the solvent's mass not its volume, the temperature does not change the molality of a solution.

Where as in case of formality molarity and normality the concentration of solution is expressed in terms of volume which change with the change of temperature.

87. The molarity of 98% by weight H₂SO₄ solution, which has a density 1.84 g/cc at 35° C is:

- (a) 1.84 M
- (b) 18.4 M
- (c) 20.6 M
- (d) 24.5 M

AIIMS-2001

Ans. (b): The solution contains 98% H₂SO₄ by weight/ mass that means 100 gram of solutions 98 grams of $H_{2}SO_{4}$.

Density is 1.84 gm/ml (cc = ml)

So, volume of the solution = $\frac{\text{mass of the solution}}{1}$ density of solution

$$=\frac{100\,\mathrm{gram}}{1.84}=54.34\,\mathrm{ml}$$

No. of moles of
$$H_2SO_4 = \frac{\text{weight of } H_2SO_4}{\text{molar mass of } H_2SO_4}$$
$$= \frac{98}{98} = 1 \text{ moles}$$

Molarity =
$$\frac{1 \text{mole}}{54.3 \text{ ml} \times 1000} = 18.41 \text{ M}$$

- 88. The normality of orthophosphoric acid having purity of 70% by weight and specific gravity 1.54 is:
 - (a) 11 N
- (b) 22 N
- (c) 33 N
- (d) 44 N

AIIMS-2001

Ans. (c): Density of orthophosphoric acid $(H_3PO_4) =$ specific gravity × density of water.

Density of orthophosphoric acid = 1.54×0.998

$$= 1.54 \text{ g/ml}$$

Mass in 1000 ml = $1.54 \times 1000 = 1540$ g

Gram equivalent weight of orthophosphoric acid =

$$\frac{\text{Molar mass}}{\text{N-factor}} = \frac{98}{3} = 32.66 \text{ g eq.}$$

orthophosphoric acid is only 70% pure so the weight of orthophosphoric acid = $1540 \times \frac{70}{100} = 1078 g$

Number of gram equivalents of orthophosphoric acid

$$=\frac{1078}{32.66}=33$$

 $= \frac{1078}{32.66} = 33$ Normality = $\frac{\text{(number of gram equivalents)}}{\text{(volume of solution in L)}}$

Normality = 33 N.

- 0.4 moles of HCl and 0.2 moles of CaCl, were dissolved in water to have 500ml of solution, the morality of Cl⁻ ion is:
 - (a) 0.8 M
- (b) 1.6 M
- (c) 1.2 M
- (d) 10.0 M

AIIMS-2000

Ans. (b):
$$HCl \rightleftharpoons H^+ + Cl^-$$

$$CaCl_2 \rightleftharpoons Ca^{2+} + \underset{2 \times 0, 2 = 0.4 \text{ moles}}{2Cl^-}$$

Total moles of $Cl^{-} = 0.4 + 0.4 = 0.8$ moles

Volume of solution of 500ml = 0.5 L

Molarity of Cl⁻ = moles Cl⁻/volume of solution

Molarity of
$$Cl^- = \frac{0.8}{0.5} = 1.6 \,\text{M}$$

- 90. Volume of CO₂ obtained by the complete decomposition of 9.85 g of BaCO₃ is
 - (a) 2.24 L
- (b) 1.12 L
- (c) 0.84 L
- (d) 0.56 L

NEET-2000

Ans. (b):

 $BaCO_3 \longrightarrow BaO + CO_2 \uparrow$

1mole 1 mole mole

$$Moles = \frac{Given \ weight}{molecular \ weight} = \frac{9.85}{197g/mol.}$$

=0.05 mole

At STP. 1 mole = 22.4 L

 $0.05 \text{ mole} = 22.4 \times 0.05 \text{ L} = 1.12 \text{ L}$

- The amount of zinc required to produce 224 ml. of H₂ at STP on treatment with dilute H₂SO₄ will be
 - (a) 65 g
- (b) 0.065 g
- (c) 0.65 g
- (d) 6.5 g

NEET-1996

Ans. (c): When Zinc react with H₂SO₄

$$Zn + H_2SO_4 \rightarrow ZnSO_4 + H_2$$

1 mole of Zinc will react to give 1 moles of hydrogen Volume of 1 mole of hydrogen at STP = 22400 ml

1 mole of Zn = 65 grams =
$$\frac{65 \times 224}{22400}$$
 = 0.65g

0.65 grams of Zinc can react to give 224 ml of hydrogen.

- The number of atoms in 4.25 g of NH₃ is approximately
 - (a) 4×10^{23}
- (b) 2×10^{23}
- (c) 1×10^{23}
- (d) 6×10^{23}

NEET-1999

Ans. (d): Given that,

Weight of $NH_3 = 4.25g$

Number of moles of
$$NH_3 = \frac{Weight}{Molecular Weight}$$

$$=\frac{4.25}{17}=0.25$$
 mole

Number of molecules in 0.25 moles of NH₃

 $=0.25\times6.023\times10^{23}$

So, number of atoms =
$$4 \times 0.25 \times 6.023 \times 10^{23}$$

= 6.023×10^{23}

$$\approx 6 \times 10^{23}$$

The normality of a solution obtained by mixing 93. 10 mL of N/5 HCI and 30mL of N/10HCI is:

- (a) $\frac{N}{15}$
- (c) $\frac{N}{7.5}$

AIIMS-1999

Ans. (d): $N = M \times n - factor$

$$NV = N_1V_1 + N_2V_2$$

 $\begin{cases} where N = Normality of mixture \\ V = Volume of mixture \end{cases}$

$$NV = \frac{1}{5} \times 10 + \frac{1}{10} \times 30$$

$$N \times 40 = 2 + 3$$

$$N = \frac{5}{40}$$

$$N = \frac{1}{8}$$

- 94. The molar concentration of 20g of NaOH present in 5 litre of solution is:
 - (a) 0.1 mols/litre
- (b) 0.2 mols/litre
- (c) 1.0 mols/litre
- (d) 2.0 mols/litre

AIIMS-1998

Ans. (a): Molar mass of NaOH: 39.997 g/mol $20g \text{ NaOH } \frac{1 \text{ mol NaOH}}{39.997 \text{ g NaOH}} = 0.5 \text{ mol NaOH}$

Convert liters of H₂O to kg

Density of $H_2O - 1g/ml \rightarrow 1 \text{ kg/L}$

$$SL H_2O - \frac{1kg H_2O}{1L H_2O} = 5kgH_2O$$

Molarity of NaOH = $\frac{.5 \text{ mol}}{5 \text{ kg}}$

m = 0.1 mols/liter

- 95. Volume of a gas at NTP is 1.12×10⁻⁷ cc. The number of molecule in it is:
 - (a) 3.01×10^{12}
- (b) 3.01×10^{18}
- (c) 3.01×10^{24}
- (d) 3.01×10^{30}

AIIMS-1998

- Ans. (a): Given that,
- ∴ 22400 cm³ of the gas at STP has molecules = 6.02×10^{23}
- \therefore 1.12 × 10⁻⁷ cm³ of the gas at STP will have molecules

$$= \frac{6.02 \times 10^{23}}{22400} \times 1.12 \times 10^{-7}$$

 $= 3.01 \times 10^{12}$ molecules

- 96. When 6 volumes of oxygen undergoes complete reaction to ozone, the number of moles of ozone formed are
 - (a) 6

(b) 3

- (c) 4
- (d) 2

AP EAMCET- 1995

Ans. (c): $3O_2 \rightarrow 2O_3$

No. of moles of O_3 produced by 3 moles of $O_2 = 2$

No. of moles of O₃ produced by 6 moles of

$$O_2 = \frac{2}{3} \times 6 = 4 \text{ mol.}$$

- 97. The number of molecules in 4.25 g of ammonia is approximately
 - (a) 3.5×10^{23}
- (b) 0.5×10^{23}
- (c) 2.5×10^{23}
- (d) 1.5×10^{23}

AIIMS-1996

Ans. (d): We know that 17 g of ammonia (NH_3) Contains 6.02×10^{23} molecules.

Therefore number of molecules in 4.25 of

$$NH_3 = \frac{6.02 \times 10^{23} \times 4.25}{17}$$

$$NH_3 = 1.50 \times 10^{23}$$

$$NH_3 = 1.5 \times 10^{23}$$

- 98. Avogadro's number of oxygen atom weighs
 - (a) 32 g
- (b) 8 g
- (c) 56 g
- (d) 16 g

AIIMS-1996

Ans. (d): Avogadro's number, number of units is one mole of any substance (defined as its molecular weight is grams), equal to 6.023×10^{23} .

Weight of 6.023×10^{23} molecular of oxygen (O₂) = 32g Since the oxygen is diatomic, therefore weight of

Avogadro's number of oxygen atom = $\frac{32}{2}$ = 16 g

- 99. The number of moles of water present in 180 gm of water is
 - (a) 18
- (b) 5
- (c) 100
- (d) 10

AIIMS-1996

- **Ans. (d):** Given that, Molecular weight of water = 18
- $\therefore \text{ No of moles of water} = \frac{\text{Mass}}{\text{Molecular mass}}$

$$=\frac{180}{18} = 10 \text{ moles}$$

- 100. The mole fraction of solute in 20% aqueous H₂O₂ solution is
 - (a) 0.588
- (b) 0.444
- (c) 0.1168
- (d) 4.44
 - **AP EAMCET- 1992**
- Ans. (c): Given that,

20% aqueous H₂O₂

No. of moles of
$$H_2O_2 = \frac{20}{34} = 0.588$$

No. of moles of
$$H_2O = \frac{80}{18} = 4.44$$

- : Mole fraction of $H_2O_2 = \frac{0.588}{0.588 + 4.44} = 0.1168$
- 101. The number of moles of oxygen in one litre of air containing 21% oxygen by volume, under standard conditions, is
 - (a) 0.0093 mol
- (b) 2.10 mol
- (c) 0.186 mol
- (d) 0.21 mol

NEET-1995

Ans. (a): Volume of oxygen in 1L of air

$$\frac{21}{100} \times 1000 = 210$$
mL

∴ 22400 mL volume at STP is occupied by oxygen = 1 mole

number of moles occupied by 210 mL $\frac{210}{22400} = 0.0093 \,\text{mol}.$

102. The number of gram molecules of oxygen is 6.02×10^{24} CO molecules is

- (a) 10 g molecules
- (b) 5 g molecules
- (c) 1 g molecules
- (d) 0.5 g molecules

NEET-1990

Ans. (b) : No. of CO molecules = 6.022×10^{24} Number of oxygen atoms = Number of CO molecules = 6.022×10^{24}

Number of Oxygen molecule = $\frac{1}{2} \times \text{number of oxy}$

Number of molecules of O₂ molecules

$$= \frac{\text{No.of molecules}}{\text{Avogadro's No.}} = \frac{3.011 \times 10^{24}}{6.022 \times 10^{23}} = 5 \text{ g molecule}$$

(Note: mole also called gram-molecule)

103. The number of oxygen atoms in 4.4 g of CO₂ is

- (a) 1.2×10^{23}
- (b) 6×10^{22}
- (c) 6×10^{23}
- (d) 0.12×10^{23}

NEET-1989

Ans. (a) : Moles of
$$CO_2 = \frac{4.4}{44} = 0.1$$
 moles

:. Number of molecules of $CO_2 = 0.1 \times 6.022 \times 10^{23}$ = 6.022×10^{22} molucules

1 molecule of CO₂ contains 2 oxygen atoms.

:. Number of oxygen atoms = $2 \times 6.022 \times 10^{22}$ = 12.044×10^{22} = 1.2×10^{23} atoms

104. 1 cc N2O at NTP contains

- (a) $\frac{1.8}{2.24} \times 10^{22}$ atoms
- (b) $\frac{6.02}{22400} \times 10^{23}$ molecules
- (c) $\frac{1.32}{224} \times 10^{23}$ electrons
- (d) All of the above

NEET-1988

Ans. (d): At NTP 22400 cc of N_2O contains = 6.02×10^{23} molecules

∴ 1 cc N₂O will contain = $\frac{6.02 \times 10^{23}}{22400}$ molecules

In N_2O molecule, number of atoms = 2 + 1 = 3

Thus, the number of atoms = $\frac{3 \times 6.02 \times 10^{23}}{22400}$ atoms

$$=\frac{1.8\times10^{22}}{224}$$
 atoms

In an N_2O molecule, the number of electrons = 7 + 7 + 8 = 22

Hence, the number of electrons, =
$$\frac{6.02 \times 10^{23}}{22400} \times 22$$
$$= \frac{1.32 \times 10^{23}}{224} \text{ electrons.}$$

105. At STP the density of CCl₄ vapour of g/L will be nearest to

- (a) 6.87
- (b) 3.42
- (c) 10.26
- (d) 4.57

NEET-1988

Ans. (a) : We know that, mass of C = 12g, Cl = 35.5 g 1 mole CCl_4 vapours = $12 + 4 \times 35.5$

$$= 154g$$

At STP, volume of 1 mole of gas = 22.4 L

Thus, 154g = 22.4 L

 $\therefore \text{ Density of CCl}_4 \text{ vapours} = \frac{154}{22.4} \text{gL}^{-1}$ $= 6.87 \text{ g L}^{-1}$

106. If Avogadro number N_A , is changed from 6.022 \times 10^{23} mol⁻¹ to 6.022 \times 10^{20} mol⁻¹, this would change

- (a) the mass of one mole of carbon
- (b) the ratio of chemical species to each other in a balanced equation.
- (c) the ratio of elements to each other in a compound
- (d) the definition of mass in units of grams.

NEET-2012

Ans. (a) :

Mass of 1 mole (6.022×10^{23}) atoms of carbon = 12 g If Avogadro Number (N_A) is changed than mass of 1 mol $(6.022 \times 10^{20} \text{ atom})$ of carbon

$$= \frac{12 \times 6.022 \times 10^{20}}{6.022 \times 10^{23}} = 12 \times 10^{-3} \,\mathrm{g}$$

Therefore, Mass of 1 mol of carbon is changed.

107. The volume in litres of CO₂ liberated at STP when 10 g of 90% pure lime stone is heated completely is:

- (a) 2.016
- (b) 20.16
- (c) 2.24
- (d) 22.4

AP EAMCET (Medical) -1998

Ans. (a):
$$CaCO_3 \xrightarrow{\Delta} CaO + CO_2$$
 $\xrightarrow{22.4L \text{ atSTP} \text{ (Imole)}}$

... Molecular weight of CaCO₃ = 100g/mole

Weight of 10gm of 90% pure limestone = $\frac{10 \times 90}{100}$

= 9 gm pure CaCO₃

∴ 9 gm pure CaCO₃

$$CO_2 = \frac{22.4 \times 9}{100} = 2.016 L$$
.

108. The total number of valence electrons in 4.2 g of N_3^- ion is (N_A is the Avogadro's number)

- (a) $2.1 N_A$
- (b) $4.2 N_A$
- (c) $1.6 N_A$
- (d) $3.2 N_A$

NEET-1994

Ans. (c): Molecular wt of $N_3^- = 3 \times 14 = 42g$

Moles of
$$N_3^-$$
 ion = $\frac{4.2}{42}$ = 0.1

Each nitrogen atom has 5 valence electrons, total number of electrons in

$$N_3^- ion = 16$$

Total number of electrons in 0.1 mole,

$$4.2g \text{ of } N_3^- \text{ ion} = 0.1 \times 16 \times N_A = 1.6 N_A$$

- 109. An organic compound contains 78% (by wt) carbon and remaining percentage of hydrogen. The right option for the empirical formula of this compound is [Atomic wt. of C is 12, h is 1]
 - (a) CH₄
- (b) CH
- (c) CH₂
- (d) CH₃

NEET-2021

Ans. (d): Element Mass % At. weight
$$\frac{\%}{\text{At.Weight}}$$

Simplest ratio.

$$22/1 = 22$$
 $22/6.5 = 3$

Empirical formula of this compound is CH₃.

- 110. The empirical formula of the compound if M = 68% (atomic mass = 34) and remaining 32% oxygen is?
 - (a) MO
- (b) M₂O
- (c) MO₂
- (d) M_2O_3

AIIMS 25 May 2019 (Morning)

Ans. (a): We know that,

No. of moles =
$$\frac{\text{Percentage of element}}{\text{At. mass}}$$

No. of moles of element (M) =
$$\frac{68}{34}$$
 = 2

No. of moles of oxygen =
$$\frac{100-68}{16}$$
 = 2

Empirical formula of compound = $M_2O_2 = MO$

- 111. A binary mixture of bivalent metals having mass 2 g, molecular mass of A and B are 15 and 30 respectively, is dissolved in HCl, it evolves 2.24L H₂ at STP, what is the mass of A present in mixture? (Atomic mass of A = 15µ, B = 30µ)
 - (a) 1 g
- (b) 1.5 g
- (c) 0.5 g
- (d) 0.75 g

AIIMS-26 May, 2018 (E)

Ans. (a): For metal A let the mass of metal is x No. of moles = x/15

$$A + 2HCl \rightarrow ACl_2 + H_2$$

one mole of metal gives one mole of H2 gas

Mole:
$$\frac{x}{15}$$

$$B + 2HCl \rightarrow BCl_2 + H_2$$

Mole
$$\frac{2-x}{30}$$
 $\frac{2-x}{30}$
Total moles of $H_2 = \frac{x}{15} + \frac{2-x}{30} = \frac{2.24}{22.4} = \frac{1}{10}$

$$\frac{2+x}{20} = \frac{1}{10}$$

$$20 + 10x = 30$$

$$10 = 10x$$

$$x = 1g$$

- 112. 0.833 mol of a carbohydrate with empirical formula CH₂O, has 10g of hydrogen. Molecular formula of carbohydrate is
 - (a) $C_3H_5O_3$
- (b) $C_6H_{12}O_6$
- (c) $C_3H_{10}O_5$
- (d) $C_3H_4O_3$

UP CPMT-2012

Ans. (b): Given that,

Weight of hydrogen = 10g

Moles of carbohydrate = 0.833

weight of hydrogen = 10g

0.833 moles of carbohydrate has hydrogen

$$= 10g$$

1 mole of carbohydrate has hydrogen

$$=\frac{10\times1}{0.833}=12g$$

Given, empirical formula of carbohydrate = CH_2O

 CH_2O contains hydrogen = 2 g/mole

:. Molecular formula should contain hydrogen

$$=\frac{12\times2}{2}=12$$

Molecular formula = $C_6H_{12}O_6$

- 113. Two oxides of an non-metal X contain 50% and 40% of non-metal respectively. If the formula of the first oxide is XO₂, Then the formula of second oxide is
 - (a) X_2O_3
- (b) X_2O_5
- (c) XO₃
- (d) X₂O

AP EAMCET-2017

Ans. (c): Given that, the formula of first oxide is XO_2 For, second oxide 40% of (X) we have 60% of oxygen.

 \therefore For 100% of (X) (i.e. one mole) we get

$$\therefore \text{ Moles of oxygen} = \frac{2 \times 60}{40} = 3$$

Hence the formula of second oxide is XO₃.

- 114. In an experiment it showed that 10 ml of 0.05 M solution of chloride required 10 mL of 0.1 M solution of AgNO₃, which of the following will be the formula of the chloride (X stands for the symbol of the element other than chlorine)?
 - (a) X_2CL_2
- (b) XCL₂
- (c) XCL₄
- (d) X_2CL

Karnataka NEET-2013

Ans. (b): Given that,

Molarity of $AgNO_3 = 0.1$

Molarity = 0.05M

Volume of chloride = 10 ml

So, no. of moles of chloride

$$= \frac{10}{100} \times 0.05 = \frac{0.5}{1000}$$

& no. of moles of AgNO₃

$$=0.1 \times \frac{10}{100} = \frac{1}{1000}$$

Gram of chloride = gram equivalent of AgNO₃

$$\Rightarrow \frac{0.5n}{1000} = \frac{1}{1000}$$

$$\begin{cases} \text{Where} \\ \text{n = no.of chlorides} \end{cases}$$

∴ n = 2

So, formula in XCl₂

- 115. In a hydrocarbon, mass ratio of hydrogen and carbon is 1:3, the empirical formula of hydrocarbon is
 - (a) CH₄
- (b) CH₂
- (c) C₂H
- (d) CH₃

AIIMS-2012

Ans. (a): Given,
$$\frac{C}{H} = \frac{1}{3}$$

Atomic mass of H = 1

Atomic mass of C = 12

According to the option

In,

$$CH_2 \rightarrow \frac{C}{H} = \frac{2}{12} = 1:6$$
 $CH_2 \rightarrow \frac{C}{H} = \frac{1}{12} = 1:26$

$$C_2H \rightarrow \frac{C}{H} = \frac{1}{24} = 1:24$$

 $CH_3 \rightarrow \frac{C}{H} = \frac{3}{12} = 1:4$

$$CH_4 \rightarrow \frac{C}{H} = \frac{4}{12} = 1:3$$

- 116. An organic compound contains carbon, hydrogen and oxygen. Its element analysis gave C, 38.71% and H, 9.67%. The empirical formula of the compound would be
 - (a) CHO
- (b) CH₄O
- (c) CH₃O
- (d) CH₂O

NEET-2008

Ans. (c): For calculating Empeirical formula,				
Element	0/0	At. Wt.	Relative No. of atoms	Simplest ratio of atoms
С	38.71	12	3.23	3.23/3.23=1
Н	9.67	1	9.67	9.67/3.23=3
О	51.62	16	3.23	3.23/3.23=1
Hence, empirical formula is CH ₃ O.				

- 117. In an organic compound, C =68.5% and H = 4.91%. Which empirical formula is correct for it?
 - (a) C_6H_{10}
- (b) $C_7H_6O_2$
- (c) C_5H_8O
- (d) C₉H₃O

UP CPMT-2009

Element	At.wt.	Percent	No.of moles	Simple molar ratio
		composition		
С	12	68.5	$\frac{68.5}{} = 5.708$	$\frac{5.708}{}$ = 3.41×2 =
			12	1.67
Н	1	4.91	$\frac{4.91}{} = 4.91$	$\frac{4.91}{2} = 2.95 \times 2 = 6$
			1	1.67
O	16	(100-68.5-4.91)	$\frac{26.59}{} = 1.67$	$\frac{1.67}{\dots} = 1 \times 2 = 2$
		= 26.59	16	1.67

Hence, the empirical formula of the compound is $C_7H_6O_2$.

- 118. In a compound C, H and N are present in 9:1: 3.5 by weight. If molecular weight of the compound is 108, then the molecular formula of the compound is
 - (a) $C_2H_6N_2$
- (b) C_3H_4N
- (c) $C_6H_8N_2$
- (d) $C_9H_{12}N_3$

UP CPMT-2006

C H N
9 1 3.5
$$\frac{9}{12} = 0.75 \quad \frac{1}{1} = 1 \quad \frac{3.5}{14} = 0.25$$

$$\frac{0.75}{0.25} = 3 \quad \frac{1}{0.25} = 4 \quad \frac{0.25}{0.25} = 1$$

So, empirical formula = C_3H_4N

Molecular weight of $C_3H_4N = 54$

$$n = \frac{108}{54} = 2$$

∴ Molecular formula = $(C_3H_4N)_2$ = $C_6H_8N_2$

- 119. A compound is 60g on analysis produce carbon, hydrogen and oxygen 24g, 4g and 32g respectively. The empirical formula is
 - (a) $C_2H_2O_2$
- (b) $C_2H_4O_2$
- (c) CH₂O
- (d) $C_2H_4O_6$

UP CPMT-2002

Ans. (c):				
Element	Analysis produce	% of element	Relative number	
С	24	$\frac{24}{60} \times 100 = 40\%$	$\frac{40}{12} = 3.33 = 1$	
Н	4	$\frac{4}{60} \times 100 = 6.66\%$	$\frac{6.66}{1} = 6.66 = 2$	
N	32	$\frac{32}{60} \times 100 = 53.33\%$	$\frac{53.33}{14} = 3.33 = 1$	
Hence, the empirical formula is CH ₂ O.				

- 120. 4g of a hydrocarbon on complete combustion gave 12,571 g of CO₂ and 5.143 g of water. What is the empirical formula of the hydrocarbon?
 - (a) CH
- (b) CH₂
- (c) CH₃
- (d) C_2H_3

A.P.EAMCET-2002

Ans. (b)	: % of carbon
_ 12	weight of $CO_2 \times 100$
$-{44}$	weight of organic compound
$=\frac{12}{44}\times\frac{1}{4}$	$\frac{2.571}{4} \times 100 = 85.7\%$

% of Hydrogen =
$$\frac{2}{18} \times \frac{\text{weight of water}}{\text{weight of compound}} \times 100$$

$$= \frac{2}{18} \times \frac{5143 \times 100}{4} = 143\%$$

Element	% atomic weight	Simple ratio
С	$\frac{85.7}{12} = 7.15$	$\frac{7.15}{7.15} = 1$
Н	$\frac{14.3}{1}$ = 14.3	$\frac{14.3}{7.15} = 2$

Hence the empirical formula = CH_2

- 121. An organic compound containing C and H has 92.3% of carbon, Its empirical formula is
 - (a) CH
- (b) CH₃
- (c) CH₂
- (d) CH₄

A.P.EAMCET-2004

Ans. (a): Given that, C = 92.3% and H is 7.7% Element Percentage atomic weight C $\frac{92.3}{12} = 7.69$ $\frac{7.69}{7.69} = 1$ H $\frac{7.7}{1} = 7.7$ $\frac{7.70}{7.69} \approx 1$

Hence the empirical formula = CH

122. How many litres of oxygen (at STP) are required for complete combustion of 39 g of liquid benzene?

(atomic weights : C =12, O =16, H=1)

- (a) 84
- (b) 22.4
- (c) 42
- (d) 11.2

A.P.EAMCET-2001

Ans. (a)

$$C_6H_6(l) + \frac{15}{2}O_2(g) \rightarrow 6CO_2(g) + 3H_2O(g)$$

Molar mass of $C_6H_6 = 78$ g/mol

39 gms of
$$C_6H_6(l) = \frac{39}{78}$$
 moles = 0.5 moles

For 2 moles, we require 15 moles of O₂, for 0.5 moles we will require—

$$\Rightarrow \frac{0.5}{2} \times 15 = \frac{15}{4} \text{ moles of O}_2$$
$$= \frac{15}{4} \times 22.4 \text{ litres} = 84 \text{ litres}$$

1.6 Chemical equations and stoichiometry

123. KMnO₄ reacts with ferrous sulphate according to the following equation.

 $MnO_4^- + 5Fe^{2+} + 8H^- \rightarrow Mn^{2+} + 2Fe^{3+} + 4H_2O$

Here, 10 mL of 0.1 M KMnO₄ is equivalent to

- (a) 50 mL of 0.1 M FeSO₄
- (b) 20 mL of 0.1 M FeSO₄
- (c) 40 mL of 0.1 M FeSO₄
- (d) 30 mL of 0.1 M FeSO₄

JIPMER-2015

Ans. (a): KMnO₄ reacts with ferrous sulphate according to the following equation,

 $2KMnO_4 + 10FeSO_4 + 8H_2SO_4 \rightarrow K_2SO_4 + 2MnSO_4 + 5Fe_2(SO_4)_3 + 8H_2O_4$ 2 moles of KMnO₄ reacts with 10 moles of FeSO₄

The number of moles of KMnO₄ in 10 ml of 0.1

$$M = 0.1 \times 0.01 = 10^{-3}$$
 moles

No. of moles $FeSO_4 = 5 \times 10^{-3}$

Volume having 5×10⁻³ mol in 0.1 MFeSO₄

$$0.1 = \frac{5 \times 10^{-3} \times 1000}{V_{\text{me}}}$$

$$V_{\rm m\ell} = \frac{5\!\times\!10^{-\!3}\!\times\!1000}{0.1}$$

 $V_{m\ell} = 50\,ml$

124. An element, X has the following isotopic composition:

²⁰⁰X:90%

- 199X:8.0%
- ²⁰²X: 2.0%

The weighted average atomic mass of the naturally occurring element X is closed to

- (a) 201 amu
- (b) 202 amu
- (c) 199 amu
- (d) 200 amu

NEET-2007

- Ans. (d): weight of 200 X = 0.90 × 200 = 180.00 u Weight of 199 X = 0.08 × 199 = 15.92 u Weight of 202 X = 0.02 × 202 = 4.04 u Total weight = 199.96 ≈ 200 amu.
- 125. Number of moles of $K_2Cr_2O_7$ reduced by one mole of Sn^{2+} ?
 - (a) $\frac{1}{3}$
- (b) 3
- (c) $\frac{1}{6}$
- (d) 6

UP CPMT-2005

Ans. (a) One mole of Sn²⁺ can reduce 1/3 moles K₂Cr₂O₇.

- 126. KMnO₄ oxidizes oxalic acid in acid medium. The number of CO₂ molecules produced as per the balanced equation is:
 - (a) 10
- (b) 8
- (c) 6
- (d) 3

AP EAMCET (Medical) -1998

oxidize the oxalic acid then following reaction take place during the reaction-

$$2KMnO4 + 3H2SO4 + 5H2C2O4 \longrightarrow K2SO4 +$$

$$2MnSO4 + 10CO2 + 8H2O3$$

In a balanced chemical equation of oxidation of oxalic acid by KMnO₄ in acidic medium evolve 10 molecules of CO2.

127. Two grams of sulphur is completely burnt in oxygen to form SO₂. In this reaction, what is the volume (in litres) of oxygen consumed at

> (Atomic weight of sulphur and oxygen are 32 and 16 respectively).

- (b) $\frac{22.4}{16}$
- (c) $\frac{22.4}{32}$

AP-EAMCET (Medical), 2002

Ans. (b): The following reaction occur which is given below-

$$S + O_2 \rightarrow SO_2$$

Molecular weight of $SO_2 =$

$$32 + 2 \times 16 = 64g$$

Volume of oxygen (1 mole), at STP = 22.4LAt STP,

- 32g of sulphur requires $O_2 = 22.4 L$
- 2g of sulphur requires $O_2 = \frac{22.4 \times 2}{32} = \frac{22.4}{16} L$
- How many moles of lead (II) chloride will be formed from a reaction between 6.5 g of PbO and 3.2 g HCI? (atomic weight of Pb = 207)
 - (a) 0.011
- (b) 0.029
- (c) 0.044
- (d) 0.333

NEET-2008

Ans. (b):

$$\begin{array}{c} {\rm PbO} \ + \ 2{\rm HCl} \\ {\rm 223g/mol} \ + \ 2(35.59+1){\rm g/mole} \\ \end{array} \\ \longrightarrow \begin{array}{c} {\rm PbCl}_2 \ + \ {\rm H_2O} \\ {\rm 277\,g/mol} \\ \end{array}$$

223g/mol of PbO need \rightarrow 70g of HCl

$$6.5 \rightarrow x$$
 $\Rightarrow x = \frac{6.5 \times 70}{223}$

 \Rightarrow x = 2.04 g of HCl is needed.

223g of PbO→277g of PbCl₂

$$6.5 \rightarrow y$$
 $\Rightarrow y = \frac{6.5 \times 277}{223} \Rightarrow y = 8.07g$

 $1 \text{ mol} \rightarrow 277g$

 $x \text{ mol} \rightarrow 8.07$

 $x = \frac{8.07}{277} = 0.029$ moles

- Ans. (a): When potassium permanganate (KMnO₄)| 129. 1 mole of H₂ and 2 moles of I₂ are taken initially in a two liter vessel. The number of moles of H₂ at equilibrium is 0.2. Then, the number of moles of I2 and HI at equilibrium are-
 - (a) 1.2, 1.6
- (b) 1.8, 1.0
- (c) 0.4, 2.4
- (d) 0.8, 2.0

BCECE-2008, UP CPMT-2006

Ans. (a):

Intial

1mol 2mol

At, equlibrium

0.2 2 - 0.8 2×0.8

 $1.2 \, \text{mol}$ $1.6 \, \text{mol}$

The numbers of moles of I₂ and HI at equilibrium are 1.2 moles and 1.6 moles respectively.

130. In the reaction,

$$4NH_{3(g)} + 5O_{2(g)} \longrightarrow 4NO_{(g)} + 6H_2O_{(i)}$$

when 1 mole of ammonia and 1 mole of O2 are made to react to completion

- (a) all the oxygen will be consumed
- (b) 1.0 mole of NO will be produced
- (c) 1.0 mole of H₂O is produced
- (d) all the ammonia will be consumed

NEET-1998

Ans. (a):

$$4NH_3 + 5O_2 \rightarrow 4NO + 6H_2O$$

$$1 \text{ NH}_3 + 1.25\text{O}_2 \rightarrow 1 \text{NO} + 1.5 \text{ H}_2\text{O}$$

When 1 mole of NH₃ reacts with 1.25 moles of O₂ it produces 1 mole of NO and 1.5 moles of H₂O. When one mole of ammonia and one mole of oxygen are made to react to completion, then all the oxygen is consumed.

KMnO₄ reacts with oxalic acid according to the equation:

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \rightarrow 2Mn^{2+} + 10CO_2 + 8H,O$$

Here 20 mL of 0.1 M KMnO₄ is equivalent to:

- (a) $20 \text{mL of } 0.5 \text{M H}_2 \text{C}_2 \text{O}_4$
- (b) $50 \text{mL of } 0.5 \text{M H}_{2} \text{C}_{2} \text{O}_{4}$
- (c) $50 \text{mL of } 0.1 \text{M H}_{2}\text{C}_{2}\text{O}_{4}$
- (d) $20 \text{mL of } 0.1 \text{MH}_{2} \text{C}_{2} \text{O}_{4}$

AIIMS-2013

Ans. (c):

$$2MnO_4^- + 5C_2O_4^{2-} + 16H^+ \longrightarrow 2Mn^{2+} + 10CO_2 + 8H_2O$$

At NTP

 2×22.4 L reacts with 5×22.4 L of oxalic acid.

20 ml of 0.1 KMnO₄ reacts with oxalic acid, $= \frac{5 \times 22.4 \times 20}{2 \times 22.4} = 50 \,\text{ml}$

So, the correct option is 50 ml of 0.1 M oxalic acid.

Atomic Structure

Nature of electromagnetic 2.1 radiation

- The wavelength of visible light is:
 - (a) 2000Å-3700Å
- (b) 7800Å-8900Å
- (c) 3800Å-7600Å
- (d) None of these

AIIMS-1998

Ans. (c): The visible spectrum is the portion of the electromagnetic spectrum that is visible to the human eye. Electromagnetic radiation in this range of wavelengths is called visible light or simple light. A typical human eye will respond to wavelengths from about.

380 to 700 nm or 3800Å – 7600Å

The visible spectrum is VIBGYOR. Violet has the shortest wavelength, at around 380 nanometers, and red has the longest wavelength, at around 700 nanometers in this spectrum.

- The value of Planck's contant is 6.63×10^{-34} Js. Speed of light is 3×10^{17} nm s⁻¹. Which a value is closed to the wavelength in nanomter of a quantum of light with frequency of 6×10¹⁵ s⁻¹?
 - (a) 50
- (b) 75
- (c) 10
- (d) 25

NEET-2013

Ans. (a): We know that -

$$c = v\lambda$$

$$\lambda = \frac{c}{v}$$

$$\lambda = \frac{3 \times 10^{17}}{6 \times 10^{15}} = 50 \text{nm}$$

- The value of Planck's constant is 6.63×10^{-34} Js. The velocity of light is $3.0 \times 10^8 \text{ ms}^{-1}$. Which value is closest to the wavelength in nanometers of a quantum of light with frequency of $8\times10^{15}s^{-1}$?
 - (a) 2×10^{-25}
- (b) 5×10^{-18}
- (c) 4×10^{1}
- (d) 3×10^7

NEET-2003

Ans. (c): Given that -

$$c = 3 \times 10^8 \text{ m/s}$$

$$\lambda = 8 \times 10^{15} \text{ s}^{-1}$$

We know that,

$$\lambda = \frac{1}{2}$$

$$\lambda = \frac{3 \times 10^8}{8 \times 10^{15}} = 0.375 \times 10^{-7} \, \text{m}$$

$$= 0.375 \times 10^{-7} \times 10^{9} \text{ nm}$$

$$= 0.375 \times 10^2 \text{ nm}$$

- = 37.5 nm
- $\approx 4 \times 10^1 \text{ nm}$

- 4. A particular station of All India Radio, New Delhi, broadcasts on frequency of 1,368 kHz (kilohertz). The wavelength of the electromagnetic radiation emitted by the transmitter is [speed of light, $c = 3.0 \times 10^8 \text{ m s}^{-1}$]
 - (a) 21.92 cm
- (b) 219.3 m
- (c) 219.2 m
- (d) 2192 m

NEET-2021

Ans. (b) : We know that –

Wave length
$$(\lambda) = \frac{c}{v}$$

$$\lambda = \frac{3 \times 10^8}{1368 \times 10^3} = 219.298 \text{m} = 219.3 \text{ m}$$

2.2 **Photoelectric effect:**

The energy required to overcome the attractive 5. forces on the electrons, w, of some metals is listed below. The number of metals showing photoelectric effect when light of 300 nm wavelength falls on it is

 $(1eV = 1.6 \times 10^{-19} \text{ J})$

Metal Li Na K Mg Cu Ag Fe Pt W w(eV) 2.4 2.3 2.2 3.7 4.8 4.3 4.7 6.3 4.75

(d) 4

- (a) 6
- (c) 5

AP EAMCET (Medical) - 2013

Ans. (d): Given:

wavelength (
$$\lambda$$
) = 300 nm = 300×10⁻⁹ m 1 eV = 1.6 × 10⁻¹⁹ J

: Energy of a photon of radiation of wavelength 300nm will be -

$$E = hv$$

$$E = \frac{hc}{a}$$

or
$$E = \frac{6.6 \times 10^{-34} (JS) \times 3 \times 10^8 (ms^{-1})}{300 \times 10^{-9} m}$$
or
$$E = 6.6 \times 10^{-19} J$$

or
$$E = 6.6 \times 10^{-19} I$$

$$E = \frac{6.6 \times 10^{-19}}{1.6 \times 10^{-19}} eV$$

or
$$E = 4.14 \text{ eV}$$

There are 4 metals for which the energy required to overcome the attractive forces on the electrons, w, is less than 4.14eV, the energy of light of wavelength 300 nm. Thus the number of metals showing a photoelectric effect is 4.

The work functions of Ag, Mg, K and Na respectively in eV are 4.3, 3.7, 2.25, 2.30, When an electromagnetic radiation of wavelength of 300 nm is allowed to fall on these metal surface, the number of metals from which the electrons are ejected is $(1ev = 1.6022 \times 10^{-19} J)$

- (a) 4
- (b) 3
- (c) 2

(d) 5 AP EAMCET-2017

Ans. (b): Given that,

$$\lambda = 300 \text{ nm} = 300 \times 10^{-9} \text{ m}$$

$$E = \frac{hc}{\lambda}$$

$$E = \frac{6.6 \times 10^{-34} \times 3 \times 10^8}{300 \times 10^{-9}}$$

$$E = \frac{19.8 \times 10^{-26}}{300 \times 10^{-9}}$$

 $E = 6.6 \times 10^{-19}$ Joule

And work function for Ag, Mg, K and Na in Joules are – Ag = $4.3 \times 1.6022 \times 10^{-19} = 6.89 \times 10^{-19}$ Joule Mg = $3.7 \times 1.6022 \times 10^{-19} = 5.93 \times 10^{-19}$ joule K = $2.25 \times 1.6022 \times 10^{-19} = 3.60 \times 10^{-19}$ joule Na = $2.30 \times 1.6022 \times 10^{-19} = 3.68 \times 10^{-19}$ Joule

$$Ag = 4.3 \times 1.6022 \times 10^{-19} = 6.89 \times 10^{-19}$$
 Joule

$$|K| = 2.25 \times 1.6022 \times 10^{-19} = 3.60 \times 10^{-19}$$
 ioul

$$Na = 2.30 \times 1.6022 \times 10^{-19} = 3.68 \times 10^{-19}$$
 Joule

Thus Mg, K and Na metal will eject electron only when $W \leq E_{(300)}$.

Hence the option (b) is correct

A bulb emitted electromagnetic radiation of 660 nm wavelength. The total energy of radiation is 3×10^{-18} J. The number of emitted photon will be:

 $(h = 6.6 \times 10^{-34} \text{ Js, } c = 3 \times 10^8 \text{ m/s})$

- (a) 1
- (b) 10
- (c) 100
- (d) 1000

AIIMS 26 May 2019 (Morning)

Ans. (b): Given that, total energy of radiation = 3×10^{-18} J

$$h = 6.6 \times 10^{-34} \text{ Js}, c = 3 \times 10^8, \lambda = 660 \times 10^{-9}$$

Number of photons emitted = n

We know that,

$$E = \frac{nhc}{\lambda}$$

Where, h = the plank's constant

c = the speed of light

 λ = wavelength

Now, by substituting the value of these, we get-

$$3 \times 10^{-18} = \frac{6.6 \times 10^{-34} \times 3 \times 10^8 \times n}{660 \times 10^{-9}}$$
$$n = \frac{30}{3} = 10$$

Assertion: Threshold frequency maximum frequency required for the ejection of electron from the metal surface.

> Reason: Threshold frequency is characteristic of a metal.

- (a) If both Assertion and Reason are correct and the Reason is the correct explanation of
- (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
- (c) If Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason are incorrect.

AIIMS-26 May, 2018

Ans. (d): Threshold frequency is a minimum frequency required for the emission of electron from the metal surface.

9. Assertion: All photons possess the same amount of energy.

Reason: Energy of photon does not depend upon wavelength of light used.

- (a) If both Assertion and Reason are correct and the Reason is a correct explanation of the
- (b) If both Assertion and Reason are correct but Reason is not a correct explanation of the
- (c) If the Assertion is correct but Reason is incorrect.
- (d) If both the Assertion and Reason, are incorrect.
- (e) If the Assertion is incorrect but the Reason is

AIIMS-1998

Ans. (d): Energy of a photon = hv

$$v = \frac{c}{\lambda}$$

Hence, $E = \frac{hc}{\lambda}$

So, energy depends on wavelength.

- Find the frequency of light that corresponds to photons of energy 5.0×10⁻⁵ erg?
 - (a) $7.5 \times 10^{-21} \text{ sec}^{-1}$ (b) $7.5 \times 10^{-21} \text{ sec}$ (c) $7.5 \times 10^{21} \text{ sec}^{-1}$ (d) $7.5 \times 10^{21} \text{ sec}$

AIIMS-2010

Ans. (c): We know that, E = hv.

$$v = \frac{E}{h} = \frac{5.0 \times 10^{-5} \text{ erg}}{6.63 \times 10^{-34} \text{ Js}}$$

$$v = \frac{5.0 \times 10^{-5} \text{ erg}}{6.63 \times 10^{-34} \times 10^{7} \text{ erg sec}}$$

$$\therefore [1J = 10^{7} \text{ erg}]$$

$$v = 7.54 \times 10^{21} \text{ sec}^{-1}$$

- Ratio of energy of photon of wavelength 3000Å and 6000Å is
 - (a) 3:1
- (b) 2:1
- (c) 1:2
- (d) 1:3

AIIMS-2012

Ans. (b): Given that, ratio of energy of photon of wavelength 3000Å and 6000Å

$$E = \frac{hc}{\lambda}$$

$$\frac{E_1}{E_2} = \frac{\lambda_2}{\lambda_1} = \frac{6000}{3000} = 2:1$$

- According to law of photochemical equivalence the energy absorbed (in ergs/mole) is given as (h = 6.62×10^{-27} ergs, c = 3×10^{10} cm s⁻¹, $N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$
 - (a) $\frac{1.196 \times 10^8}{\lambda}$ (b) $\frac{2.859 \times 10^5}{\lambda}$

(c)
$$\frac{2.859 \times 10^{16}}{\lambda}$$

(d)
$$\frac{1.196 \times 10^{16}}{\lambda}$$

Ans. (a): Given data,

$$h = 6.62 \times 10^{-27} \text{ ergs}$$

$$c = 3 \times 10^{10} \text{ cm s}^{-1}$$

$$N_A = 6.02 \times 10^{23} \text{ mol}^{-1}$$

$$E = \frac{\text{hcN}_A}{\lambda}$$

$$= \frac{6.62 \times 10^{-27} \times 3 \times 10^{10} \times 6.02 \times 10^{23}}{\lambda}$$

$$= \frac{1.196 \times 10^8}{\lambda} \text{ ergs mol}^{-1}.$$

- The energies E₁ and E₂ of two radiations are 25 eV and 50 eV respectively. The relation between their wavelengths i.e. λ_1 and λ_2 will be
 - (a) $\lambda_1 = \lambda_2$
- (b) $\lambda_1 = 2\lambda_2$
- (c) $\lambda_1 = 4\lambda_2$
- (d) $\lambda_1 = \frac{1}{2}\lambda_2$

NEET-2011

Ans. (b): Given,
$$E_1$$
= 25ev and E_2 = 50 ev
$$E_1 = \frac{hc}{\lambda_1}, E_2 = \frac{hc}{\lambda_2}$$
By dividing E_1 and E_2

$$\Rightarrow \frac{25}{50} = \frac{\lambda_2}{\lambda_1}$$

$$\Rightarrow \frac{\lambda_2}{\lambda_1} = \frac{1}{2}$$

$$\Rightarrow \lambda_1 = 2\lambda_2$$

- For given energy, $E = 3.03 \times 10^{-19}$ Joules 14. corresponding wavelength is $(h = 6.626 \times 10^{-34}) \text{ J sec, } c = 3 \times 10^8 \text{ m/sec}$
 - (a) 65.6 nm
- (b) 6.36 nm
- (c) 3.4 nm
- (d) 656 nm
 - **NEET-2000**

Ans. (d): We know that-

$$E = \frac{hc}{\lambda}$$
Given that –
$$E = 3.03 \times 10^{-19} J$$

$$h = 6.626 \times 10^{-34} Js$$

$$c = 3 \times 10^{8} m/s$$

$$\lambda = \frac{6.6 \times 10^{-34} \times 3 \times 10^{8}}{3.03 \times 10^{-19}}$$

$$= 6.56 \times 10^{-7} m = 656 \times 10^{-9} m = 656 nm$$

2.3 **Spectrum of the hydrogen** atom.

- 15. Wavelength of a particular transition for H atom is 400 nm. What can be wavelength of He⁺ for same transition?
 - (a) 400 nm
- (b) 100 nm
- (c) 1600 nm
- (d) 200 nm

AIIMS-26 May, 2018

Ans. (b): According to the Rhyberg's equation—

(c)
$$\frac{2.859 \times 10^{16}}{\lambda}$$
 (d) $\frac{1.196 \times 10^{16}}{\lambda}$

Karnataka NEET-2013

(a): Given data,
 $62 \times 10^{-27} \text{ ergs}$
 $\times 10^{10} \text{ cm s}^{-1}$
 $6.02 \times 10^{23} \text{ mol}^{-1}$
 $E = \frac{\text{hcN}_A}{\lambda}$

(d) $\frac{1.196 \times 10^{16}}{\lambda}$

Karnataka NEET-2013

Ans. (b): According to the Rhyberg's equation—

 $\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) \times Z^2$
 $\frac{1}{400} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) (1)^2$ (i)

On dividing equation (i) by (ii), we get

$$\lambda_{\text{He+}} = \frac{400}{2^2} = \frac{400}{4} = 100 \,\text{nm}$$

- What is maximum wavelength of line of 16. Balmer series of hydrogen spectrum? $(R=1.09\times10^7 m^{-1})$
 - (a) 400 nm
- (b) 654 nm
- (c) 486 nm
- (d) 434 nm

AIIMS-26 May, 2018

Ans. (b): For maximum wavelength in the Balmer series energy difference is lowest.

Thus,
$$\overline{v} = R \times Z2$$
 $\left(\frac{1}{n^2} - \frac{1}{n_2^2}\right)$, $n_2 = 3$ and $n_1 = 2$

$$\therefore \frac{1}{\lambda} = 1.09 \times 10^7 \times 1^2 \left(\frac{1}{2^2} - \frac{1}{3^2}\right)$$

$$\Rightarrow \frac{1}{\lambda} = 1.09 \times 10^7 \times 1 \left(\frac{1}{4} - \frac{1}{9}\right)$$

$$\Rightarrow 1.09 \times 10^7 \times 1 \left(\frac{5}{36}\right)$$

$$\Rightarrow \lambda = \frac{36}{5 \times 1.09 \times 10^{7m}}$$

$$\Rightarrow 6.60 \times 10^{-7} \text{ m} \Rightarrow 660 \text{ nm}$$

- Which transition in the hydrogen atomic spectrum will have the same wavelength as the transition, n=4 to n=2 of He⁺ spectrum?
 - (a) n=4 to n=3
- (b) n=3 to n=2
- (c) n=4 to n=2
- (d) n=2 to n=1

AIIMS-2016

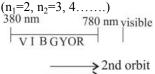
Ans. (d):
$$\because \frac{1}{\lambda} = z^2 . R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\therefore \text{ For He}^+ \text{ ion, } z=2$$

$$\frac{1}{\lambda} = 2^2 R \left[\frac{1}{2^2} - \frac{1}{4^2} \right]$$

$$\frac{1}{\lambda} = 4 \times R \times \frac{3}{16} = \frac{3}{4} R$$

The same value for H-atom is possible when electron jumps from n=2 to n=1 i.e.


$$\frac{1}{\lambda} = 1 \times R \left[\frac{1}{1} - \frac{1}{4} \right] \Rightarrow \frac{3}{4} R$$

18. In Bohr series of lines of hydrogen spectrum, the third line from the red end corresponds to which one of the following inter- orbit jumps of the electron for Bohr orbits in an atom of hydrogen

- (a) $5\rightarrow 2$
- (b) $4 \rightarrow 1$
- (c) $2 \rightarrow 5$
- (d) $3 \rightarrow 2$

AIIMS-2017

Ans. (a): In hydrogen spectrum coloured radiaton means visible radiation corresponds to Balmer series.

 2^{nd} line from the red end, it means $5\rightarrow 2$

- If radius of second Bohr orbit of the He⁺ ion is 333. The spectrum of Helium is expected to be similar to that of-
 - (a) Li
- (b) H
- (c) Na
- (d) He⁺

NEET-1998

Ans. (a): The spectrum of any element depends upon the no. of electron in outer shell.

Electronic configuration of He = $_1$ s²

Reason:- Li⁺ has the same electronic configuration like

 $Li^+ = 1s^2$, $2s^1$ (Removing of one electron form outer shell) $Li^+ = 1s^2$ i.e $Li^{+} = 2$

- Spectrum of Li²⁺ is similar to that of 20.
 - (a) H
- (b) Be
- (c) He
- (d) Ne

AIIMS-2002

Ans. (a): Electronic configuration of Li is 1s² 2s¹ and of Li²⁺ is 1s¹. That is similar to the electronic configuration of H (1s¹) Which has only one electronic in its valance shell, thus it has spectrum similar to that of H.

- In hydrogen atomic spectrum, a series limit is found at 12186.3 cm⁻¹. Then, it belongs to
 - (a) Lyman Series
- (b) Balmer series
- (c) Paschen series
- (d) Brackett series

AIIMS-2014

Ans. (c): Series limit is the last line of the series i.e. $n_2 = \infty$

$$\vec{v} = \frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right] = R \left[\frac{1}{n_1^2} - \frac{1}{\infty^2} \right]$$

$$\vec{v} = \frac{R}{2}$$

$$12186.3 = \frac{109677.76}{n_1^2}$$

$$n_1^2 = \frac{109677.76}{12186.3} = 9, \ n_1 = 3$$

The line belongs to Paschen series.

- If r is the radius of the first orbit, the radius of nth orbit of H-atom is given by
 - (a) rn²
- (b) rn
- (c) r/n
- (d) r^2n^2

NEET-1988

Ans. (a): Radius of nth orbit= r_1n^2 (for H-atom).

- 23. Number of spectral lines of Lyman series of electron when it jumps from 6 to first level (in Lyman series), is
 - (a) 9
- (b) 12
- (c) 15
- (d) 18

UP CPMT-2009

Ans. (c): Number of spectral lines =
$$\frac{n(n-1)}{2}$$

= $\frac{6(6-1)}{2}$
= 15

What is the wave number of 4th line in Balmer 24. series of hydrogen spectrum?

 $(R = 1,09,677 \text{ cm}^{-1})$

- (a) $24,630 \text{ cm}^{-1}$
- (b) $24,360 \text{ cm}^{-1}$
- (c) $24,730 \text{ cm}^{-1}$
- (d) $24,372 \text{ cm}^{-1}$

UP CPMT-2008

Ans. (d):
$$\overline{v} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

For Balmer series $n_1 = 2$ and for 4^{th} line in Balmer series $n_2 = 6$

$$R = 109677 \text{ cm}^{-1}$$

$$\overline{v} = 109677 \left(\frac{1}{2^2} - \frac{1}{6^2} \right)$$

$$= 109677 \left(\frac{1}{4} - \frac{1}{36} \right)$$

$$\overline{v} = 24.372 \text{ cm}^{-1}$$

- 25. What are the values of n₁ and n₂ respectively for H_B line in the Lyman series of hydrogen atomic spectrum?
 - (a) 3 and 5
- (b) 2 and 3
- (c) 1 and 3
- (d) 2 and 3

UP CPMT-2008

Ans. (c): H_{β} line is formed when electron jumps from 3rd orbit in Lyman series.

$$n_1 = 1, n_2 = 3$$

26. Match the type of series given in Column I with the wavelength range given in Column II and choose the correct option

choose the correct option.		
Column I	Column II	
A. Lyman	1. Ultraviolet	
B. Paschen	2. Near infrared	
C. Balmer	3. Far infrared	
D. Pfund	4. Visible	

Codes

- (a) 1 2
- (b) 4 3
- (c) 3 2
- (d) 4 3 2 1

JIPMER-2017

Ans. (a): The correct match is

- $(A) \rightarrow Lyman \rightarrow (1)$ Ultraviolet
- (B) \rightarrow Paschen \rightarrow (2) Near infrared
- $(C) \rightarrow Balmer \rightarrow (4) Visible$
- (D) \rightarrow Pfund \rightarrow (3) Far infrared

- 27. What is the wave number of 4th line in Balmer series of hydrogen spectrum? (R = 1, 09, 677 cm⁻¹)
 - (a) $24,630 \text{ cm}^{-1}$
- (b) $24.360\,\mathrm{cm}^{-1}$
- (c) $24,730 \text{ cm}^{-1}$
- (d) $24,372 \text{ cm}^{-1}$

JIPMER-2009

Ans. (d):
$$V = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

For Balmer series $n_1 = 2$ and for 4^{th} line in Balmer series $n_2 = 6$

R = 109677 cm⁻¹

$$\overline{V}$$
 = 109677 $\left(\frac{1}{2^2} - \frac{1}{6^2}\right)$
= 109677 $\left(\frac{1}{4} - \frac{1}{36}\right)$

$$\overline{V} = 24,372 \text{ cm}^{-1}$$

- 28. What are the values of n₁ and n₂ respectively for H_β line in the Lyman series of hydrogen atomic spectrum 44?
 - (a) 3 and 5
- (b) 2 and 3
- (c) 1 and 3
- (d) 2 and 4

JIPMER-2009

Ans. (c) : H_B line is formed when electron jumps from 3rd orbit to 1st orbit in Lyman Series

∴
$$n_1 = 1$$
, $n_2 = 3$

- 29. Which is the shortest wavelength line in the Lyman series of the hydrogen spectrum?

 (R=1.097×10⁻²nm⁻¹)
 - (a) 94.21 nm
- (b) 91.16 nm
- (c) 911.6 nm
- (d) 933.6 nm

JIPMER-2004

Ans. (b): For Lyman Series
$$\frac{1}{\lambda} = R \left(\frac{1}{(1)^2} - \frac{1}{n^2} \right)$$

Hence for λ to be smallest n should be greatest

$$\frac{1}{\lambda_{min}} = 1.097 \times 10^{-2} \left(1 - \frac{1}{\infty 2} \right)$$

$$\Rightarrow 1.097 \times 10^{-2}$$

or

$$\lambda_{\min} = \frac{1}{1.097 \times 10^{-2}} = 91.16 \,\text{nm}$$

- 30. What will be the longest wavelength line in Balmer series of spectrum?
 - (a) 546 nm
- (b) 656 nm
- (c) 566 nm
- (d) 356 nm
 - NEET-1996

Ans. (b): The longest wavelength means that lowest energy. We known that relation for wavelength

$$\frac{1}{\lambda} = R_H \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right)$$

Here $n_1 = n_2$ $n_2 = 3$

RH is Rydberg constant = 109677 cm⁻¹

$$\frac{1}{\lambda} = 109677 \left(\frac{1}{(2)^2} - \frac{1}{(3)^2} \right) = 15233$$
Or
$$\lambda = \frac{1}{15233} = 6.56 \times 10^{-5} \text{ cm}$$

- $\Rightarrow 6.56 \times 10^{-7} \ \lambda \Rightarrow 656 \ \text{nm}$ 31. The wavelength of a spectral line emitted by hydrogen atom in the Lyman series is $\frac{16}{15R}$ cm.

 What is the value of n_2 ? (R = Rydberg constant)
 - (a) 2
- (b) 3
- (c) 4
- (d) 1

AIIMS-2011

Ans. (c): For Lyman series.

$$\frac{1}{\lambda} = R \left[\frac{1}{n_1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{15R}{16} = R \left[\frac{1}{1^2} - \frac{1}{n_2^2} \right]$$

$$\frac{15R}{16R} = \left[\frac{n_2^2 - 1}{n_2^2} \right]$$

$$\frac{15}{16} = \left[\frac{n_2^2 - 1}{n_2^2} \right]$$

$$16n_2^2 - 15n_2^2 - 16 = 0$$

$$n_2^2 - 16 = 0$$

- Bohr model of a hydrogen atom and its postulates.
- 32. 8 pm, what is the radius of third Bohr orbit of Li²⁺ ion?
 - (a) 158.7 Å^{0}

 $n_2 = 4$

- (b) 158.7 pm
- (c) 15.87 pm
- (d) 1.587 pm

NEET-17.07.2022

Ans. (b):
$$r = \frac{n^2}{Z} \times a_0$$

For He^+ , $n = 2$
 $Z = 2$
 $r_{He^+} = 105.8 \text{ pm}$
 $r_{He^+} = \frac{(2)^2}{2} \times a_0$
 $105.8 = \frac{4 \times a_0}{2}$
 105.8×2

$$a_0 = \frac{105.8 \times 2}{4} = 52.9$$
For Li²⁺, n = 3, Z = 3
$$r_{Li^{2+}} = \frac{3^2}{3} \times a_0$$

 $= 3 \times 52.9 = 158.7 \text{ pm}$

33. Which of the following corresponds to the energy of the possible excited state of hvdrogen?

- (a) -13.6 eV
- (b) 13.6 eV
- (c) -3.4 eV
- (d) 3.4 eV

NEET-2002 37.

Ans. (c): Energy level of an atoms are

$$E_n = -13.6Z^2 / n^2 \text{ eV}$$

Where Z = atomic number

Energy level (n) = 1, 2, 3, ...

For hydrogen atom, Z = 1

And first excited state, n = 2

$$\therefore E = \frac{-13.6 \times 1^2}{2^2}$$

$$E = -3.4 \text{ eV}$$

Assertion: A spectral line will be seen for a 2P_x $\rightarrow 2p_v$ transition.

Reason: Energy is released in the form of waves of light when the electron drops from 2p_x to 2p_y

- (a) If both Assertion and Reason are true and the Reason is a correct explanation of the Assertion
- (b) If both Assertion and Reason are true but Reason is not a correct explanation of the Assertion
- (c) If Assertion is true but the Reason is false
- (d) If both Assertion and Reason are false

AIIMS-1996

Ans. (d): In this case both assertion and reason are false. Both $2p_x$ and $2p_y$ orbitals have equal energy (2p) orbitals are degenerate), there is no possibility of electron transition and hence, no energy is released and thus, no spectral line will be observed.

The maximum energy is possessed by an electron, when it is present

- (a) in first excited state
- (b) in nucleus
- (c) at infinite distance from the nucleus
- (d) in ground energy state

AIIMS-1996

Ans. (c): When electron is placed at an infinite distance from the nucleus the energy increases sharply.

The potential energy of the electron is minimum at equilibrium distance from the nucleus.

What is the energy (kJ/mol) associated with the de-excitation of an electron from n=6 to n=2 in He⁺ ion?

- (a) 1.36×10^6
- (b) 1.36×10^3
- (c) 1.16×10^3
- (d) 1.78×10^3

AIIMS-27 May, 2018

Ans. (c): Given that,

$$n = 6 \text{ to } n = 2$$

 $E = 13.6 \times Z_1^2 \left(\frac{1}{4} - \frac{1}{36} \right)$
 $= 13.6 \times 4 \left(\frac{9-1}{36} \right)$

=
$$13.6 \times 4 \times \frac{8}{36}$$

= $12.08 \text{ eV} \times 96 \text{ kJ/mol}$
= $1.16 \times 10^3 \text{ KJ/mol}$

In Second orbit of H atom the velocity of e is:

- (a) 2.18×10^6 m/sec
- (b) 3.27×10^6 m/sec
- (c) 10.9×10^5 m/sec
- (d) 21.8×10^6 m/sec

AIIMS-27 May, 2018 **AIIMS-2001**

Ans. (c):
$$V = 2.18 \times 10^6 \times \frac{z}{n}$$

 $V = 2.18 \times 10^6 \times \frac{1}{2} = 10.9 \times 10^5 \text{ m/sec.}$
Hence, $V = 10.9 \times 10^5 \text{ m/sec}$

38. Based on equation,
$$E = -2.178 \times 10^{-18} J \left(\frac{Z^2}{n^2} \right)$$

certain conclusions are written. Which of them is not correct?

- (a) Larger the value of n, the larger is the orbit radius.
- (b) Equation can be used to calculate the change in energy when the electron changes orbit.
- (c) For n=1, the electron has a more negative energy than it does for n=6 which means that the electron is more loosely bound in the smallest allowed orbit.
- (d) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.

AIIMS-2015

Ans. (c): For n=1, the electron has a more negative energy than it does for n=6 which means that the electron is more loosely bound in the smallest allowed orbit.

The energy of electron in first energy level is 39. -21.79×10⁻¹² erg per atom. The energy of electron in second energy level is:

- (a) $-54.47 \times 10^{-12} \text{ erg atom}^{-1}$
- (b) $-5.447 \times 10^{-12} \text{ erg atom}^{-1}$
- (c) $-0.447 \times 10^{-12} \text{ erg atom}^{-1}$
- (d) $-0.05447 \times 10^{-12} \text{ erg atom}^{-1}$

AIIMS-2000

Ans. (b): Assume that atom to be hydrogen like, Energy of nth energy level

$$E_n = \frac{-E_1}{x^2}, \text{ where } E_1 \text{ is energy of first energy level}$$

$$E_2 = \frac{-E_1}{2^2} = \frac{-E_1}{4} = \frac{-21.79 \times 10^{-12}}{4}$$

$$E_2 = \frac{-E_1}{2^2} = \frac{-E_1}{4} = \frac{-21.79 \times 10^{-12}}{4}$$

 $=-5.447\times10^{-12}$ erg per atom

- 40. In the Bohr hydrogen atom, the electronic 44. transition emitting light of longest wave length
 - (a) n = 2 to n = 3
- (b) n = 4 to n = 3
- (c) n = 3 to n = 2
- (d) n = 2 to n = 1

AP - EAMCET - (Medical)-1997

Ans. (b): The spectrum of hydrogen atom obey the following formula-

$$\overline{\mathbf{v}} = \mathbf{R}_{\mathrm{H}} \left(\frac{1}{n_{1}^{2}} - \frac{1}{n_{2}^{2}} \right)$$

Where $R_H = Rydberg$ constant

In the Paschen series of hydrogen atom spectrum, the minimum energy difference found in n = 4 to n = 3 due to which they have longest wavelength.

- The energy of an electron in second Bohr orbit of hydrogen atom is-
 - (a) $-5.44 \times 10^{-19} \text{ eV}$
- (b) -5.44×10^{-19} cal
- (c) $-5.44 \times 10^{-19} \text{ kJ}$
- (d) $-5.44 \times 10^{-19} \text{ J}$

AIIMS 26 May 2019 (Evening)

Ans. (d) : For H atom,
$$E_X = \frac{-13.6z^2}{n^2} eV$$

For second orbit, n = 2

z = 1 (for hydrogen)

$$\therefore E_2 = \frac{-13.6 \times (1)^2}{(2)^2} = -\frac{13.6}{4} \text{ eV}$$

$$= \frac{-13.6 \times 1.6 \times 10^{-19}}{4} J$$

- For which of the following species, Bohr theory does not apply?
 - (a) H

- (c) H⁺
- (b) He⁺ (d) Li²⁺

AIIMS-2000

- Ans. (c): One of the limitations of Bohr's atomic model is that it does not explain the spectra of multielectron atoms all these species like H, He⁺ and Li²⁺ are iso electronic and have only one electron. Their electronic configurations are same and so their spectra is explained by Bohr's atomic model But H has 2 electron.
- 43. The ratio of the difference in energy between the first and the second Bohr orbit to that between the second and the third Bohr orbit is
 - (a) 1/2
- (b) 1/3
- (c) 4/9
- (d) 27/5

JIPMER-2012

Ans. (d) :
$$\Delta E = E_2 - E_1 = \frac{1312}{1^2} - \frac{1312}{2^2} = 1312 \left(\frac{3}{4}\right)$$

$$= E_3 - E_2 = \frac{1312}{2^2} - \frac{1312}{3^2} = 1312 \left(\frac{5}{36}\right)$$

$$\therefore E_2 - E_1 : E_3 - E_2 = \frac{3}{4} : \frac{5}{36} = 27:5$$

- Ratio of radii of second and first Bohr orbits of H atom is
 - (a) 2

(b) 4

(c) 3

(d) 5

JIPMER-2005

Ans. (b): According to Bohr's rule, $r \propto n^2$

Where r is radii and n is the number of orbit

So,
$$\frac{r_1}{r_2} = \frac{(2)^2}{(1)^2} = 4$$

Hence, ratio of radii is 4.

- 45. What will be the number of waves formed by a Bohr electron in one complete revolution in its second orbit?
 - (a) Three
- (b) Two
- (c) One
- (d) Zero

JIPMER-2016

Ans. (b):

circumference of orbit Number of waves = _ de – Broglie wavelength of electron

$$\lambda = \frac{h}{mv}$$

$$\mu = \frac{2\pi r}{\frac{h}{mv}} = \frac{2\pi}{h} \times mvr$$

$$mvr = \frac{nh}{2\pi}, \mu = \frac{2\pi}{h} \times \frac{nh}{2\pi}$$

$$\frac{1}{2\pi}$$
, $\mu = \frac{1}{h} \times \frac{1}{2\pi}$

For second orbit, n = 2

 \therefore number of waves, $\mu = 2$

- Which of the following statement do not form a 46. part of Bohr's model of hydrogen atom?
 - (a) Energy of the electrons in the orbits are quantized.
 - (b) The electron in the orbit nearest the nucleus has the lower energy.
 - (c) Electrons revolve in different orbits around the nucleus
 - (d) The position and velocity of the electrons in the orbit cannot be determined simultaneously

NEET-1989

- **Ans.** (d): According is the Heisenberg uncertainty principle, the position and velocity of the electrons in the orbit cannot be determined simultaneously. This statement is not correct according to Bohr's model because according to Bohr's model it was possible to determine both position and velocity simultaneously.
- Who modified Bohr's theory by introductin 47. elliptical orbits for electrons path?
 - (a) Rutherford
- (b) Thomson
- (c) Hund
- (d) Sommerfeld

NEET-1999

- Ans. (d): Sommerfeld modified Bohr's theory. According to him electrons move in elliptical orbits in addition to circular orbits.
- The Bohr orbit radius for the hydrogen atom (n =1) is approximately 0.530Å. The radius for the first excited state (n=2) orbit is (in Å)

- (a) 4.77
- (b) 1.06
- (c) 0.13
- (d) 2.12

NEET-1998

Ans. (d): Radius of hydrogen atom = 0.53Å Number of excited state (n) = 2

Atomic number of hydrogen atom (Z)=1

We know that the Bohr radius.

$$r = \frac{n^2}{Z} \times r_n = \frac{(2)^2}{1} \times 0.530$$

= 4×0.530
= 2.12Å

- 49. In a Bohr's model of an atom, when an electron jumps from n = 1 to n = 3, how much energy will be emitted or absorbed?
 - (a) 2.389×10^{-12} ergs (c) 2.15×10^{-11} ergs
- (b) $0.239 \times 10^{-10} \text{ ergs}$
- (d) 0.1936×10^{-12} ergs

NEET-1996

Ans. (d): According to Bohr's model of atom

$$\Delta E = 2.18 \times 10^{-18} \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) J$$

$$= 2.18 \times 10^{-18} \left(\frac{1}{2} - \frac{1}{9} \right) J$$

$$= 1.9 \times 10^{-18} J$$

$$= 1.9 \times 10^{-18} \times 10^7 \text{ erg}$$

$$= 0.19 \times 10^{-10} \text{ erg}$$

- According to the Bohr theory, which of the **50.** following transitions in the hydrogen stom will give the ratio the least energic photon?
 - (a) n = 6 to n = 1
- (b) n = 5 to n = 4
- (c) n = 6 to n = 5
- (d) n = 5 to n = 3

NEET-Mains 2011

Ans. (c): We know that

$$\Delta E \propto \left[\frac{1}{n_1^2} - \frac{1}{n_2^2}\right]$$
, where $n_2 > n_1$

∴ n=6 to n=5 will give least energetic photon

- The energy of second Bohr orbit of the 51. hydrogen atom is -328 kJ mol⁻¹. hence the energy of fourth Bohr orbit would be
 - (a) -41 kj mol^{-1}
- (b) -82 kj mol^{-1}
- (c) -164 ki mol^{-1}
- (d) $-1312 \text{ ki mol}^{-1}$

NEET-2005

Ans. (b): Energy of electron in nth orbit of hydrogen

$$E_n = -\frac{E}{n^2}$$

Where E is a constant

$$E_2 = \frac{E}{2^2} = -328 \,\text{kJ mol}^{-1}$$

 $E=4\times328 \text{ kJ mol}^{-1}$

$$E_4 = \frac{-E}{4^2} = \frac{-4 \times 328}{16} \text{ kJ mol}^{-1}$$

52. The radius of which of the following orbit is same as that of the first Bohr's orbit of hydrogen atom

- (a) $He^+ (n = 2)$ (c) $Li^{2+} (n = 3)$
- (b) $Li^{2+}(n=2)$ (d) $Be^{4+}(n=2)$

UP CPMT-2013

Ans. (d): For H-like particles, the radii of the first stationary states are given by the expression

$$r_{n} = \frac{a_{0}n^{2}}{Z}$$

For H-atom, n = 1 and Z = 1

- $r_n=a_0=Bohr$
 - radius = 52.9 pm.
- (a) For He^+ ion, n = 2 and Z = 2

$$r_{n} = \frac{a_{0}(2)^{2}}{2} = 2a_{0}$$

(b) For Li^{2+} ion, n = 2 and Z = 3

$$\therefore r_{n} = \frac{a_{0}(2)^{2}}{3} = \frac{4a_{0}}{3}$$

$$\therefore r_n = \frac{a_0(3)^2}{3} = 3a_0$$
(d) For Be⁴⁺ ion, n = 2 and Z = 4

$$\therefore$$
 r_n = $\frac{a_0(2)^2}{4}$ = a₀ = Bohr radius = 52.9 pm

- The energy of second Bohr orbit of the hydrogen atom is - 328 kJ mol⁻¹; hence the energy of fourth Bohr orbit would be
 - (a) -41kJ mol^{-1}
- (b) $-1312 \text{ kJ mol}^{-1}$
- $(c)\ -164kJ\ mol^{-1}$
- (d) -82 kJ mol^{-1}

UPTU/UPSEE-2007

Ans. (d): Energy of 2^{nd} orbit=-328 kJ/mol

Now, energy of 4th orbit will be $= -\frac{328}{4} = -82 \text{ kJ mol}^{-1}$

- The energy of an electron in the nth Bohr orbit of hydrogen atom is
 - (a) $-\frac{13.6}{n^4}$ eV (b) $-\frac{13.6}{n^3}$ eV

 - (c) $-\frac{13.6}{n^2}$ eV (d) $-\frac{13.6}{n}$ eV

NEET-1992

Ans.(c): Energy of an electron in nth Bohr orbit of hydrogen atom (E) = $-\frac{13.6}{n^2}$ eV (Z = 1)

- 2.5 **Derivation of the relations for** the energy of the electron and radii of the different orbits for Bohr's model.
- 55. The frequency of radiation emitted when the electron falls from n = 4 to n = 1 in a hydrogen atom will be (Given ionization energy of H = $2.18 \times 10^{-18} \text{ J atom}^{-1} \text{ and } h = 6.626 \times 10^{-34} \text{J s}$

 - (a) $1.54 \times 10^{15} \text{ s}^{-1}$ (b) $1.03 \times 10^{15} \text{ s}^{-1}$
 - (c) $3.08 \times 10^{15} \,\mathrm{s}^{-1}$
- (d) $2.00 \times 10^{15} \,\mathrm{s}^{-1}$

NEET-2004

$$E_n = -\frac{E_1}{n^2} = \frac{-2.18 \times 10^{-18}}{n^2} J/atom$$

$$E_1 = \frac{-2.18 \times 10^{-18}}{(1)^2} J/atom$$

$$E_4 = -\frac{2.18 \times 10^{-18}}{(4)^2} J/atom$$

On applying $\Delta E = E_1 - E_4$

$$= -2.18 \times 10^{-18} - \left[\frac{-2.18 \times 10^{-18}}{16} \right]$$
$$= -2.04 \times 10^{-18} \text{ J/atom}$$

On applying $\Delta E = hv$

$$-2.04 \times 10^{-18} = 6.626 \times 10^{-34} \times v$$

$$v = \frac{-2.04 \times 10^{-18}}{6.626 \times 10^{-34}}$$
$$v = 3.08 \times 10^{15} \text{ s}^{-1}$$

Based on equation E = -2178 $\times~10^{-15}~J$ 56.

certain conclusions are written. What of them is not correct?

- (a) Equation can be used to calculate the change in energy when the electron changes orbit.
- (b) For n=1, the electron has a more negative energy than it does for n = 6 which means that the electron is more loosely bound in the smallest allowed orbit.
- (c) The negative sign in equation simply means that the energy of electron bound to the nucleus is lower than it would be if the electrons were at the infinite distance from the nucleus.
- (d) Larger the value of n, the larger is the orbit radius.

NEET-2013

Ans. (b): For n=1 the electron has more negative energy than it does for n=6 which means that the electron is less loosely bound in the smallest allowed orbit.

We know that,

$$E = -R_H \left(\frac{Z^2}{n^2} \right)$$

If n = 1

$$E = -R_H \left(\frac{Z^2}{1} \right) = -2.178 \times 10^{-18} J$$

If n = 6

$$E = -R_{H} \left(\frac{Z^{2}}{6^{2}} \right) = \frac{-2.178}{36} \times 10^{-18} J$$
$$= -6.05 \times 10^{-20} J$$

$$\mathbf{E}_{\mathrm{n=1}} > \mathbf{E}_{\mathrm{n=6}}$$

The first emission line on hydrogen atomic 57. spectrum in the Balmer series appears at (R = Rydberg constant):

(a)
$$\frac{5R}{36}$$
 cm⁻¹

(a)
$$\frac{5R}{36}$$
 cm⁻¹ (b) $\frac{3R}{4}$ cm⁻¹

(c)
$$\frac{7R}{144}$$
 cm⁻¹

(c)
$$\frac{7R}{144}$$
 cm⁻¹ (d) $\frac{9R}{400}$ cm⁻¹

AP EAMCET (Medical) -1998

Ans. (a): The first emission line on hydrogen atomic spectrum in Balmer series contains the following

$$n_1 = 2$$
 and $n_2 = 3$

now,
$$\overline{v} = R \left(\frac{1}{n_1^2} - \frac{1}{n_2^2} \right) Cm^{-1}$$

where $-\overline{v}$ = wave number

R = Rydberg constant

$$\overline{v} = R \left(\frac{1}{4} - \frac{1}{9} \right)$$

$$\overline{\nu} = R \left(\frac{9-4}{36} \right) Cm^{-1}$$

or
$$\overline{v} = \frac{5R}{36} \text{Cm}^{-1}$$

- 58. The radius of hydrogen atom in the ground state is 0.53 Å. The radius of Li2+ ion (atomic number = 3) in a similar state is
 - (a) 0.53 Å
- (b) 1.06 Å
- (c) 0.17 Å
- (d) 0.236 Å

NEET-1995

Ans. (c): Radius of Hydrogen atom in the ground state is 0.53 Å

: Atomic number of Li is 3

$$\therefore \text{ Radius of Li}^{2+} \text{ ion} = \frac{r \times n^2}{2}$$
$$= \frac{0.53 \times 1^2}{3} = 0.17 \text{ Å}$$

2.6 **Dual nature of matter.**

- Wave nature of electrons was demonstrated by **59.**
 - (a) Schrodinger
- (b) de-Broglie
- (c) Davisson and Germer (d) Heisenberg

UP CPMT-2004 J & K CET-(1999)

- Ans. (c): (a) Schrodinger He put forward new model of atom by taking into account the de-Broglie concept of dual nature matter and Heisenberg's uncertainly principle. He described the motion of electron in threo dimensional space in the form of mathematical equation known as Schrödinger wave equation.
- (b) de-Broglie According to him, all the material particles possess wave character as well as particle character.

$$\lambda = \frac{h}{mv} (de - Broglie equation)$$

Water, $\lambda = \text{Wavelength}$

h = Planck's constant

m = mass of particle

- v = Velocity of particle
- (c) Davisson and Germer They carried out experiment to show the wave character of electrons. They observed when a beam of electrons is allowed to fall on the surface of nickel crystal are received on photographic plate, a diffraction pattern similar to that of X-rays is obtained. Since, X-rays are electromagnetic rays, it means electrons have wave character also.
- (d) Heisenberg's uncertainty principle It states that position and momentum of an electron cannot be measured accurately and simultaneously.
- :. Correct answer is (c) because wave nature of electron is demonstrated by Davission and Germer.

De-de Broglie's relationship.

- The de Broglie wavelength associated with a ball of mass 1 kg having kinetic energy 0.5 J is:
 - (a) 6.626×10^{-34} m
- (b) 13.20×10^{-34} m
- (c) 10.38×10^{-21} m
- (d) $6.626 \times 10^{-34} \text{ Å}$

AIIMS-2006

- **Ans.** (a): Given data, mass of ball = 1 kgKinetic energy (K.E) = 0.5 J
 - de-Broglie wavelength (λ) = ?

Now, as we know that,

K.E.
$$= \frac{1}{2} \text{mv}^2$$
$$0.5 = \frac{1}{2} \times 1 \times \text{v}^2$$
$$\text{v}^2 = 1$$

Therefore, de-Broglie wavelength $\lambda = \frac{h}{mv}$

$$= \frac{6.63 \times 10^{-34}}{1 \times 1} = 6.63 \times 10^{-34} \text{ m}$$

The de- Broglie wavelength of an electron in the ground state of hydrogen atoms is:

(K.E.= 13.6eV; $1ev=1.602\times10^{-19}$ J)

- (b) 33.28nm
- (b) 3.328nm
- (c) 0.3328nm
- (d) 0.0332 nm

AIIMS-2000

Ans. (c): For electron in the ground state,

$$mvr = \frac{h}{2\pi}$$
Or
$$mv = \frac{h}{2\pi r}$$

Now,
$$mv = \frac{h}{\lambda}$$

So,
$$\frac{n}{\lambda} = \frac{n}{2\pi}$$

 $\lambda = 2\pi r$

$$\lambda=2\pi r$$

 $\lambda=2\times3.14\times0.53$ Å =3.328 Å
= 3.328×10⁻¹⁰ m ·· 1 Å = 10⁻¹⁰m
= 0.3328×10⁻⁹ m
= 0.3328 nm

Atomic Structure 43 **YCT**

The de- Broglie wavelength associated with a **62.** particle of mass 10⁻⁶ Kg moving with a velocity of 10 ms⁻¹ is:

- (a) 6.63×10^{-7} m
- (b) 6.63×10^{-16} m
- (c) 6.63×10^{-21} m
- (d) 6.63×10^{-29} m

AIIMS-2001

Ans. (d): According to the de Broglie equation, $\lambda = \frac{h}{h}$

Where, h = Planck's constant

v = velocity

m = mass of the particle

 λ = wavelength of the particle.

$$\lambda = \frac{6.63 \times 10^{-34} \text{ Js}}{10^{-6} \text{ Kg} \times 10 \text{ms}^{-1}}$$
$$= \frac{6.63 \times 10^{-34}}{10^{-5}}$$
$$= 6.63 \times 10^{-29} \text{ m}$$

- The wavelength of a 150 g rubber ball moving with a velocity of 50 ms⁻¹ is:
 - (a) 3.43×10^{-33} cm (b) 5.86×10^{-33} cm (c) 7.77×10^{-33} cm (d) 8.83×10^{-33} cm

AIIMS-1998

Ans. (d): Given that, v = 50 m/sec, m = 150 gm = $150 \times 10^{-3} \text{ kg}$

According to de-Broglie -

$$\lambda = \frac{h}{mv} = \frac{6.626 \times 10^{-34}}{(150 \times 10^{-3}) \times 50}$$

$$\Rightarrow 8.83 \times 10^{-35} \text{ m}$$

$$\Rightarrow 8.83 \times 10^{-33} \text{ cm}$$

- The de-Broglie wavelength of a particle with mass 1 g and velocity 100 m/s is (a) 6.63×10^{-35} m (b) 6.66(c) 6.63×10^{-33} m (d) 6.66
- (b) 6.63×10^{-34} m
- (d) 6.65×10^{-35} m

NEET-1999

Ans. (c) : Given that, m=1g, v=100 m/s h= 6.63×10^{-34} J-s

$$h = 6.63 \times 10^{-34} \text{ J-s}$$

According to de-Broglie wave equation -

$$\lambda \!\! = \frac{h}{mv} \! = \! \frac{6.63 \! \times \! 10^{-34} J \! - \! s}{1 \! \times \! 10^{-3} Kg \! \times \! 100 m/s}$$

$$=6.63\times10^{-33}\,\mathrm{m}$$

- In hydrogen atom, the de Broglie wavelength of 65. an electron in the second Bohr orbit is [Given that Bohr radius, $a_0 = 52.9 \text{ pm}$
 - (a) 211.6 pm
- (b) $211.6 \, \pi \, pm$
- (c) $52.9 \, \pi \, pm$
- (d) 105.8 pm

NEET-Odisha 2019

Ans. (b): According to Bohr,

$$mvr = \frac{nh}{2\pi}$$

$$2\pi r = \frac{nh}{nh} = n\lambda$$

$$2\pi r = \frac{nh}{mv} = n\lambda$$

Where, r= Radius

 λ = Wavelength

n= Number of orbit

Also,
$$r = \frac{a_o n^2}{z}$$
(ii)

Where, a_0 = Bohr radius= 52.9 pm

Z= Atomic number

On substituting the value of 'r' from equation (ii) to equation (i) we get

$$\begin{split} n\lambda &= \frac{2\pi n^2 a_o}{z} \\ \lambda &= \frac{2\pi n a_o}{z} \\ \lambda &= 2\pi \times 2 \times 52.9 \\ \lambda &= 211.6\pi \text{ pm} \end{split} \qquad [\because n=2, z=1]$$

Which of the following equations represent de-**Broglie relation?**

- (a) $\frac{h}{mv} = p$ (b) $\lambda m = \frac{v}{p}$ (c) $\lambda = \frac{h}{mp}$ (d) $\lambda = \frac{h}{mv}$

AIIMS-1994

Ans. (d): De-Broglie proposed that an electron like light behaves both as a material particle and as a wave. This proposal gave birth to a new theory known as wave mechanical theory of matter. De-Broglie equation is given as-

$$\lambda = \frac{h}{mv}$$

$$\lambda = \frac{h}{p}$$

Where, $\lambda =$ Wavelength of light

h = Planck's constant

m = Mass of particle

v = Velocity of particle

Which one is the wrong statement?

- (a) The uncertainty principle is $\Delta E \times \Delta t \ge \frac{h}{2\pi}$
- (b) Half filled and fully filled orbital have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.
- (c) The energy of 2s-orbital is less than the energy of 2p-orbital in case of hydrogen like
- (d) de-Broglie's wavelength is given by $\lambda = \frac{h}{mv}$, where m = mass of the particle, v = groupvelocity of the particle

NEET-2017

Ans. (c): (a) According to heisenberg uncertainity principle, the uncertainties of position (Δx) and momentum ($p=m\Delta v$) are related as

$$\Delta x \cdot \Delta p \ge \frac{h}{4\pi} \text{ or } \Delta x \cdot m \Delta v \ge \frac{h}{4\pi}$$

Or,
$$\Delta x \cdot F \cdot \Delta t \ge \frac{h}{h\pi} \quad [\because F = m \cdot \Delta a]$$

$$\Delta E.\Delta t \ge \frac{h}{h\pi}$$
 [:: $\Delta E = F.\Delta x$, $E = energy$

Thus, statement (a) is correct.

(b) The half filled and fully filled orbitals have greater stability due to greater exchange energy, greater symmetry and more balanced arrangement.

Thus, statement (b) is correct.

(c) For a single electronic species like H, energy depends on value of x and does not depend on 1. Hence energy of 2s-orbital and 2p-orbital is equal in case of hydrogen like species.

Therefore, statement (c) is incorrect.

(d) According to de-Broglie equation,

Wavelength
$$(\lambda) = \frac{h}{mv}$$

Where, h= Planck's constant

Thus, statement (d) is correct.

A 0.66 kg ball is moving with a speed of 100 m/s. The associated wavelength will be $(h = 6.6 \times 10^{-34}) \text{ Js})$

- (a) 6.6×10^{-32} m
- (b) 6.6×10^{-34} m
- (c) 1.0×10^{-35} m
- (d) $1.0 \times 10-32 \text{ m}$

NEET-Main 2010

Ans. (c): According to de-broglie equation-

$$\lambda = \frac{h}{mv}$$

$$= \frac{6.6 \times 10^{-34}}{0.66 \times 100} = 1 \times 10^{-35} \text{ m}$$

Calculate the energy in joule corresponding to light of wavelenth 45 nm.

> Planck'e constant, $h = 6.63 \text{m} \times 10^{-34} \text{ J s}$, speed of light, $c = 3 \times 10^8 \text{ m s}^{-1}$)

- (a) 6.67×10^{15} (b) 6.67×10^{11} (c) 4.42×10^{-15} (d) 4.42×10^{-18}

NEET-2014

Ans. (d): Using planck's quantum theory -

$$E = \frac{hc}{\lambda} = \frac{6.63 \times 10^{-34} \times 3 \times 10^{8}}{45 \times 10^{-9}}$$
$$= 4.42 \times 10^{-18} \text{ J}$$

- What is the wavelength (in m) of a particle of mass 6.62×10^{-29} g moving with a velocity of 10^3ms^{-1} ?
 - (a) 6.62×10^{-4}
- (b) 6.62×10^{-3}
- (c) 10^{-5}
- (d) 10^5

UP CPMT-2008

Ans. (c): According to de-Broglie equation

$$\lambda = \frac{h}{mv}$$

Given that -

$$m = 6.62 \times 10^{-29} g$$

$$v = 10^3 \text{ m/s}$$

$$h = 6.62 \times 10^{-34} Js$$

putting these value in the equation.

$$\lambda = \frac{6.62 \times 10^{-34}}{6.62 \times 10^{-29} \times 10^{3} \times 10^{-3}} = 10^{-5} \, \text{m}$$

- The de-Broglie wavelength of a particle with 71. mass 1 kg and velocity 100 m/s is
 - (a) 6.6×10^{-33} m

(b)
$$6.6 \times 10^{-36}$$
 m

(c)
$$3.3 \times 10^{+33}$$
 m

(b)
$$6.6 \times 10^{-36}$$
 m
(d) 3.3×10^{-36} m

NEET-1999

Ans. (b): de-Broglie equation—

$$\lambda = \frac{h}{mv}$$

Where, h = Planck's constant

m = Mass

v = Velocity

$$=\frac{6.62\times10^{-34}\,\mathrm{kg}\,\mathrm{m}^{2}\mathrm{s}^{-1}}{1\mathrm{kg}\times100\mathrm{ms}^{-1}}$$

$$\Rightarrow$$
 6.62×10⁻³⁶ m

- A golf-ball weigh 40.0g. If it is moving with a velocity of 20.0 ms⁻¹, it's de-Broglie wave length
 - (a) 1.66×10^{-34} nm
- (b) 8.28×10^{-32} nm
- (c) 8.28×10^{-25} nm
- (d) 1.66×10^{-24} nm

JIPMER-2004

Ans. (c): From de-Broglie equation—

$$\lambda = \frac{h}{mv}$$

Where, h = Planck's constant

m = Mass of Golf-ball

v = Velocity

$$\lambda = \frac{6.626 \times 10^{-34} \text{ J.s}}{40 \times 10^{-3} \text{ kg} \times 200 \text{ ms}^{-1}}$$

$$\Rightarrow$$
 8.28×10⁻³⁴ m

$$\Rightarrow 8.28 \times 10^{-34} \times 10^{9} \text{nm}$$

$$\Rightarrow 8.28 \times 10^{-25} \text{ nm}$$

- If E_e , E_{α} and E_p represent the kinetic energies of an electron, α-particle and a proton respectively each moving with same de-Broglie wavelength then

UP CPMT-2011

Ans. (d): De-Broglie wavelength,

$$\lambda = \frac{h}{m\nu}$$

$$\nu = \frac{h}{m \cdot \lambda} \qquad \dots (i)$$

$$K.E = \frac{1}{2}mv^2$$
 (ii)

Now, put the value of v in Eq. (ii)

$$K.E = \frac{1}{2} m \left(\frac{h}{m.\lambda} \right)^2$$

$$K.E = \frac{1}{2} \left(\frac{h^2}{m \times \lambda^2} \right)$$

Hence, K.E $\propto \frac{1}{m}$

(If λ and h-constant)

and the order of K.E is as-

$$E_e > E_p > E_\alpha$$

- An electron is moving in Bohr's fourth orbit. 74. Its de-Broglie wave length is λ . What is the circumference of the fourth orbits?
- (c) 4λ

JIPMER-2014

Ans. (c): According to Bohr's concept an electron always move in the orbit with angular momentum (mvr) equal to $nh/2\pi$

$$mvr = \frac{nh}{2\pi}$$

$$r = \frac{n}{2\pi} \left(\frac{h}{mv} \right)$$

$$r = \frac{n\lambda}{2\pi}$$

(From de–Broglie equation, $\lambda = \frac{h}{m_V}$)

For fourth orbit (n=4)

$$r = \frac{2\lambda}{\pi}$$

$$\therefore \text{ circumference} = 2\pi r = 2\pi \times \frac{2\lambda}{\pi} = 4\lambda$$

Heisenberg uncertainty 2.8 principle

- If the uncertainty in velocity of a moving object 75. is 1.0×10^{-6} ms⁻¹ and the uncertainty in its position is 58 m, The mass of this object is approximately equal to that of $(h = 6.626 \times 10^{-34} \text{ Js})$
 - (a) helium
- (b) deuterium
- (c) lithium
- (d) electron

AP EAMCET (Medical) - 2013

Ans. (d): Given-

Uncertainty in velocity $(\Delta v) = 1.0 \times 10^{-6} \text{ ms}^{-1}$

Uncertainty in position (Δx) = 58 m

Mass
$$(m) = ?$$

Now, from the Heisenberg principle-

$$\Delta x.\Delta p \ge \frac{h}{4\pi}$$

where - Δx = uncertainty in position

 Δp = uncertainty in momentum

$$\therefore \Delta x.\Delta v = \frac{h}{4\pi m}$$
or
$$m = \frac{6.6 \times 10^{-34}}{4 \times 3.14 \times 58 \times 1.0 \times 10^{-6}}$$
or
$$m = \frac{6.6}{728.48} \times 10^{-34+6}$$
or
$$m = 9.05 \times 10^{-28-3}$$
or
$$m = 9.05 \times 10^{-31}$$

Thus, the mass of moving object is approximately equal to that of electron.

- Assertion: It is impossible to determine the **76.** exact position and exact momentum of an electron simultaneously.
 - Reason: The path of an electron in an atom is clearly defined.
 - (a) If both Assertion and Reason are correct and the Reason is the correct explanation of Assertion
 - (b) If both Assertion and Reason are correct, but Reason is not the correct explanation of Assertion.
 - (c) If Assertion is correct but Reason is incorrect.
 - (d) If both the Assertion and Reason are incorrect.

AIIMS-2016

- Ans. (c): According to Heisenberg's uncertainty principle, we cannot determine the exact position and exact momentum of an electron simultaneously. So assertion is correct but reason is not correct.
- The uncertainties in the velocities of two particles, A and B are 0.05 and 0.02 ms respectively. The mass of B is five times to that of the mass of A. What is the ratio of

uncertainties
$$\frac{\Delta x_A}{\Delta x_B}$$
 in their positions?

(a) 2

(b) 0.25

- (c) 4
- (d) 1

AIIMS-2008

Ans. (a): According to Heisenberg's uncertainty principle,

$$\Delta x \times m\Delta v = \frac{h}{4\pi}$$

Where, h = Planck's constant

 $\Delta x = Uncertainty in position$

 $\Delta v = Uncertainity in velocity$

m = Mass

 $\pi = 3.14$

For particle A, $\Delta x = \Delta x_A$

M=m,
$$\Delta v = 0.05$$

So,
$$\Delta x_A \times m \times 0.05 = \frac{h}{4\pi}$$
(i)

For particle B, $\Delta x = \Delta x_B$ m = 5m, $\Delta v = 0.02$

So,
$$\Delta x_B \times 5m \times 0.02 = \frac{h}{4\pi}$$
(ii)

So,
$$\frac{\Delta x_A}{\Delta x_B} = \frac{5 \times 0.02}{0.05}$$
$$= 2$$

Heisenberg uncertainty principle can be

- (a) $\Delta x \ge \frac{\Delta P \times h}{4\pi}$ (b) $\Delta x \times \Delta P \ge \frac{h}{4\pi}$ (c) $\Delta x \times \Delta P \ge \frac{h}{\pi}$ (d) $\Delta P \ge \frac{\pi h}{\Delta x}$ JIPMEF

JIPMER-2008

Ans. (b) :According to Heisenberg's uncertainty principle.

$$\Delta x.\Delta p \ge \frac{h}{4\pi} \text{ or } \Delta x.(m.\Delta v) \ge \frac{h}{4\pi}$$

79. If uncertainty in position and momentum are equal, then uncertainty in velocity is

- (a) $\frac{1}{m}\sqrt{\frac{h}{\pi}}$ (b) $\sqrt{\frac{h}{\pi}}$
- (c) $\frac{1}{2m}\sqrt{\frac{h}{\pi}}$ (d) $\sqrt{\frac{h}{2\pi}}$

NEET-2008

Ans. (c): According to Heisenberg,

Uncertainty Principle - $\Delta x.\Delta p = \frac{h}{4\pi}$

$$(\Delta p)^2 = \frac{h}{4\pi}$$

$$[::\Delta x = \Delta p]$$

$$(m.\Delta v)^2 = \frac{h}{4\pi}$$

$$m^2.\Delta v^2 = \frac{h}{4\pi}$$

$$\Delta v = \sqrt{\frac{h}{4\pi m^2}} = \frac{1}{2m} \sqrt{\frac{h}{\pi}}$$

- The measurement of the electron position is associated with uncertainty in momentum, which is equal to $1\times10^{-18}~g~cm~s^{-1}$. The uncertainty in election velocity is (mass of an electron is 9×10^{-28} g) (a) 1×10^{9} cm s⁻¹ (b) 1×10^{6} cm s⁻¹ (c) 1×10^{5} cm s⁻¹ (d) 1×10^{11} cm s⁻¹

NEET-2008

 $\overline{\mathbf{Ans.}(\mathbf{a})}$: Momentum, $\Delta p = m\Delta v$ $1 \times 10^{-18} \text{ g cm s}^{-1} = 9 \times 10^{-28} \text{g } \times \Delta \text{v}$

$$\Delta v = 1 \times 10^9 \text{ cms}^{-1}$$

Given: The mass of electron is 9.11×10^{-31} kg. 81. Planck constant is 6.626×10^{-34} Js, the uncertainty involved in the measurement of velocity within a distance of 0.1 Å is

- (a) $5.79 \times 10^5 \text{ m s}^{-1}$ (b) $5.79 \times 10^6 \text{ m s}^{-1}$ (c) $5.79 \times 10^7 \text{ m s}^{-1}$ (d) $5.79 \times 10^8 \text{ m s}^{-1}$

NEET-2006

Ans. (b): According to Heisenberg's uncertainty principle, $\Delta x \Delta v = \frac{h}{4\pi m}$,

or
$$\Delta v = \frac{h}{4\pi m \Delta x}$$

Where Δx is uncertainty involved in the measurement of position Δv is uncertainty involved in the measurement of velocity h is planck's constant m is mass of the | Ans. (c): According to Heisenberg's uncertainty electron

Given
$$\Delta x = 0.1 \text{ Å}$$

= (0.1×10^{-10})
= 10^{-11} m
m = $9.11 \times 10^{-31} \text{ kg}$
h= $6.626 \times 10^{-34} \text{ Js}$

On substituting the values-

$$\Delta v = \frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 9.11 \times 10^{-31} \times 10^{-11}}$$
$$= 0.0579 \times 10^8 \text{ ms}^{-1} = 5.79 \times 10^6 \text{ ms}^{-1}$$

- The uncertainty in momentum of an electron is 1×10^{-5} kg m/s. The uncertainty in its position will be $(h = 6.62 \times 10^{-34} \text{kg m}^2/\text{s})$
 - (a) 5.27×10^{-30} m (b) 1.05×10^{-26} m (c) 1.05×10^{-28} m (d) 5.25×10^{-28} m

NEET-1998

Ans. (a): The uncertainty in the position of an electron

is:
$$\Delta x = \frac{h}{4\pi\Delta p}$$

Where, $\Delta x =$ The position of the particle

 $\Delta p =$ The momentum of the particle

h = Planck's constant

$$\Delta x = \frac{6.626 \times 10^{-34}}{4 \times 3.146 \times 10^{-5}}$$
$$= 5.27 \times 10^{-30} \text{ m}$$

- The position of both, an electron and a helium 83. atom is known within 1.0 nm. Further the momentum of the electron is known within 5.0 $\times 10^{-26}$ kg m s⁻¹. The minimum uncertainty in the measurement of the momentum of the helium stone is
- **NEET-1998**

Ans. (d): Uncertainty principle state that the product of uncertainty position and uncertainty in momentum is constant for a particle

$$\Delta x, \Delta p = \frac{h}{4\pi}$$

Here, given $\Delta x = 1.0$ nm for both electron and helium atom, so Δp charge of momentum is also same for

Therefore uncertainty in momentum of the helium stone is also $5.0 \times 10^{-26} \text{kg ms}^{-1}$

Uncertainty in position of an electron (mass = 9.1×10^{-28} g) moving with a velocity of 3×10^4 cm/s accurate upto 0.001% will be

> (use $h/(4\pi)$ in uncertainty expression where h $= 6.626 \times 10^{-27} \text{ erg second}$

- (a) 5.76 cm
- (b) 7.68 cm
- (c) 1.93 cm
- (d) 3.84 cm

NEET-1995

 $\Delta \mathbf{x} \times \Delta \mathbf{v} = \frac{\mathbf{h}}{4\pi \mathbf{m}}$ principle

Where, $\Delta x = Uncertainty$ in position or change in

 $\Delta v = uncertainty$ in velocity

h = Planck's constant $(6.626 \times 10^{-27} \text{ Js})$

m = mass of electron $(9.1 \times 10^{-28} \text{kg})$

Here, $\Delta v = 0.001\%$ of 3×10^4

$$=\frac{0.001}{100} \times 3 \times 10^4 = 0.3 \text{cm/s}$$

$$\therefore \Delta x = \frac{h}{4\pi m \Delta v}$$

$$= \frac{6.626 \times 10^{-27}}{4 \times 3.14 \times 9.1 \times 10^{-28} \times 0.3} = 1.93 \text{cm}$$

- The position of both an electron and helium atom is known within 1.0 nm. The momentum of the electron is known within 5.0×10^{-26} kg ms⁻¹. The minimum uncertainty in the measurement of the momentum of the helium
 - (a) $7.0 \times 10^{-26} \text{ kg ms}^{-1}$ (b) $5.0 \times 10^{-26} \text{ kg ms}^{-1}$ (c) $8.0 \times 10^{-26} \text{ kg ms}^{-1}$ (d) $6.0 \times 10^{-26} \text{ kg ms}^{-1}$

AIIMS-1994

Ans. (b): The Heisenberg uncertainty principle

$$\Delta x \times \Delta p \ge \frac{h}{4\pi}$$

Where $\Delta x = Uncertainty in position,$

 Δp = Uncertainty in momentum

$$\frac{h}{4\pi}$$
 = constant

As Δx is same for electron and helium and constant, therefore minimum uncertainty in measurement of the momentum of the helium atom will be same as that of an electron which is 5.0×10^{-26} kg ms⁻¹

Variation of Ψ and Ψ^{*} for Is and 2s orbitals.

86. Given below are two statements:

Statement I

The value of wave function, (\psi) depends upon the coordinates of the electron in the atom.

Statement II

The probability of finding an electron at a point within an atom is proportional to the orbital wave function.

In the light of the above statments, choose the correct answer from the options given below.

- (a) Both Statement I and Statement II are ture
- (b) Both statement I and statement II are false
- (c) Statement I is true but statement II is false
- (d) Statement I is false but statement II is true

RE-NEET (UG) 06.06.2023 (Manipur)

Ans. (c): The value of wave function (ψ) depends upon the coordinates (x,y,z) of the electron in the atom and the probability of finding an electron at a point within an atom is proportional to square of the orbital wave function (ψ^2) . ψ^2 is always positive.

Hence:- Statement I is true but statement II is false.

2.10 Various quantum numbers (principal, angular momentum, and magnetic) and their significance.

- 87. Incorrect set of quantum numbers from the following is
 - (a) n=4, l=2, $m_l=-2,0,+1,+2$, $m_s=-1/2$
 - (b) n=5, l=3, $m_l=-3,-2,-1,0,+1,+2,+3$, $m_s=+12$
 - (c) n=4, l=3, $m_l=-3,-2,-1,0,+1,+2,+3$, $m_s=-1/2$
 - (d) n=5, l=2, $m_l=-2,-1,+1,+2$, $m_s=+1/2$

RE-NEET (UG) 06.06.2023 (Manipur)

Ans. (d): For any set of Quantam number the following 4 representation is used,

- n = Principal quantum number.
- l = Azimuthal quantum number.
- m= Magnetic quantum number.
- s= Spin quantum number.

For given value of n, *l* ranges from 0 to n–1. It means '*l*' depends on the value of n.

For given value of l, m ranges from -l to l

spin quantum number is always = $+\frac{1}{2}$ and $-\frac{1}{2}$

$$\Rightarrow$$
n = 5, l = 2, m_l =-2,-1,+1,+2, m_s = $+\frac{1}{2}$

This is incorrect because, value of m_l is not completed. The correct set is

$$n = 5, l = 2, m_l = -2, -1, 0, +1, +2, m_s = +\frac{1}{2} \text{ or } \frac{-1}{2}$$
.

- 88. The orbital angular momentum of a p-electron given as
 - (a) $\frac{h}{\sqrt{2}\pi}$
- (b) $\sqrt{3} \frac{h}{\sqrt{2}\pi}$
- (c) $\sqrt{\frac{3}{2}} \frac{h}{\pi}$
- (d) $\sqrt{6} \frac{h}{2\pi}$

NEET-Mains 2012

Ans. (a): Orbital angular momentum (m)

$$=\sqrt{\ell(\ell+1)\frac{h}{2\pi}}$$

For P electrons; $\ell=1$

Thus,
$$m = \sqrt{\ell(\ell+1)\frac{h}{2\pi}} = \frac{\sqrt{2h}}{2\pi} = \frac{h}{\sqrt{2\pi}}$$

- 89. What is the maximum numbers of electrons that can be associated with the following set of quantum numbers?
 - n = 3, l = 1 and m = -1
 - (a) 4
- (b) 2
- (c) 10
- (d) 8

NEET-2013

Ans. (b) : The orbital associated with n = 3, l = 1 is 3p. One orbital (with m = -1 of Subshell Can accommodate maximum 2 electrons.

- 90. Two electrons occupying the same orbital are distinguished by
 - (a) azimuthal quantum number
 - (b) spin quantum number
 - (c) principal quantum number
 - (d) magnetic quantum number

NEET-I 2016

Ans. (b): If two electrons in an atom are in the same atomic orbital, then they must have the same n, *l* and m values. Thus in order to satisfy pauli's exclusion principal, they must have opposite spins.

- 91. Orbital having 3 angular nodes and 3 total nodes to
 - (a) 5p
- (b) 3d
- (c) 4f
- (d) 6d

Odisha NEET-2019

Ans. (c): Give that,

Angular node $(\ell) = 3$

Total node = 3

Total node = Radial node + Angular node

$$3 = n - \ell - 1 + \ell$$

$$3 = n - 1$$

$$n = 4$$

Subshell nl = 4f

- 92. If magnetic quantum number of a given atom represented by 3, then what will be its principal quantum number?
 - (a) 2
- (b) 3

- (c) 4
- (d) 5

JIPMER-2006

Ans. (c): If the magnetic quantum number of a given atom is represented by -3, then its principal quantum number will be 4.

For a given value of *l*,

$$m = -l, \dots + l$$
 when

$$m = -3, l = 3$$

For given value of n, l

Can have values from 0 to n-1 when

$$l = 3$$
, $n = 4$, So that

$$n = -1, -4 - 1 = 3$$

- 93. Azimuthal quantum number (1) defined
 - (a) shape of orbitals
 - (b) orientation of orbitals
 - (c) energy of orbitals
 - (d) size of orbitals

JIPMER-2019

Ans.(a): The azimuthal quantum number (l) determines the shape of an orbital

l = 0 (sperical, s)

l = 1 (dumb – bell, p) etc.

- 94. The maximum number of electrons in a subshell is given by the expression
 - (a) 4l-2
- (b) 4l + 2
- (c) 2l + 2
- (d) $2n^2$

NEET-1989

Ans. (b): For an azimuthal quantum number *l* there are 2l + 1 orbitals in a subshell since, each orbital can accommodate two electrons of opposite spin, the maximum number of electrons in a subshell is given by $2 \times (2l+1) = 4l+2$

- The total number of electrons that can be 95. accommodated in all the orbitals having principal quantum number 2 and azimuthal quantum number 1 are
 - (a) 2
- (b) 4

(c) 6

(d) 8

NEET-1990

Ans. (c): When n = 2 and l = 1 then subshell is 2p the number of orbital's in p-subshell.

$$\Rightarrow (2l + 1) = (2 \times 1 + 1)$$
$$= 3$$

Total (maximum) number of electrons

2 × number of orbital's

$$\Rightarrow$$
 2 × 3

$$\Rightarrow 6$$

(as each orbital contains 2 electrons)

- For azimuthal quantum number l = 3, the 96. maximum number of electrons will be
 - (a) 2
- (b) 6
- (c) 0
- (d) 14

NEET-1991

Ans. (d): As we known azimuthal quantum number l=3 denotes f - subshell and f-subshell contain seven orbitals. Each orbital can contain maximum of two electrons with opposite spin. Thus f-subshell contain total 14 electrons.

97. The following quantum numbers are possible for how many orbitals?

$$n = 3, l = 2, m = +2$$

- (a) 1
- (b) 2
- (c) 3
- (d) 4

NEET-2001

Ans. (a): The three quantum number n, l, and m₁ enable us to label completely an orbital. It is one of the d-orbital's present in 3d subshell.

- Maximum number of electrons in a subshell of an atom is determined by the following
 - (a) 2l+1
- (b) 4l-2
- (c) $2n^2$
- (d) 4l + 2

NEET-2009

Ans. (d): For a given shell l,

the number of subshells. $m_1 = (2l + 1)$

Since each subshell can accommodate 2 electrons of opposite spin, so maximum number of electrons in a subshell

$$\Rightarrow 2(2l+1) = 4l+2.$$

- Which of the following is not permissible arrangement of electrons in an atom?
 - (a) n = 5, l = 2, m = 0, s + 1/2
 - (b) n = 5, l = 3, m = 0, s + 1/2
 - (c) n = 3, l = 3, m = 0, s + 1/2
 - (d) n = 4, l = 0, m = 0, s = -1/2

NEET-2009

Ans. (c) : If
$$n = 3$$

$$l = 0$$
 to $(3 - 1) = 0, 1, 2$

$$m = -l \text{ to } + l = -2, -1, 0 + 1, +2$$

$$S = \pm \frac{1}{2}$$

Is not a permissible set of quantum number

- The orientation of an atomic orbital is governed by
 - (a) principle quantum number
 - (b) azimuthal quantum number
 - (c) spin quantum number
 - (d) magnetic quantum number

NEET-2006

- Ans. (d): Magnetic Quantum number represents the orientation of an orbital around the nucleus. It is represented by m₁.
- The total number of atomic orbitals in fourth energy level of an atom is
 - (a) 8
- (b) 16
- (c) 32
- (d) 4

NEET-2011

Ans. (b) : According to question.

n=4

Now,

Number of atomic orbital in particular energy level is given by formula $=n^2$

Number of orbital's in fourth energy level $\Rightarrow 4^2 \Rightarrow 16$ orbital's.

102. The four quantum numbers of the valence electron of potassium are:

	n	1	m	S
1	4	0	0	1/2
2	4	1	0	1/2
3	4	0	1	1/2
4	4	1	1	1/2

- (a) $4,0,1,\frac{1}{2}$ (b) $4,1,0,\frac{1}{2}$ (c) $4,0,0,\frac{1}{2}$ (d) $4,1,1,\frac{1}{2}$

AP EAMCET (Medical) -1998

Ans. (c): The electronic configuration of potassium is 1s², 2s², 2p⁶, 3s², 3p⁶, 4s¹. We find the four quantum of 4s-shell-

Principal quantum number (n) = 4

Azimuthal quantum number (ℓ) = 0

Magnetic quantum number (m) = 0

Spin quantum numbers (s) = $+\frac{1}{2}$

- 103. Which one of the following sets of quantum numbers represents the highest energy level in an atom?
 - (a) n=4, l=0, m=0, s = + $\frac{1}{2}$
 - (b) n=3, l=1, m=1, s = $+\frac{1}{2}$

(c) n=3,
$$l=2$$
, m= -2, s = $+\frac{1}{2}$

(d) n=3,
$$l$$
=0, m=0, s = $+\frac{1}{2}$

JIPMER-2012 **NEET-1994**

Ans. (c): The orbital with highest (n+l) value will have the highest energy. In the given sets n=3, l=2, m=-2, s =+1/2 have n+l = 5 i.e., 3d-orbital has the highest energy.

104. Which of the following elements outermost orbit's last electron has magnetic quantum number m = 0?

- (a) Na
- (b) O
- (c) Cl
- (d) N

AIIMS 25 May 2019 (Evening)

Ans. (a): Na
$$_{11}$$
Na=1s² 2s² 2p⁶ 3s¹
For last electron, l =0, m=0

105. Which one of the following set of quantum numbers is not possible for 4p electron?

(a)
$$n = 4$$
, $l = 1$, $m = -1$, $m_s = +\frac{1}{2}$

(b)
$$n = 4$$
, $l = 1$, $m = 0$, $m_s = +\frac{1}{2}$

(c)
$$n = 4$$
, $l = 1$, $m = 2$, $m_s = +\frac{1}{2}$

(d)
$$n = 4$$
, $l = 1$, $m = -1$, $m_s = -\frac{1}{2}$

AIIMS 25 May 2019 (Evening)

Ans. (c): For 4p electron n=4, l=1, m=1, 0+1

ms =
$$\frac{1}{2}$$
 As $l = 1$, m cannot be equal to 2.

Therefore set of quantum number is not possible.

106. The maximum number of electrons, present in an orbit that is represented by azimuthal quantum number (l) = 3, will be

(a) 8

- (b) 2
- (c) 14
- (d) 6

AIIMS-1996

Ans. (c): 1=3 corresponds to f-orbitals. Since there are seven f-orbitals and each orbital accommodates 2 electrons, So maximum number of electrons is 14.

107. Which of the following combinations quantum numbers is allowed?

- (c) $3 3 2 + \frac{1}{2}$ (d) $1 \cdot 0 + \frac{1}{2}$

Ans. (b): (a) is allowed as s cannot be zero

- (c) is not allowed as l cannot be -3 because l can be any whole number from 0 to n-1 and it cannot be n.
- (d) is not allowed as for l=0 and m cannot be =1

- 108. The electrons identified by quantum numbers n and l for (i) n=4, l=1(ii) n=4, l=0(iii) n=3, l=2(iv)n=3, l=1 can be placed in order of increasing energy, from the lowest to highest,
 - (a) (iv)<(ii)<(iii)<(i)
- (b) (ii)<(iv)<(i)<(iii)
- (c) (i)<(iii)<(ii)<(iv)
- (d) (iii)<(i)<(iv)<(ii)

AIIMS-2014

Ans. (a): According to Aufbau's principle, the filling of electrons in various subshells of an atom takes place in the increasing order of energy, starting with the lowermost.

According to the Bohr–Bury rule i.e. (n+l) sum rule. the sub shell with the lower value of (n+l) is filled first if the values for (n+l) are equal, the one with the smaller value of n is filled first.

	n	l	(n+l)		
(i)	4	1	5		
(ii)	4	0	4		
(iii)	3	2	5		
(iv)	3	1	4		
So, the correct order is $iv < ii < iii < i$.					

109. Azimuthal quantum number defines

- (a) e/m ratio of electron
- (b) angular momentum of electron
- (c) spin of electron
- (d) magnetic momentum of electron

AIIMS-2002

Ans. (b): Generally azimuthal quantum number defines angular momentum.

The quantum number 'm' of a free gaseous atom is associated with:

- (a) the effective volume of the orbital
- (b) the shape of the orbital
- (c) the spatial orientation of the orbital
- (d) the energy of the orbital in the absence of a magnetic field

AIIMS-1998

Ans. (c): Magnetic quantum number m is associated with spatial orientation of the orbital. It is also called orientation quantum number because it gives the orientation or distribution of the electron clouds.

For principle quantum number n=4, the total number of orbitals having *l*=3 is:

- (a) 3
- (b) 7
- (c) 5
- (d) 9

AIIMS-2004

Ans. (b): For n=4, l=3 (f–subshell), number of values of m=2l+1=7 values

⇒ Number of orbitals in f-subshell is 7

Quantum numbers of an atom can be defined on the basis of

- (a) Hund's rule
- (b) Pauli's exclusion principle
- (c) Aufbau's principle
- (d) Heisenberg's uncertainty principle