

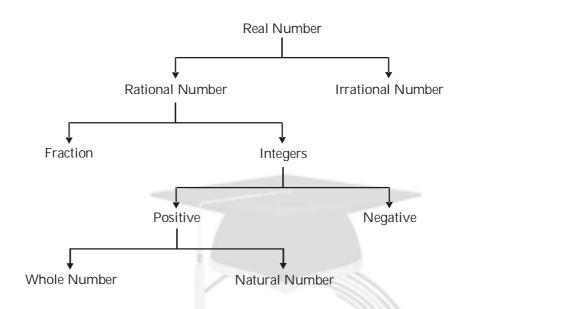
ARITHMETIC

for SSC, Railways & Other Govt Examinations

BASED ON LATEST PATTERN

- 3 Levels of Exercise
- 2000+ Multiple Choice Questions with 100% Solutions
- Includes the Previous Years' Questions of all the Topics
- Also includes the Latest Questions of SSC CGL Exams.

CONTENT


1.	NUMBER SYSTEM AND SIMPLIFICATION	3
2.	LCM AND HCF	27
3.	SURDS AND INDICES	46
4.	RATIO, PROPORTION AND PARTNERSHIP	71
5.	MIXTURE AND ALLIGATION	102
6.	PERCENTAGE	124
7.	PROFIT AND LOSS	146
8.	SIMPLE INTEREST AND COMPOUND INTEREST	173
9.	AVERAGE	
10.	TIME AND WORK	
11.	PIPE AND CISTERN	259
12.	SPEED, TIME AND DISTANCE	
13.	BOAT AND STREAM	
14.	DATA INTERPRETATION	326

15 Practice Sets (Based on Latest Pattern)

Practice Set – 01	370
Practice Set – 02	375
Practice Set – 03	380
Practice Set – 03 Practice Set – 04	384
Practice Set – 05	389
Practice Set – 06	392
Practice Set – 07	396
Practice Set – 08	401
Practice Set – 09	406
Practice Set – 10	409
Practice Set – 11	413
Practice Set – 12	418
Practice Set – 13	422
Practice Set – 14	425
Practice Set – 15	429

Number System and Simplifications

Natural Numbers \rightarrow 1, 2, 3, ∞ Integers $\rightarrow -\infty$ -3, -2, -1, 0, 1, 2 ∞ Fraction: Any number that can be represented in the form of p/q, where p & q are integers & q is not equal to zero is called a rational number. \rightarrow 0, 1, 2, 3 ∞ Integers and Fractions.

Irrational Number \rightarrow Any real number that cannot be expressed as a ratio of integers, i.e as a fraction.

Example: $\sqrt{5}$, $\sqrt{8}$

Prime Number: A number which has exactly two factors 1 & itself is called a prime number.

Prime numbers from 1 – 100 are 2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97 i.e. there are total 25 prime numbers up to 100.

Some results on Prime Numbers:

- (i) Up to 100 total prime numbers = 25
- (ii) Up to 50 total prime numbers = 15
- (iii) Sum of two prime numbers is always even except 2.
- (iv) Sum of three prime numbers is even if and only if one number is 2.
- (v) All prime numbers are odd except 2.
- (vi) 2 is only even prime number.
- (vii) Each prime number has two factors 1 & itself so 1 is not prime number.
- (viii) Smallest prime number of three digit is 101
- (ix) Largest prime number of three digit is 997
- (x) If square of any prime number (except 2 and 3) is divided by 24 then remainder is always 1.

```
Example: \frac{1}{24} \times (11^2, 13^2, 17^2, 19^2, 23^2) = (remainder 1 in each case).
```

Composite No.: A number which has more than two factor is a composite number.

Example: 4, 6, 8, 9

Note: 1 is neither prime nor composite number, 2 is only even prime number.

Co-Prime No.: The pair of numbers which have no common factor other than one are called co-prime numbers. Example: (4, 5), (15, 8)

QUANTITATIVE APTITUDE

Tests of Divisibility:

- (i) Divisibility by 2 : A number is divisible by 2, if its unit place is any of 0, 2, 4, 6, 8
- (ii) Divisibility by 3 : A number is divisible by 3 only when the sum of its digits is divisible by 3.
- (iii) Divisibility by 4 : A number is divisible by 4 if the number formed by its last two digits is divisible by 4.
- (iv) Divisibility by 5 : A number is divisible by 5 if its unit digit is 5 or 0.
- (v) Divisibility by 6 : A number is divisible by 6 if it is divisible by both 2 & 3.
- (vi) Divisibility by 8 : A number is divisible by 8 when the number formed by its last 3 digits is divisible by 8.
- (vii) Divisibility by 9 : A number is divisible by 9 if the sum of its digits is divisible by 9.
- (viii) Divisibility by 10 : A number is divisible by 10 only when its unit digit is zero.
- (ix) Divisibility by 11 : A number is divisible by 11, if the difference of the sum of its digits at odd places & the sum of its digits at even places is either 0 or a number divisible by 11.

Some results on division:

- (i) $(x^n a^n)$ is divisible by (x a) for all value of n.
- (ii) $(x^n a^n)$ is divisible by (x + a) for even value of n.
- (iii) $(x^n + a^n)$ is divisible by (x + a) for odd value of n.

Dividend = (Divisor × Quotient) + Remainder

Some Results on Numbers:

(i) The product of four numbers which are consecutive natural numbers is always divisible by 24.

Example:
$$\frac{101 \times 102 \times 103 \times 104}{24}$$
 or $\frac{7 \times 8 \times 9 \times 10}{24}$

- (ii) The difference of square of two consecutive natural numbers is always equal to sum of those numbers. Example: $9^2 - 8^2 = 9 + 8$, $119^2 - 118^2 = 119 + 118$
- (iii) The difference of square of two consecutive odd numbers is always divisible by 8. Example: $11^2 9^2 = 121 81 = 40$

$$\frac{40}{8} = 5.$$

(iv) The difference of square of two consecutive even numbers is always divisibly by 4. Example: $10^2 - 8^2 = 100 - 64 = 36$

$$\frac{36}{4} = 9$$

- (v) Any digit repeated 6 times is divisible by 7, 11, 13 & 37.
 Example: 5 5 5 5 5 5 or 2 2 2 2 2 2
 are divisible by 7, 11, 13 & 37.
- (vi) Any two digit number repeated 2 times is always divisible by 101. Example: 3 4 3 4 or 5 6 5 6 is divisible by 101.
- (vii) If P is prime number & a is an integer then $(a^{P} a)$ is always divisible by P. Example: $(5^{11} - 5)$ is divisible by 11.
- (viii) If n is an odd number then $(2^{2n} + 1)$ is always divisible by 5.
- (ix) If n is an even number, then $(2^{2n} 1)$ is always divisible by 5.
- (x) The product of three consecutive natural numbers is always divisible by 6.

Example:
$$\frac{1}{6} \times (8 \times 9 \times 10)$$
 or $\frac{1}{6} \times (11 \times 12 \times 13)$

(xi) The product of three consecutive natural numbers starting with even number is always divisible by 24.

Example:
$$\frac{1}{24} \times (8 \times 9 \times 10)$$
 or $\frac{1}{24} (18 \times 19 \times 20)$
 $\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$
even even

(xii) Any number written in the form $9(10^{n} - 1)$ is always divisible by 3 & 9 both.

(xiii) Any natural number of the form $(n^3 - n)$ is always divisible by 6.

QUANTITATIVE APTITUDE

Even Numbers: Those numbers which are divisible by 2 are known as even numbers.

Example: 2, 4, 6, 8,

 $n = \frac{t_n}{2}$, Where n = total numbers of term, $t_n = last term$

sum of Ist n even numbers = n(n + 1)

Example: 2 + 4 + 6 + + 58

$$n = \frac{58}{2} = 29$$
, sum = $n(n + 1) = 29(29 + 1) = 870$

Remainder Theorem:

1. When $a_1, a_2, a_3, \dots, a_n$ are divided by 'd' individually the respective remainders are $R_1, R_2, R_3, \dots, R_n$ and when $(a_1 + a_2 + a_3, \dots, a_n)$ is divided by 'd' the remainder can be obtained by dividing $(R_1 + R_2 + R_3, \dots, R_n)$ by 'd'

Example: Find remainder when 38 + 71 + 85 is divided by 16

$$= \frac{38+71+85}{16} = \frac{6+7+5}{16}$$

(Remainder obtained when numbers are individually divided by 16)

$$=\frac{18}{16}$$
 \Rightarrow Remainder $= 2$

When a₁, a₂, a₃... a_n are divided by a divisor d the respective remainders obtained are R₁, R₂, R₃....R_n, and the remainder when (a₁× a₂×a₃....× a_n) is divided by 'd' can be obtained by dividing (R₁×R₂×R₃....R_n) by d. Example : Find Remainder when 7⁷ is divided by 4.

$$\frac{7^{7}}{4} = \frac{7 \times 7 \times 7 \times 7 \times 7 \times 7 \times 7}{4} = \frac{3 \times 3 \times 3 \times 3 \times 3 \times 3 \times 3}{4}$$
 (Remainder obtained individually)
$$= \frac{9 \times 9 \times 9 \times 3}{4} = \frac{1 \times 1 \times 1 \times 3}{4} \implies \text{Remainder} = 3$$

So we can say that remainders can be added as well as multiplied. Some results on remainder

• For
$$\frac{nx}{n}$$
, Remainder = 0 • For $\frac{(nx+1)^n}{n}$, Remainder = 1

• For $\frac{(11x-1)}{n}$, Remainder = 1 • For $\frac{(11x-1)}{n}$, Remainder = -1 or (n-1)

Where x and n are any positive integers.

Recurring Decimal : A decimal number in which a digit or a set of digits repeats regularly, over a constant period, is called a recurring decimal.

Example : 2.3333..... , 7.5555.... , 1.3333.... they are represented as 2.3, 7.5, 1.3

- (i) Pure Recurring decimal : A decimal fraction in which all the figures occur repeatedly is called a pure recurring decimal e.g 7.4444.... , 2.1111.... , 3.4545...
- (ii) Mixed Recurring decimal : A decimal number in which some of the digits do not recur is called a mixed recurring decimal e.g. 0.1777, .087373...
- (iii) Non recurring decimal : A decimal number in which there is no regular pattern of repitition of digits after decimal point is called non-recurring decimal e.g. 3.24662676...

QUANTITATIVE APTITUDE

Fraction : The word fraction means a part of anything. It can be expressed in the from of $\frac{p}{q}$ where p and q are integers

and 'q' is not equal to '0'.

Proper fraction : When the numerator is less than the denominator, then the fraction is called a proper fraction.

Example : $\frac{7}{12}$, $\frac{5}{17}$, $\frac{12}{43}$ etc.

Improper fraction : When the numerator is greater than the denominator, then the fraction is called an improper fraction.

Example : $\frac{17}{13}$, $\frac{18}{14}$, $\frac{45}{19}$ etc.

Like fraction : Fractions having same denominator are called like fractions.

Example : $\frac{1}{9}, \frac{5}{9}, \frac{7}{9}$ etc.

Unlike fraction : Fractions having different denominators are called unlike fractions.

Example : $\frac{14}{23}$, $\frac{17}{43}$, $\frac{53}{19}$ etc.

Compound fraction : It is a fraction of a fraction.

Example : $\frac{1}{3}$ of $\frac{5}{9}$, $\frac{7}{9}$ of $\frac{61}{53}$, $\frac{9}{13}$ of $\frac{7}{19}$

Complex fraction : In such a fraction, both the numerator and the denominator are fractions.

Example :	12	5 13	
	13	$17^{+}72$	
	17 ′	74 7	
	21	43 7	

Mixed fraction : Those fractions which consist of a whole number and a proper fraction, are known as mixed fractions.

Example : $5\frac{7}{8}$, $7\frac{4}{9}$, $12\frac{13}{17}$ etc.

Continued fraction : It contains an additional fraction in the numerator or in the denominator.

Example: $12 + \frac{1}{12 + \frac{14}{65 + \frac{2}{3}}}$

Decimal faction : In such a fraction, the denominator has power of 10.

Example: $0.45 = \frac{45}{100}$, $0.7 = \frac{7}{10}$, $0.000071 = \frac{71}{1000000}$ etc.

QUANTITATIVE APTITUDE

Types of Questions

A number when divided by 91 gives a remainder 17. 1. When the same no is divided by 13, the remainder will be

 $\frac{17}{13} = 4$ remainder Sol.

- (4⁶¹ + 4⁶² + 4⁶³) is divisible by: 2.
- Sol. $4^{61}(1 + 4 + 4^2) = 4^{61} \times 21$
- i.e. 21 is divisible by 3 Find the number of zeros in the product of $1 \times 2 \times 3 \times$ 3.×99×100.

Sol.
$$\frac{100}{5} = 20$$
 and $\frac{20}{5} = 4$

- i.e. total numbers of zeros = 20 + 4 = 24
- Find the total number of zeros in the product of 1×2 4. × 3 ×× 250.

Sol.
$$\frac{250}{5} = 50$$
, $\frac{50}{5} = 10$ and $\frac{10}{5} = 2$

- i.e. total numbers of zeros = 50 + 10 + 2 = 62
- 5. Find the total number of zeros in the product of 51 × 52 × 53 × × 100.

Sol.
$$\frac{100}{5} = 20$$
, $\frac{20}{5} = 4$
and, $\frac{50}{5} = 10$, $\frac{10}{5} = 2$

6.

So, total number of zeros = (20 + 4) - (10 + 2) = 12Find the remainder in the following questions

o75

(i)
$$\frac{5^{37}}{8}$$
 (ii) $\frac{2^{75}}{5}$
(iii) $\frac{517^{517}}{2}$ (iv) $\frac{2243^{165}}{5}$
(v) $\frac{7^{129}}{5}$ (vi) $\frac{8^{123}}{9}$
(vii) $\frac{2^{76}}{9}$ (viii) $\frac{19^{20} + 19^{40}}{20}$
(ix) $\frac{4^{75} + 4^{76}}{17}$ (x) $\frac{517^{517}}{5}$
Sol. (i) $\frac{5^{37}}{8} \Rightarrow \frac{(5^2)^{18} \times 5^1}{8} = \frac{25^{18} \times 5}{8} = \frac{1^{18} \times 5}{8} =$

(i)
$$\frac{5}{8} \Rightarrow \frac{(5)^{1} \times 5}{8} = \frac{25^{1} \times 5}{8} = \frac{1^{1} \times 5}{8} = 5$$

(ii)
$$\frac{2^{75}}{5} \Rightarrow \frac{(2^4)^{10} \times 2^3}{5} = \frac{16^{18} \times 8}{5} = \frac{(1)^{18} \times 8}{5} = 3$$

(iii)
$$\frac{517^{517}}{2} \Rightarrow \frac{1^{517}}{2} = 1$$

(iv) $\frac{2243^{165}}{5} \Rightarrow \frac{3^{165}}{5} = \frac{(3^4)^{41} \times 3^1}{5} = 3$

(v)
$$\frac{7^{129}}{5} \Rightarrow \frac{2^{129}}{5} = \frac{(2^4)^{\infty} \times 2}{5} = 2$$

(vi)
$$\frac{8^{123}}{9} \Rightarrow \frac{(-1)^{123}}{9} = 9 - 1 = 8$$

(vii)
$$\frac{2^{76}}{9} \Rightarrow \frac{(2^3)^{25} \times 2}{9} = \frac{(-1)^{25} \times 2}{9} = \frac{-2}{9} = 7$$

(viii)
$$\frac{19^{20} + 19^{40}}{20} \Rightarrow \frac{(-1)^{20} + (-1)^{40}}{20} = \frac{2}{20} = 2$$

(ix)
$$\frac{4^{75} + 4^{76}}{17} \Rightarrow \frac{(4^2)^{37} \times 4 + (4^2)^{38}}{17}$$

$$= \frac{(-1) \times 4 + (-1)}{17} = \frac{-1 \times 4 + 1}{17} = \frac{-3}{17} = 14$$

$$517^{517} = 2^{517} = (2^4)^{129} \times 2^1 = 1^{129} \times 2$$

(x)
$$\frac{517^{517}}{5} \Rightarrow \frac{2^{517}}{5} = \frac{(2^{-7})^{-1} \times 2^{-7}}{5} = \frac{1^{129} \times 2}{5} = 2$$

(ii)
$$(4387)^{245} + (621)^{72}$$

(iii) $25^{6521} + 36^{528} + 73^{54}$

(iv)
$$7^{71} \times 6^{63} \times 3^{65}$$

7.

(v)
$$(251)^{98} + (21)^{29} - (106)^{100} + (705)^{35} - 16^4 + 259$$

Sol. (i)
$$(124)^{372} + (124)^{373} = 6 + 4$$

 \Rightarrow unit digit = 0

(ii)
$$(4387)^{245} + (621)^{72} = (7)^1 + (1)^{72} = 7 + 1$$

= 8 (unit digit).

(iii)
$$25^{6521} + 36^{528} + 73^{54} = 5 + 6 + (3)^2 = 5 + 6 + 9 = 20$$

 \therefore unit digit = 0

(iv)
$$7^{71} \times 6^{63} \times 3^{65}$$

= $7^3 \times 6^3 \times 3^1 = 3 \times 6 \times 3$
= 4 (unit digit)

(v)
$$(251)^{98} + (21)^{29} - (106)^{100} + (705)^{35} - 16^4 + 259$$

= 1 + 1 - 6 + 5 - 6 + 9 = 16 - 12

	Foun	dat	ion)
	Questions		(a) 10 (b) 12
		10	(c) 14 (d) 16
1.	The sum of all those prime numbers which are less than 31 is	12.	In a question of division, the divisor is 7 times the quotient and 3 times the remainder. If remainder is 28, then the dividend is
	(a) 119 (b) 129		(a) 588 (b) 784
	(c) 132 (d) 137		(c) 823 (d) 1036
2.	The sum of all even numbers between 21 and 51 is	13.	If 17 ²⁰⁰ is divided by 18, the remainder is
	(a) 518 (b) 540		(a) 17 (b) 16
	(c) 560 (d) 596	11	(c) 1 (d) 2
3.	Which of the following is one of the factors of the sum of first 25 natural numbers	14.	Which of the following numbers is not divisible by 18 (a) 54036 (b) 50436 (c) 34056 (d) 65043
	(a) 26 (b) 24	15.	It is given that $(2^{32} + 1)$ is exactly divisible by a certain
	(c) 13 (d) 12		number. Which one of the following is also definitely
4.	The digit in the unit place of the product		divisible by the same number.
	$(2464)^{1793} \times (615)^{317} \times (131)^{491}$ is		(a) $2^{96} + 1$ (b) 7×2^{33}
	(a) 0 (b) 2		(c) $2^{16} - 1$ (d) $2^{16} + 1$
	(c) 3 (d) 5	1/	The least number among $\frac{4}{9}$, $\sqrt{\frac{9}{49}}$, 0.45 and (0.8) ² is
5.	The digit in the unit place of	16.	The least number among $\frac{1}{9}$, $\sqrt{\frac{1}{49}}$, 0.45 and (0.8) ² is
	$[(251)^{98} + (21)^{29} - (106)^{100} + (705)^{35}]$ is		
	(a) 1 (b) 4		(a) $\frac{4}{9}$ (b) $\sqrt{\frac{9}{49}}$
	(c) 5 (d) 6		1 1 1 1 1
6.	Find the remainder value in the following expression		(c) 0.45 (d) $(0.8)^2$
	$\frac{\left(23^2+29^2+31^2+37^2\right)}{24}$	17.	The number 0.121212 in the form $\frac{p}{q}$ is equal to
			4 2
	(a) 13 (b) 17		(a) $\frac{4}{11}$ (b) $\frac{2}{11}$
	(c) 4 (d) 3		
7.	Find the value of given series		(c) $\frac{4}{33}$ (d) $\frac{2}{33}$
	1-2+3-4+5-6++95-96+97-98		55 55
	(a) 49 (b) 53	18	The least among the fraction $\frac{15}{16}$, $\frac{19}{20}$, $\frac{24}{25}$, $\frac{34}{35}$ is
~	(c) -49 (d) -53	10.	16 20 25 35 13
8.	Find the total number of zeros in the following series		34 15
	2 × 4 × 6 × × 248 × 250		(a) $\frac{34}{35}$ (b) $\frac{15}{16}$
	(a) 31 (b) 37		10 04
_	(c) 39 (d) 43		(c) $\frac{19}{20}$ (d) $\frac{24}{25}$
9.	$101 \times 102 \times 103 \times 104$ is a number which is always divisible by the greatest number in the given option.	19.	If $1^3 + 2^3 + + 9^3 = 2025$, then the value of
	(a) 6 (b) 24		$(0.11)^3 + (0.22)^3 + + (0.99)^3$ is close to (a) 0.2695 (b) 2.695
10	(c) 48 (d) 16		(a) 0.2095 (b) 2.095 (c) 3.695 (d) 0.3695
10.	Find the number of total prime numbers up to 100	20.	Which of the following number is the greatest among
	(a) 27 (b) 23		all?
	(c) 25 (d) 26		0.9, 0.9, 0.09, 0.09
11.	When two numbers are separately divided by 33, the remainders are 21 and 28 respectively. If the sum of		(a) 0.9 (b) $0.\overline{9}$
	the two numbers is divided by 33, the remainder will		
	be		(c) $0.0\overline{9}$ (d) $0.\overline{09}$

1	How many natur	al numbers divisible by 7 are there	32	1008 should be div	vided hvv	vhich single digit number
1.	between 3 and 20		JZ.	to get a perfect sq	-	union single digit number
	(a) 27	(b) 28		(a) 9	(b)	4
	(c) 29	(d) 36		(c) 8	(d)	7
2.	The sum of three of	consecutive odd natural numbers is	33.	$(1^2 + 2^2 + 3^2 + \ldots + 1)$	10²) is equ	al to
	87. The smallest c	f these numbers is		(a) 380	(b)	385
	(a) 29	(b) 31		(c) 390	• • •	392
	(c) 23	(d) 27		.,		
3.	What will be the	unit digit in 7 ¹⁰⁵ ?	34.	Given that 1 ² + 2 ²	+ 3 ² +	$+ n^2 = \frac{n}{6}(n+1)(2n+1),$
	(a) 5	(b) 7		then, 10 ² + 11 ² + 1		
	(c) 9	(d) 1		(a) 2616		2585
ŧ.		following will completely divide		(c) 3747	• • •	2555
	$5^{71} + 5^{72} + 5^{73}$?		25	.,	. ,	r, which exactly divides
	(a) 150	(b) 160	55.			secutive natural numbers,
	(c) 155	(d) 30		is		
).	When 2 ³³ is divide	ed by 10, the remainder will be		(a) 6	(b)	12
	(a) 2	(b) 3		(c) 24	• • •	120
	(c) 4	(d) 8	36	• •	. ,	41. Then find the value of
).	When a number is	divided by 24, the remainder is 16.	00.	$2^3 + 4^3 + 6^3 + 8^3 + 10^3$		
		nen the same number is divided by		(a) 882	(b)	1323
	12 is			(c) 1764		3528
	(a) 3	(b) 4			. 1000	
	(c) 6	(d) 8	37.	The greatest fract	ion amon	$g\frac{2}{3}, \frac{5}{6}, \frac{11}{15}$ and $\frac{7}{8}$ is
•	The remainder w	hen 3 ²¹ is divided by 5 is		3	1111	3615 8
	(a) 1	(b) 2		(a) 7	(1-)	11
	(c) 3	(d) 4		(a) $\frac{7}{8}$	(b)	<u>11</u> 15
	U U	r is formed by repeating a 2-digit		E		า
		515, 3737, etc. Any number of this		(c) $\frac{5}{6}$	(d)	$\frac{2}{3}$
	form is exactly di			0		5
	(a) 7	(b) 11	38.	$0.4\overline{23}$ is equivaled	nt to the fr	raction
	(c) 13	(d) 101		, 491		419
).	-	pers less than 1000 are multiples of		(a) $\frac{491}{990}$	(b)	990
	both 10 and 13?			990		990
	(a) 9	(b) 8		(c) $\frac{49}{99}$	(4)	<u>94</u> 99
	(C) 6	(d) 7		$(c) {99}$	(u)	99
).	What number sho	uld be divided by $\sqrt{0.25}$ to give the	39.	0.393939 is eq	ual to	
	result as 25?	y (0.20 - 3				13
	(a) 25	(b) 50		(a) $\frac{39}{100}$	(b)	<u>13</u> 33
	(c) 12.5	(d) 125				
		nber that must be added to 803642		(c) $\frac{93}{100}$	(d)	$\frac{39}{990}$
		a multiple of 11 is	40.			a number is 15, then three-
	(a) 1	(b) 4		tenth of the numb		
	(c) 7	(b) 4 (d) 9		(a) 35	(b)	36
				(c) 45		54

	Mo	derate 🖯 🗕 🚽	
Which is the lar	gest of the following fractions?	(a) 3.3	(b) 2.2
$\frac{2}{3}, \frac{3}{5}, \frac{8}{11}, \frac{7}{9}, \frac{11}{17}$		(c) 1.1	(d) 4.4
3'5'11'9'17		o If V	-12 then find the value of x
2	11	0. 11 $X + \frac{1}{2 + \frac{1}{2}}$	
(a) $\frac{2}{3}$	(b) $\frac{11}{17}$	2+	1
7	2	4	$\frac{1}{1} = 12$, then find the value of x. $\frac{1}{1} + \frac{1}{5}$
(c) $\frac{7}{9}$	(d) $\frac{3}{5}$		5
, Which one of t	he group is in descending order?	(a) $\frac{1816}{157}$	(b) $\frac{2012}{153}$
		^(a) 157	153
(a) $\frac{7}{12}, \frac{7}{17}, \frac{13}{24}$	(b) $\frac{13}{24}, \frac{9}{17}, \frac{7}{12}$	(c) <u>1818</u> 151	(d) $\frac{1818}{157}$
		(C) 151	(u) 157
(c) $\frac{9}{17}, \frac{13}{24}, \frac{7}{12}$	(d) $\frac{7}{12}$, $\frac{13}{24}$, $\frac{9}{17}$	9. Find the value	e of $5.\overline{12} + 3.\overline{21} + 4.\overline{31} = ?$
1 1	1 1 1	() 12 64	4. 12 74
$1\frac{1}{2}+11\frac{1}{2}+111$	$\frac{1}{2} + 1111\frac{1}{2} + 11111\frac{1}{2} = ?$	(a) 12 ⁶⁴ 99	(b) $12\frac{74}{99}$
1	1	(c) $12\frac{77}{99}$	(d) $12\frac{84}{99}$
(a) 12347 <u>-</u> 2	(b) $12346\frac{1}{2}$	$(c) \frac{12}{99}$	(d) $12{99}$
1	1	10. The difference	e of 5.76 and 2.3 is.
(c) 12345 <u>-</u> 2	(d) $12344\frac{1}{2}$	(a) 3. <u>54</u>	(b) 3.73
1 1	1 _1	(c) 3.46	(d) $3.\overline{43}$
$3\frac{1}{3} + 33\frac{1}{3} + 333$	$\frac{1}{3} + 3333\frac{1}{3} + 33333\frac{1}{3} = ?$		(* 1) (1
2	CILIV	11. If x is a prime	e number and $-1 \le \frac{2x-7}{5} \le 1$, then t
(a) 37031 2	(b) $37037\frac{1}{3}$	number of val	5
		(a) 4	(b) 3
(c) $37036\frac{2}{3}$	(d) $37032\frac{1}{3}$	(c) 2	(d) 5
3	5		natural number and its square equ of the first three prime numbers. T
$\frac{1}{2} + \frac{1}{10} + \frac{1}{20} + \frac{1}{20}$	$\frac{1}{0} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72} = ?$	number is:	in the first three prime numbers. I
6 12 20 3	0 42 56 72	(a) 2	(b) 3
(a) $\frac{5}{18}$	(b) $\frac{7}{18}$	(c) 5	(d) 6
^(u) 18	18	13 Thorational n	Sumber between $\frac{1}{2}$ and $\frac{3}{5}$ is:
(c) $\frac{11}{18}$	(d) $\frac{13}{18}$		2 5 5
^(C) 18	(4) 18	(2) $\frac{2}{2}$	(b) ⁴
1 1	1 1 2	(a) 5	(b) $\frac{4}{7}$
$\overline{5\times9}^+\overline{9\times13}^+$	$\frac{1}{13 \times 17} + \dots + \frac{1}{61 \times 65} = ?$	(c) $\frac{2}{2}$	(d) $\frac{1}{3}$
4	3	(c) $\frac{-}{3}$	(d) $\frac{1}{3}$
(a) $\frac{4}{45}$	(b) $\frac{3}{65}$		um of two consecutive even number
2	3		of whose square is 84?
(c) $\frac{2}{35}$	(d) $\frac{3}{35}$	(a) 38 (c) 42	(b) 34 (d) 46
	00	• •	the natural numbers from 50 to 100
If $\frac{3}{2}$	= x , then find the value of x.	(a) 5050	(b) 4275
$2 + \frac{2}{2}$		(c) 4025	(d) 4005
$2 + \frac{2}{2}$		16. The last digit (a) 0	of (1001) ²⁰⁰⁸ + 1002 is: (b) 3
$2 + \frac{-}{3}$	= x , then find the value of x.	(a) 0 (c) 4	(d) 6
		× /	For More Study Mate

NU	MBER SYSTEM AND SIMPL	IFICATIONS			QUANTITATIVE APTITUDE
17.	The unit digit in the p	product 7 ⁷¹ × 6 ⁶³ × 3 ⁶⁵ is:		(a) 3	(b) 1
	(a) 1	(b) 2		(c) 5	(d) 0
	(c) 3	(d) 4			2 5 11 7
18.	Unit's digit of the nun	nber (22) ²³ is:	25.	The greatest fractio	on among $\frac{2}{3}, \frac{5}{6}, \frac{11}{15}$ and $\frac{7}{8}$ is:
	(a) 4	(b) 6			
	(c) 8	(d) 2		(a) $\frac{7}{8}$	(b) $\frac{11}{15}$
19.	The digit in unit's pla	ce of the product (2153) ¹⁶⁷ is:		^(d) 8	15
	(a) 1	(b) 3		5	(d) $\frac{2}{3}$
	(c) 7	(d) 9		(c) $\frac{5}{6}$	(d) $\frac{1}{3}$
20.		s of any integer lying between ted from the number, the result	26.	(a) 1	ded by 68. Then, the remainder is (b) 67
	(a) divisible by 2	(b) divisible by 9	27	(c) 63 $[2^2 + 2^2 + 4^2 + 5^2 + 6]$	(d) 66 $(^2 + 7^2 + 8^2 + 9^2 + 10^2)$ is equal to
	(c) divisible by 5	(d) divisible by 6	27.	(a) 385	(b) 2916
21.	In a division, the divis	sor is 10 times the quotient and		(a) 585 (c) 540	(d) 384
	5 times the remainder	If the remainder is 46, then the	28		= 3025. Then, 4 + 32 + 108 + +
	dividend is:		20.	4000 is equal to	- 5025. Then, + 52 + 100 + +
	(a) 4236	(b) 4306		(a) 12000	(b) 12100
22	(c) 4336	(d) 5336		(c) 12200	(d) 12400
ZZ.	the following integers	l positive integers, by which of s is (a ⁴ – b ⁴) always divisible. (b) 6	29.		ving fractions is the smallest? 7
	(a) 3 (c) 8	(d) 12		(a) $\frac{7}{6}$	(b) $\frac{1}{9}$
23		ided by 136, leaves remainder			
20.		is divided by 17, the remainder		(c) $\frac{4}{5}$	(d) $\frac{5}{7}$
	(a) 9 (c) 3	(b) 7 (d) 2	30.	0. <u>001</u> is equal to 1	1
24.	63. What will be the re	ided by 899, leaves remainder mainder if the same number is		(a) $\frac{1}{1000}$	(b) ${999}$
	divided by 29?			(c) $\frac{1}{99}$	(d) $\frac{1}{9}$
		Diff	icu	lt	//
1.	The sum of the square	es of three consecutive natural	5.	The last 5 digits of 1	the following expression will be
1.		n, what is the middle number?	5.		$+ (4!)^{2} + (5!)^{1} + (10!)^{5}$
	(a) 25	(b) 26			$(1000 !)^3 + (10000 !)^2 + (100000 !)$
	(c) 27	(d) 28		(a) 45939	(b) 00929
2.		sor is 10 times the quotient and		(c) 20929	(d) can't be determined
Ζ.		. If the remainder is 40, then the		. ,	
	dividend is		6.	What fraction of $\frac{4}{7}$	must be added to itself to make
	(a) 240	(b) 440		1	
_	(c) 4040	(d) 4000		the sum $1\frac{1}{14}$?	
3.	number, then $(m^2 - n^2)$	e integers and (m – n) is an even) will be always divisible by		(a) $\frac{7}{8}$	(b) $\frac{1}{2}$
	(a) 4	(b) 6		8	2
	(C) 8	(d) 12		. 4	/ " 15
4.	Both the ends of a 99	digits number N are 2. N is		(c) $\frac{4}{7}$	(d) $\frac{15}{14}$
	divisible by 11, then a	II the middle digits are	7.	Find the sum of the	e first five terms of the following
	(a) 1	(b) 2			C C
	(c) 3	(d) 4		series $\frac{1}{1\times 4} + \frac{1}{4\times 7} + \frac{1}{4\times 7}$	$+\frac{1}{7\times10}++\frac{1}{13\times16}$
				IX4 4X/	For More Study Material

NUMBER SYSTEM AND SIMPLIFICATIONS QUANTITATIVE APTITUDE (a) 0.16 (b) 1.6 (a) $\frac{9}{32}$ (b) $\frac{7}{16}$ (d) 0.016 (c) 16 16. A divisor is 25 times the quotient and 5 times the remainder. The quotient is 16, the dividend is (c) $\frac{5}{16}$ (d) $\frac{1}{210}$ (a) 6400 (b) 6480 (c) 400 (d) 480 The sum $(5^3 + 6^3 + ... + 10^3)$ is equal to 8. (b) 2425 (a) 2295 17. Given that $3.718 = \frac{1}{0.2689}$. Then, $\frac{1}{0.0003718}$ is equal (c) 2495 (d) 2925 If $(10^{12} + 25)^2 - (10^{12} - 25)^2 = 10^n$, then the value of n is 9. to (b) 14 (a) 20 (a) 2689 (b) 2.689 (c) 10 (d) 5 (d) 0.2689 (c) 26890 10. The value of 18. Largest four digit number which when divided by 15 leaves a remainder of 12 and if the same number is $\frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \frac{9}{4^2 \cdot 5^2} + \frac{11}{5^2 \cdot 6^2} + \frac{13}{6^2 \cdot 7^2}$ divided by 8 it leaves the remainder 5. Such greatest possible number is: (a) 9963 (b) 9957 $+\frac{15}{7^2 \cdot 8^2}+\frac{17}{8^2 \cdot 9^2}+\frac{19}{9^2 \cdot 10^2}$ is (c) 9945 (d) 9999 19. Number of zeros at the end of the following (b) $\frac{99}{100}$ (a) $\frac{1}{100}$ expression $(5 !)^{5!} + (10 !)^{10!} + (50 !)^{50!} + (100 !)^{100!}$ is: (a) 165 (b) 120 (c) 125 (d) None of these (c) $\frac{101}{100}$ (d) 1 20. A fraction in its lowest form is such that when it is squared and then its numerator is reduced by $\frac{1}{3}$ rd 11. $\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$ and denominator is reduced to $\frac{1}{5}$ th, it results as twice is equal to (a) 1 (b) 5 of the original fraction. Then the sum of numerator (c) 9 and denominator can be: 12. When simplified, the sum (a) 7 (b) 8 (c) 9 (d) 17 $\frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \dots + \frac{1}{n(n+1)}$ is equal to 21. The value of the expression $7777 + 7777 \times 7777 \times (5 \div 77) \times (11 \div 35)$: (a) $\frac{1}{n}$ (b) $\frac{1}{n+1}$ (a) 1234321 (b) 12344321 (c) 7⁷⁷⁷⁷ (d) None of these (c) $\frac{2(n-1)}{n}$ (d) $\frac{n}{n+1}$ 22. Find the last digit of $32^{32^{32}}$. (a) 6 (b) 8 13. If $1^2 + 2^2 + 3^2 + ... + x^2 = \frac{x(x+1)(2x+1)}{4}$, then (c) 10 (d) 4 23. Find the last digit of 222888 + 888222. $1^2 + 3^2 + 5^2 + \dots + 19^2$ is equal to (a) 8 (b) 4 (a) 1330 (b) 2100 (c) 0 (d) 6 (c) 2485 (d) 2500 24. Find the unit digit of 111! (fractorial 111). 14. $(1^2 - 2^2 + 3^2 - 4^2 + 5^2 - 6^2 + ... + 9^2 - 10^2)$ is equal to (a) 0 (b) 2 (b) 55 (a) -55 (c) 3 (d) 4 (c) -56 (d) 56 25. Which is not the factor of $4^{6n} - 6^{4n}$ for any positive 15. The sum of the first 20 terms of the series integer n? (a) 5 (b) 25 $\frac{1}{5\times 6} + \frac{1}{6\times 7} + \frac{1}{7\times 8} + \dots \text{ is}$ (c) 7 (d) None of these

	MBER SYSTEM AND				QUANTITATIVE APTITUDE
26.	19 ⁿ – 1 is:			(a) 175	(b) 75
	(a) always divisi	-		(c) 680	(d) does not exist
	(b) always divis	-	29.		actors of a number is 24 and the sum
	(c) is never divis	ible by 19			ors out of four, is 25. The product of
	(d) only (a) and (c) are true			rs of this number is 1365. Then such le number can be :
27.		der when $10^1 + 10^2 + 10^3 + 10^4 + 10^5 +$		(a) 17745	(b) 28561
	+ 1099 is divide	d by 6.		()	
	(a) 0	(b) 4	20	(c) 4095	(d) can't be determined
	(c) 2	(d) 6	30.		bers are there in the set S = {200, 201, ch are divisible by neither 5 nor 7?
28.		divided by 5 gives a number which		(a) 411	(b) 412
		ne remainder obtained on dividing			
		by 34. Such a least possible number		(c) 410	(d) None of these
	is:				
			Me	mory Base	d)
1.	I multiplied a na	tural number by 18 and another by	10.	2 ¹⁶ – 1 is divisible	e by
	21 and added	the products. Which one of the		(a) 11	(b) 13
	following could l	be the sum?		(c) 17	(d) 19
	(a) 2007	(b) 2008	11.	• •	er when divided by 175 leaves a
	(c) 2006	(d) 2002			/hen the same number is divided by
2.	Out of six consec	utive natural numbers, if the sum of		25, the remainde	ris
	first three is 27, v	vhat is the sum of the other three?		(a) 6	(b) 7
	(a) 36	(b) 35		(c) 8	(d) 9
	(c) 25	(d) 24	12.	$(4^{61} + 4^{62} + 4^{63})$ is	divisible by
3.	Which one of the	e following is a factor of the sum of		(a) 3	(b) 11
	first 25 natural n	umbers?		(c) 13	(d) 17
	(a) 26	(b) 24	13.	The digit in the u	init place of the product
	(c) 13	(d) 12		$(2464)^{1793} \times (615)^{37}$	³¹⁷ × (131) ⁴⁹¹ is
4.	The sum of all th	e natural numbers from 51 to 100 is		(a) 0	(b) 2
	(a) 5050	(b) 4275		(c) 3	(d) 5
	(c) 4025	(d) 3775	14.	$(2^{71} + 2^{72} + 2^{73} + 2)$	⁷⁴) is divisible by
5.	The unit digit in	the sum of (124) ³⁷⁶ + (124) ³⁷⁵ is		(a) 9	(b) 10
	(a) 5	(b) 4		(c) 11	(d) 13
	(c) 2	(d) 0	15.	In a division prob	lem, the divisor is 4 times the quotient
6.		the expression 25 ⁶⁵²⁷ + 36 ⁵²⁶ + 73 ⁵⁴ is			remainder. If remainder is 4, the
	(a) 6	(b) 5		dividend is	
	(c) 4	(d) 0		(a) 36	(b) 40
7.	.,	init place of [(251) ⁹⁸ + (21) ²⁹ – (106) ¹⁰⁰		(c) 12	(d) 30
7.	$+ (705)^{35} - 16^4 + 2$		16.	If a number is div be necessarily	risible by both 11 and 13, then it must
	(a) 1	(b) 4		(a) divisible by (11 + 13)
	(c) 5	(d) 6		(b) divisible by (
8.	lf n is even, (6 ⁿ –	1) is divisible by		(c) divisible by (
	(a) 37	(b) 35		(d) 429	TT A 10)
	(c) 30	(d) 6	17	. ,	$r of (127 \pm 117) and (125 \pm 115) ic$
9.		aving a remainder 18. The biggest	17.		r of (13 ⁷ + 11 ⁷) and (13 ⁵ + 11 ⁵) is
/.	two digit value c			(a) 24	(b) $13^5 + 11^5$
				(c) 13 ² + 11 ²	(d) None of these
	(a) 21	(b) 35	10	Sum of three same	secutive even integers is 54. Find the

	MBER SYSTEM AND SIMPL			
	(a) 18	(b) 15	24.	The decimal fraction of $2.3\overline{49}$ is equal to
~	(c) 14	(d) 16		2226 2226
9.	The unit digit in the pr			(a) $\frac{2326}{999}$ (b) $\frac{2326}{990}$
	(a) 2	(b) 4		999 990
	(c) 6	(d) 8		2347 2347
20.		5 digits is divisible by 41?		(c) $\frac{2347}{999}$ (d) $\frac{2347}{990}$
	(a) 10045	(b) 10004	25.	$(5^2 + 6^2 + 7^2 + + 10^2)$ is equal to
	(c) 10041	(d) 41000	201	(a) 330 (b) 345
21.		13 leaves a remainder 1 and if		(c) 355 (d) 360
		d by 5, we get a remainder of 3.	26.	. Two numbers are in the ratio 1 : 2 when 4 is added t
	by 65?	inder if the number is divided	20.	each, the ratio becomes 2 : 3. Then, the numbers are
	(a) 28	(b) 16		(a) 9 and 12 (b) 6 and 8
				(c) 4 and 8 (d) 6 and 9
าา	(c) 18	(d) 40	27.	$[1^3 + 2^3 + 3^3 + + 9^3 + 10^3]$ is equal to
<u>/</u> .	true among the follow	ric Progression, then which is		(a) 3575 (b) 2525
	a de arriorig are ronow	ing:		(c) 5075 (d) 3025
	(a) $q = \frac{p+r}{2}$	(b) $p^2 = qr$	28	. A number, when divided by 899, leaves remained
	2		20.	63. What will be the remainder if the same number
		p r		divided by 29?
	(c) $q = \sqrt{pr}$	(d) $\frac{p}{r} = \frac{r}{q}$		(a) 3 (b) 1
		- 9		(c) 5 (d) 0
~ ~		. 10 ⁿ – 1	29.	. When 25^{25} is divided by 26, the remainder is
23.	If $1 + 10 + 10^2 + \dots$ upt	o n terms $=\frac{10^n-1}{9}$, then the		(a) 1 (b) 2
	sum of the series 4 + 4	4 + 444 + upto n terms is		(c) 24 (d) 25
			30.	A number when divided by the sum of 555 and 44
	(a) $\frac{4}{9}(10^{n}-1)-\frac{411}{9}$	(b) $\frac{4}{81}(10^n - 1) - \frac{4n}{9}$		gives two times their difference as quotient and 30 a
				the remainder. The number is
	(c) $\frac{40}{81}(10^n - 1) - \frac{4n}{9}$	(d) $\frac{40}{10^{n}-1} - \frac{4n}{10^{n}-1}$		(a) 220030 (b) 22030
	81 9	(4) 9 (1) 9		(c) 1220 (d) 1250
		Found	dati	tion
		Found		
	Solu	utions		$25 \times (25 + 1)$
	Solu	utions		$=\frac{25 \times (25 + 1)}{2} = 25 \times 13$
1.				Z
1.		Itions rs Less than 31 are 2, 3, 5, 7, 11,		i.e. 13 is one of the factor
1.	(b); The prime number 13, 17, 19, 23, 29		4.	i.e. 13 is one of the factor
1.	(b); The prime number 13, 17, 19, 23, 29	rs Less than 31 are 2, 3, 5, 7, 11,	4.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$
1.	(b); The prime number 13, 17, 19, 23, 29 ∴ required sum =	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19	4.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0.
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19		i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number 12, 12, 12, 12, 12, 12, 12, 12, 12, 12,	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0.
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number Required sum = sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = n(n + 1) um of even numbers from 1 to	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1.
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number Required sum = sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = $n(n + 1)$	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1.
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number Required sum = sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = n(n + 1) um of even numbers from 1 to numbers from 1 to 20	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1. so, $\frac{(1+1+1+1)}{24} = \frac{4}{24}$ i.e 4 is unit digit.
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = n(n + 1) um of even numbers from 1 to pumbers from 1 to 20 10 + 1)	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1.
2.	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = n(n + 1) um of even numbers from 1 to pumbers from 1 to 20 10 + 1) 1 = 540	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1. so, $\frac{(1+1+1+1)}{24} = \frac{4}{24}$ i.e 4 is unit digit. (c); $(1 + 3 + 5 + \dots + 97) - (2 + 4 + 6 + \dots + 94)$
	 (b); The prime number 13, 17, 19, 23, 29 ∴ required sum = + 23 + 29 = 129 (b); Total even number Total even number Sum of even number sum	rs Less than 31 are 2, 3, 5, 7, 11, 2 + 3 + 5 + 7 + 11 + 13 + 17 + 19 rs from 1 to 50 = 25 rs from 1 to 20 = 10 pers = n(n + 1) um of even numbers from 1 to pumbers from 1 to 20 10 + 1)	5.	i.e. 13 is one of the factor (a); $(4)^{1793/4} \times 5 \times 1$ $4 \times 5 \times 1 = 20$ So, unit digit is 0. (a); $1 + 1 - 6 + 5 = 1$ (c); If square of any prime number is divided by 2 then remainder is always 1. so, $\frac{(1+1+1+1)}{24} = \frac{4}{24}$ i.e 4 is unit digit.

QUANTITATIVE APTITUDE

8. (a);
$$\frac{250}{2} = 125$$
, $\frac{125}{5} = 25$, $\frac{25}{5} = 5$, $\frac{5}{5} = 1$
i.e. required numbers of zero = $25 + 5 + 1 = 31$
9. (b); 24
10. (c); 25
11. (d); Required remainder = $\frac{(21+28)}{33} = 16$
12. (d); Let quotient = x
divisor = 7x also divisor = $3 \times$ (remainder)
= $3 \times 28 = 84$
 $7x = 84$, $x = 12$
Dividend = Divisor × Quotient + Remainder
= $84 \times 12 + 28 = 1036$
13. (c); Since it is form of $\frac{a^n}{a+1}$
i.e. $\frac{17^{200}}{17+1}$
 \therefore Remainder = 1. Since n is even positive integer

14. (d); A number is exactly divisible by 18 if it is divisible by 2 and 9 both.
 since, 65043 is not divisible by 2, so it is not divisible by 18.

- 15. (a); by checking option $2^{96} + 1 = (2^{32})^3 + 1^3 = (2^{32} + 1)(2^{64} - 2^{32} + 1)$
- 16. (b); Decimal equivalent of fractions

$$\frac{4}{9} = 0.44; \sqrt{\frac{9}{49}} = \frac{3}{7} = 0.43$$
$$(0.8)^2 = 0.64$$

$$\therefore$$
 Least number = 0.43 = $\sqrt{\frac{9}{49}}$

17. (c); Expression = 0.121212 ...

$$= 0.\overline{12} = \frac{12}{99} = \frac{4}{33}$$

[Since, 12 is repeating after decimal] 18. (b); Decimal equivalent of fractions

$$\frac{15}{16} = 0.94, \ \frac{19}{20} = 0.95, \ \frac{24}{25} = 0.96, \ \frac{34}{35} = 0.97$$

$$\therefore \text{ Least fraction} = \frac{15}{16}$$

19. (b); Given, $1^3 + 2^3 + \dots 9^3 = 2025$ Then, $(0.11)^3 + (0.22)^3 + \dots + (0.99)^3$

$$= \left(\frac{11}{100}\right)^3 + \left(\frac{22}{100}\right)^3 + \dots + \left(\frac{99}{100}\right)^3$$

$$= \left(\frac{11}{100}\right)^3 \left(1^3 + 2^3 + \dots + 9^3\right)$$
$$= \frac{1331}{1000000} \times 2025$$
$$[\because 1^3 + 2^3 + \dots + 9^3 = 2025]$$
$$= \frac{2695275}{1000000} = 2.695275 \approx 2.695$$

20. (b); Decimal equivalent of fractions

$$0.9 = \frac{9}{10}$$
, $0.\overline{9} = \frac{9}{9} = 1$, $0.0\overline{9} = \frac{9}{90} = \frac{1}{10}$
and $0.\overline{09} = \frac{9}{00} = \frac{1}{11}$

∴ 0.9 is greatest.

21. (b); Natural numbers between 3 and 200 = 200 - 3 = 197 Now divide 197 by 7

$$7) 197 \\
 14 \\
 57 \\
 56 \\
 56$$

1 So 28 natural numbers are there

22. (d); Let the consecutive odd no. are x, x + 2, x + 4 x + x + 2 + x + 4 = 87 3x + 6 = 87

$$=\frac{81}{3}=27$$

Х

so, smallest number is 27.

23. (b);
$$7^{105}$$

Cyclicity of 7 is 4.

So
$$\frac{1}{4}$$
 = Remainder is 1.

- 24. (c); $5^{71} + 5^{72} + 5^{73}$ $5^{71}(1 + 5 + 5^2)$ $5^{71} \times 31$ $5^{70} \times 155$
 - so 155 divides the expression completly
- 25. (a); We know that $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$

Remainder $=\frac{33}{4}=1$.

Unit's digit in 2^{33} = unit digit in 2^{1} Hence units digit = 2 Remainder on division by 10 = 2.

26. (b); Remainder = 16 Divisor = 24 Let number = xx = 24y + 16 where y is quotient. Since 24 is a multiple of 12

Remainder = $\frac{16}{12} = 4$

27. (c);
$$\frac{3^2}{5}$$

$$\frac{(3^4)^5 \times 3}{5} = \frac{(81)^5 \times 3}{5}$$
$$1^5 \times 3$$

5

- so, remainder = 3 28. (d); Let the two digit number be xy xy xy = $xy \times 100 + xy$ = xy (100 + 1) = 101 xy
- 29. (d); Numbers which are multiple of both 10, 13 will be multiple of 130 also Numbers less then 1000 which are multiple of both 10 and 13

$$=\frac{1000}{130} =$$

- 30. (c); $\frac{x}{\sqrt{0.25}} = 25$ $x = 25 \times (0.5) = 12.5$
- 31. (c); Required number = (Sum of digits at odd places) 3 - Sum of digits at even place) = (2 + 6 + 0) - (8 + 3 + 4) = -7smallest number to be added = 7
- 32. (d); Factor of 1008 = $2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 7$ so number is divided by 7 to make it perfect
- 33. (b); $1^2 + 2^3 + 3^2 \dots + 10^2$

square.

$$=\frac{n(n+1)(2n+1)}{6}=\frac{10\times11\times21}{6}=385$$

34. (b); Sum of squares from 1 to 20 – Sum of squares from 1 to 9

$$=\frac{20\times21\times41}{6}-\frac{9\times10\times19}{6}=2870-285=2585$$

QUANTITATIVE APTITUDE

35. (c); Let four consecutive natural numbers are 1, 2, 3, 4 $1 \times 2 \times 3 \times 4 = 24$ So 24 is a natural number which divides four consecutive natural number completely 36. (d); Given, $1^3 + 2^3 + 3^3 + 4^3 + 5^3 + 6^3 = 441$ $2^3 + 4^3 + 6^3 + 8^3 + 10^3 + 12^3$ $= 2^{3}(1^{3} + 2^{3} + 3^{3} + 4^{3} + 5^{3} + 6^{3})$ $= 2^3 \times 441 = 3528$ 37. (a); $\frac{2}{3}$, $\frac{5}{6}$, $\frac{11}{15}$ and $\frac{7}{8}$ Using cross multiplication method. $\frac{2}{3} \times \frac{5}{6} = 12 < 15$ So, $\frac{5}{6} > \frac{2}{3}$ $\frac{5}{6} \times \frac{11}{15} = 75 > 66$ So, $\frac{5}{6}$ is greater than $\frac{11}{15}$ $\frac{5}{4} \times \frac{7}{9} = 40 < 42$ So $\frac{7}{9}$ is the greatest fraction. 38. (b); $0.4\overline{23} = \frac{423-4}{990} = \frac{419}{990}$ 39. (b); 0.393939..... $=0.\overline{39}=\frac{39}{90}=\frac{13}{33}$ 40. (d); Let number = y. According to question $\frac{1}{3} \times \frac{1}{4} y = 15$, y = 180so, $\frac{3}{10}y = \frac{3}{10} \times 180 = 54$

			Moder	ate	}
1.	(C);	$\frac{2}{3} \times \frac{3}{5}$ $\frac{2}{3} \times \frac{8}{11}$ $\frac{2}{3} \times \frac{8}{11}$ $\frac{8}{11} \times \frac{7}{9}$ $\frac{2}{2} < 24$ $\frac{8}{11} \times \frac{7}{9}$ $\frac{7}{2} < 77$ Taking Taking Taking greater of greater of these two fractions fractions and the and the and the next one next one next one next one	$\frac{7}{9} \times \frac{11}{17}$ $\frac{119 > 99}{7}$ $\frac{7}{9}$ is the largest	. (b);	$\frac{1}{5.9} + \frac{1}{9.13} + \frac{1}{13.17} + \dots \frac{1}{61.65} = ?$ Using formula: $\frac{+1}{\text{Difference of}} \left[\frac{1}{\text{First value}} - \frac{1}{\text{Last value}} \right]$ denominator value $= \frac{1}{4} \left[\frac{1}{5} - \frac{1}{65} \right] = \frac{1}{4} \left[\frac{13-1}{65} \right] = \frac{1}{4} \left[\frac{12}{65} \right] = \frac{3}{65}$
2.		$\frac{7}{12} \bigvee \frac{13}{24} \qquad \frac{13}{24} \bigvee \frac{9}{17}$ $168 > 156 \qquad 221 > 216$ $\frac{7}{12} > \frac{13}{24} \text{ and } \frac{13}{24} > \frac{9}{17}$ Hence descending order = $\frac{7}{12} > \frac{13}{24} > \frac{13}{24}$	9		$x = \frac{3}{2 + \frac{2}{2 + \frac{2}{2 + \frac{2}{3}}}} = \frac{8}{3}$
3.	(a) ;	Hence descending order = $\frac{12}{12} > \frac{24}{24} >$ $1\frac{1}{2} + 11\frac{1}{2} + 111\frac{1}{2} + 1111\frac{1}{2} + 11111\frac{1}{2}$ = $[1 + 11 + 111 + 1111 + 1111] +$ $\left[\frac{1}{2} + \frac{1}{2} $			$=\frac{3}{2+\frac{2}{2+\frac{2}{8}}}$ $=2+\frac{2}{1}\times\frac{3}{8}=2+\frac{3}{4}=\frac{11}{4}$ $=\frac{3}{2+\frac{2}{11}}=\frac{3}{2+\frac{2}{1}\times\frac{4}{11}}$
4.		$3\frac{1}{3} + 33\frac{1}{3} + 333\frac{1}{3} + 3333\frac{1}{3} + 3333\frac{1}{3} + 33333\frac{1}{3}$ = [3 + 33 + 333 + 3333 + 33333] + $\left[\frac{1}{3} + \frac{1}{3} +$	$\left[\frac{1}{3}+\frac{1}{3}\right]$		$= \frac{3}{2 + \frac{2}{1} \times \frac{4}{11}} = 2 + \frac{8}{11} = \frac{30}{11}$ $= \frac{3}{\frac{30}{11}} = \frac{3}{1} \times \frac{11}{30} = \frac{11}{10} = 1.1$
5.		$= \frac{1}{3} + \frac{1}{2} + \frac{1}{20} + \frac{1}{30} + \frac{1}{42} + \frac{1}{56} + \frac{1}{72}$ $= \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \dots + \frac{1}{8 \times 9}$ $= \frac{1}{2} - \frac{1}{3} + \frac{1}{3} - \frac{1}{4} + \dots + \frac{1}{8} - \frac{1}{9}$ $= \frac{1}{1} \left[\frac{1}{2} - \frac{1}{9} \right] = \frac{7}{18}$	8	. (a) ;	$x + \frac{1}{2 + \frac{1}{3 + \frac{1}{4 + \frac{1}{5}}}} = 12$ $12 = x + \frac{1}{2 + \frac{1}{3 + \frac{1}{21}}} = x + \frac{1}{2 + \frac{1}{3 + \frac{5}{21}}}$

$$12 = x + \frac{1}{2 + \frac{1}{\frac{68}{21}}} = x + \frac{1}{\frac{157}{68}} = x + \frac{68}{157}$$

$$x = 12 - \frac{68}{157}$$

$$157x = 1884 - 68 = 1816$$

$$x = \frac{1816}{157}$$
9. (a); $5.\overline{12} + 3.\overline{21} + 4.\overline{31} = 5\frac{12}{99} + 3\frac{21}{99} + 4\frac{31}{99}$

$$= (5 + 3 + 4) + \frac{64}{99} = 12\frac{64}{99}$$
10. (d); $5.\overline{76} - 2.\overline{3} = 5\frac{76}{99} - 2\frac{3}{9} = 3\frac{43}{99} = 3.\overline{43}$
11. (b); Given, $-1 \le \frac{2x - 7}{5} \le 1$

$$\Rightarrow -5 \le 2x - 7 \le 5$$

$$\Rightarrow -5 + 7 \le 2x - 7 + 7 \le 5 + 7$$
[by adding 7 in eq. (i)]
$$\Rightarrow 2 \le 2x \le 12$$

$$\Rightarrow 1 \le x \le 6$$
So, number of values of $x = 3$ (2, 3 and 5)
12. (c): Let the required number be x.
According to the question,

$$x^{2} + x = 2 \times 3 \times 5$$

$$\Rightarrow x^{2} + x - 30 = 0$$

$$\Rightarrow x(x + 6) - 5(x + 6) = 0$$

$$\Rightarrow (x - 5)(x + 6) = 0$$

$$\therefore x = 5$$
13. (b): Required number between $\frac{1}{2}$ and $\frac{3}{5}$

$$\Rightarrow \frac{1}{2} + \frac{3}{5}$$

$$\Rightarrow \frac{1}{2} + \frac{3}{5}$$

$$\Rightarrow \frac{1}{2} + \frac{3}{5}$$

14. (c); Let two consecutive even numbers are x and (x+2).

: According to the question,

$$(x+2)^2 - x^2 = 84$$

 $x^2 + 4x + 4 - x^2 = 84$ \Rightarrow 4x = 84 - 4 = 80 \Rightarrow $x = \frac{80}{4} = 20$ \Rightarrow Two numbers are 20 and 22. \therefore The required sum = 20 + 22 = 42 15. (d); Required sum = (sum of natural numbers from 1 to 100) - (sum of natural numbers from 1 to 49.) Sum of [1 + 2 + 3 + 4 + + 100] $=\frac{n(n+1)}{2}=\frac{100(101)}{2}=5050$ and sum of [1 + 2 + 3 + 4 + 49] $=\frac{n(n+1)}{2}=\frac{50(49)}{2}=1045$ Hence, sum of $[50 + 51 + 52 + 53 + \dots + 100]$ = 5050 - 1045 = 400516. (b); Given, (1001)²⁰⁰⁸ + 1002 Unit digit of (1001)²⁰⁰⁸ = 1 Last digit of 1002 = 2 \therefore The last digit = 1 + 2 = 3 17. (d); Given, $7^{71} \times 6^{63} \times 3^{65}$ Then, $7^1 = 7$, $7^2 = 49$, 7^3 $= 343, 7^4 = 2401$: Unit digit of $(7)^{71} = 3$ $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$ Unit digit of $(3)^{65} = 3$ Unit digit of $(6)^{63} = 6$ \therefore Product = $3 \times 6 \times 3 = 54$: Unit digit = 4 18. (c); $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$ Unit digit repeats itself after 4 powers. Remainder of $\frac{23}{4} = 3$ \therefore (22)²³ = (22)³ = 2³ = 8 Unit digit = 8. 19. (c); Given, (2153)167 Then, remainder of $\frac{167}{4} = 3$: Unit digit of 3³ (i.e., 27) = 7 20. (b); Such number is always divisible by 9. To make it clear, you can take some example. Example: 496 - (4 + 9 + 6) = 477

which is divisible by 9.

$$971 - (9 + 7 + 1) = 954$$
,
which is divisible by 9.

QUANTITATIVE APTITUDE

21. (d); According to the question, $\frac{11}{15} = 0.73$; $\frac{7}{9} = 0.875$ Divisor = 5 × Remainder $= 5 \times 46 = 230$: Greatest fractions is 7/8. 26. (d); $67^{67} = (68 - 1)^{67}$ when divided by 68, leaves Quotient = $\frac{230}{10}$ = 23 remainder $(-1)^{67} = -1$ \therefore Required remainder = -1 + 67 = 66Dividend = Divisor × Quotient + Remainder 27. (d); We know that, Dividend = $230 \times 23 + 46 = 5290 + 49 = 5336$ Sum of squares of 1st n natural numbers ∴ Dividend = 5336 $=\frac{n(n+1)(2n+1)}{2n+1}$ 22. (c); Given, a and b are odd positive integers. $a^4 - b^4 = (a^2 + b^2)(a + b)(a - b)$ Let two positive odd integers be 1 and 3. Required sum = (Sum of squares of natural .:. Required number numbers from 1 to 10) -1^2 $= (1^{2} + 3^{2}) (3 + 1) (3 - 1) = 80$ $=\frac{10(10+1)(2\times10+1)}{6}-1^2=\frac{10\times11\times21}{6}-1$ Which is divisible by 8. Last remainder = 385 - 1 = 38423. (d); Required remainder = $\frac{1}{New \text{ divisor}}$ 28. (b); Here, $1^3 + 2^3 + ... + 10^3 = 3025$ Now, 4 + 32 + 108 + ... + 40000 Required remainder = $\frac{36}{17} = 2\frac{2}{17}$ $= 4(1 + 8 + 27 + \dots + 1000)$ $= 4(1^3 + 2^3 + 3^3 + \dots + 10^3)$:. Remainder = 2 $= 4 \times 3025 = 12100$ 29. (d); To find the smallest fraction first we have to find 24. (c); Remainder = $\frac{\text{Last remainder}}{\text{New divisor}}$ the decimal equivalent of fractions $\frac{7}{6} = 1.166$, $\frac{7}{9} = 0.777$, $\frac{4}{5} = 0.8$ and $\frac{5}{7} = 0.714$ Remainder = $\frac{63}{29} = 2\frac{5}{29} = 5$ Therefore, the smallest number is $\frac{5}{7}$. 25. (a); Decimal equivalent of fractions $\frac{2}{3} = 0.67$; $\frac{5}{6} = 0.83$ 30. (b); $0.\overline{001} = \frac{1}{000}$ Difficult (b); Let the three consecutive natural numbers be x, 1 and remainder = $\frac{\text{Divisor}}{5} = 2x$ x + 1 and x + 2. According to the guestion, According to the question, $x^{2} + (x + 1)^{2} + (x + 2)^{2} = 2030$ Remainder = 40 $\Rightarrow x^2 + x^2 + 2x + 1 + x^2 + 4x + 4 = 2030$ 2x = 40 \Rightarrow \Rightarrow 3x² + 6x + 5 = 2030 x = 20·. \Rightarrow 3x² + 6x - 2025 = 0 Now, Dividend = Divisor × Quotient \Rightarrow x² + 2x - 675 = 0 + Remainder $\Rightarrow x^2 + 27x - 25x - 675 = 0$ $= x \times 10x + 40 = 10x^{2} + 40 = 4000 + 40 = 4040$ $\Rightarrow x(x + 27) - 25(x + 27) = 0$ 3. (a); Given, m and n are positive integers and m-n is \Rightarrow (x - 25) (x + 27) = 0 an even number. \Rightarrow x = 25 or - 27 l et m - n = 2p... (i) :. Three consecutive natural numbers are 25, 26 where, 2p is the even difference and 27 So, it is clear that both m and n may be either odd Now, required number = 26oreven 2. (c); Let quotient = xSo, m + n = 2q... (ii) Then, divisor = 10x

where, 2q is the even sum of the numbers. Then, on multiplying Eqs. (i) and (ii), we get

 $(m - n) (m + n) = 2p \times 2q$

 \Rightarrow m² - n² = 4pq

 \therefore m² – n² will be divisible by 4.

(d); Since, the middle digits are given to be same. 4.

: Let the 99 digits numbers be

2 x x . . . x x 2

97 digits

Sum of digits at odd places

 $2 + \frac{x + x + \dots + x + x}{48 \text{ digits}} + 2 = 4 + 48x$ =

(there are 99 digits in all, 50 at odd places and 49 at even places)

Sum of digits at even places

= x + x + ... + 49 terms = 49x

Difference between the sum of digits at odd and even places

$$= 4 + 48x - 49x = 4 - x$$

Now, 4 - x = 0 or a multiple of 11

5. (b);

4 - x = 0 \Rightarrow x = 4 $(1 !)^5 = 1$ $(2!)^4 = 16$ $(3!)^3 = 216$ $(4 !)^2 = 576$ $(5!)^1 = 120$ The last 5 digit of $(10 !)^5 = 00000$ The last 5 digit of (100 !)⁴= 00000 $(1000 !)^3 = 00000$ $(10000 !)^2 = 00000$ $(100000 !)^{1} = 00000$ Thus the last 5 digits of the given expression = 00929

[... 1 + 16 + 216 + 576 + 120 + 00000 + 00000 + 00000 + 00000 + 00000 = 00929]

(a); Let the fraction be x. 6. According to the question,

$$\frac{4x}{7} + \frac{4}{7} = \frac{15}{14} \implies \frac{4x}{7} = \frac{15}{14} - \frac{4}{7}$$
$$= \frac{15 - 8}{14} = \frac{7}{14} = \frac{1}{2} \implies x = \frac{1}{2} \times \frac{7}{4} = \frac{7}{8}$$
$$\therefore \quad \frac{7}{8} \text{ must be added.}$$

7. (c);
$$\frac{1}{1 \times 4} + \frac{1}{4 \times 7} + \frac{1}{7 \times 10} + \frac{1}{10 \times 13} + \frac{1}{13 \times 16}$$

$$= \left(1 - \frac{1}{4} + \frac{1}{4} - \frac{1}{7} + \frac{1}{7} - \frac{1}{10} + \frac{1}{10} - \frac{1}{13} + \frac{1}{13} - \frac{1}{16}\right) \times \frac{1}{3}$$

$$= \left(1 - \frac{1}{16}\right) \times \frac{1}{3} = \frac{15}{16} \times \frac{1}{3} = \frac{5}{16}$$
8. (d); Required sum = [Sum of cubes of 1 to 10 natural

QUANTITATIVE APTITUDE

numbers] – [Sum of cubes of natural numbers from 1 to 4]

$$= \left[\frac{10 \times (10+1)}{2}\right]^{2} - \left[\frac{4(4+1)}{2}\right]^{2}$$

$$= \left[\frac{10 \times 11}{2}\right]^{2} - \left[\frac{4 \times 5}{2}\right]^{2}$$

$$= 3025 - 100 = 2925$$
(b); Given,
 $(10^{12} + 25)^{2} - (10^{12} - 25)^{2} = 10^{n}$... (i)
 $(a + b)^{2} - (a - b)^{2} = 4ab$
 $\therefore (10^{12} + 25)^{2} - (10^{12} - 25)^{2}$
 $= 4 \times 10^{12} \times 25$... (ii)
On comparing Eqs. (i) and (ii), we get
 $10^{n} = 4 \times 10^{12} \times 25 = 10^{14}$
i.e., $10^{n} = 10^{14}$
 $\therefore n = 14$
(b); Expression
 $3 = 5 = 7 = 17 = 17$

$$= \frac{3}{1^2 \cdot 2^2} + \frac{5}{2^2 \cdot 3^2} + \frac{7}{3^2 \cdot 4^2} + \dots + \frac{17}{8^2 \cdot 9^2} + \frac{19}{9^2 \cdot 10^2}$$

On arranging

$$= \left(\frac{1}{1^2} - \frac{1}{2^2}\right) + \left(\frac{1}{2^2} - \frac{1}{3^2}\right) + \left(\frac{1}{3^2} - \frac{1}{4^2}\right) + \dots$$
$$+ \left(\frac{1}{8^2} - \frac{1}{9^2}\right) + \left(\frac{1}{9^2} - \frac{1}{10^2}\right)$$
$$= \frac{1}{1^2} - \frac{1}{2^2} + \frac{1}{2^2} - \frac{1}{3^2} + \frac{1}{3^2} - \frac{1}{4^2} + \dots + \frac{1}{8^2} - \frac{1}{9^2} + \frac{1}{9^2} - \frac{1}{10^2}$$
$$= 1 - \frac{1}{10^2} = 1 - \frac{1}{100} = \frac{100 - 1}{100} = \frac{99}{100}$$

11. (c); Let

8

9.

10.

(

$$\frac{1}{1+\sqrt{2}} + \frac{1}{\sqrt{2}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{4}} + \dots + \frac{1}{\sqrt{99}+\sqrt{100}}$$
$$\frac{1}{1+\sqrt{2}} = \frac{\sqrt{2}-1}{\sqrt{2}+1} \times \frac{\sqrt{2}-1}{\sqrt{2}-1} = \sqrt{2}-1$$

$$\frac{1}{\sqrt{2} + \sqrt{3}} = \frac{\sqrt{3} - \sqrt{2}}{\left(\sqrt{3} - \sqrt{2}\right)\left(\sqrt{3} - \sqrt{2}\right)} = \sqrt{3} - \sqrt{2}$$

$$\therefore \text{ Given expression} = \sqrt{2} - 1 + \sqrt{3} - \sqrt{2} + \sqrt{4} - \sqrt{3} + \dots + \sqrt{100} - \sqrt{99} = \sqrt{100} - 1 = 10 - 1 = 9$$
12. (d); Expression
$$= \frac{1}{2} + \frac{1}{6} + \frac{1}{12} + \frac{1}{20} + \frac{1}{30} + \dots + \frac{1}{n(n+1)} = \frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \frac{1}{3 \times 4} + \frac{1}{4 \times 5} + \dots + \frac{1}{n(n+1)} = (1 - \frac{1}{2}) + (\frac{1}{2} - \frac{1}{3}) + (\frac{1}{3} - \frac{1}{4}) + (\frac{1}{4} - \frac{1}{5}) + \dots + \frac{1}{n - \frac{1}{n+1}} = 1 - \frac{1}{n+1} = \frac{n}{n+1}$$
13. (a); Sum of squares of n terms = $\frac{n(n+1)(2n+1)}{6}$

Required sum = (sum of squares of natural numbers from 1 to 20) – $2^2 \times$ (sum of squares of natural numbers from 1 to 10)

$$= \frac{20(20+1)(40+1)}{6} - \frac{2^2 \times (10)(10+1) \times (20+1)}{6}$$

$$= \frac{20 \times 21 \times 41}{6} - \frac{4 \times 10 \times 11 \times 21}{6}$$

$$= 2870 - 1540 = 1330$$

14. (a): Taking in pairs.

$$[\because (a^2 - b^2) = (a - b) (a + b)]$$

$$(1^2 - 2^2) + (3^2 - 4^2) + \dots + (9^2 - 10^2)$$

$$= (1 + 2) (1 - 2) + (3 + 4) (3 - 4) + \dots$$

$$+ (9 + 10)(9 - 10)$$

$$= -3 - 7 - 11 - 15 - 19 = -55$$

15. (a): First term = $\frac{1}{5 \times 6} = \frac{1}{5} - \frac{1}{6}$
Second term = $\frac{1}{5 \times 6} = \frac{1}{5} - \frac{1}{6}$
20th term of series = $\frac{1}{24 \times 25} = \frac{1}{24} - \frac{1}{25}$
 \therefore Required sum

$$= \left(\frac{1}{5} - \frac{1}{6}\right) + \left(\frac{1}{6} - \frac{1}{7}\right) + \dots + \left(\frac{1}{24} - \frac{1}{25}\right)$$

$$= \frac{1}{5} - \frac{1}{25} = \frac{5 - 1}{25} = \frac{4}{25} = 0.16$$

16. (b); According to the question, Divisor = 25 × Quotient Divisor = $25 \times 16 = 400$ Also, divisor = 5 × Remainder \therefore Remainder = $\frac{400}{5}$ = 80 : Dividend = divisor × Quotient + Remainder $= 16 \times 400 + 80 = 6400 + 80 = 6480$ 17. (a); Given, $3.718 = \frac{1}{0.2689}$

QUANTITATIVE APTITUDE

Then,
$$\frac{1}{0.0003718} = 0.2689 \times 10000 = 2689$$

18. (b); Let the smallest possible number be x, then

$$I = \frac{15K + 7}{8}$$

 \rightarrow

I must be an integer putting $k = 1, 2, 3, \dots$ etc.

But at k = 7, we get a number which on being divided by 8, gives 'l' as an integer.

 $x = 15 \times 7 + 12$, x = 117So,

The next higher numbers

= (L.C.M. of divisors) m + 117

= (L.C.M. of 15 and 8) m + 117 = 120m + 117 So consider the highest possible value of m such that $120m + 117 \le 9999$ (largest possible number of four digit)

Thus at m = 82, the value of 120m + 117 = 9957, which is the required number.

19. (b); The number of zeros at the end of $(5 !)^{5!} = 120$

[:: 5! = 120 and thus (120)¹²⁰ will give 120 zeros] and the number of zeros at the end of the (10!)^{10!}, (50!)^{50!} and (100!)^{100!} will be greater than 120.

Now since the number of zeros at the end of the whole expression will depend on the number which has least number of zeros at the end of the number among other given numbers.

So, the number of zeros at the end of the given expression is 120.

20. (b); Let the fraction be $\frac{x}{v}$, then

$$\left(\frac{x}{y}\right)^2 = \frac{x^2}{y^2}$$

15.

22

then

Thus

$$\frac{10x}{3y^2} = 2\frac{x}{y} \implies \frac{x}{y}$$
$$x + y = 3 + 5 = 8$$

10x²

 $\frac{3}{5}$

 $\frac{\frac{2}{3}x^2}{\frac{1}{5}y^2}$

 $10v^2$

Hence

21. (d); 7777 + 7777 × 7777 × (5 ÷ 77) × (11 ÷ 35)

$$= 7777 + 7777 \times 7777 \times \frac{5}{77} \times \frac{11}{35}$$
$$= 7777 + 1111 \times 1111 = 7777 + 1234321 = 1242098$$

22. (a); The last digit of $32^{32^{32}}$ is same as $2^{32^{32}}$

But
$$2^{32^{32}} = 2^{32 \times 32 \times 32 \times ... \times 32 \text{ times}}$$

 $\Rightarrow 2^{32^{32}} = 2^{4 \times 8 \times (32 \times 32 \times ... \times 31 \text{ times})}$

$$\Rightarrow \qquad 2^{32^{32}} = 2^{4n}.$$

where $n = 8 \times (32 \times 32 \times ... \times 31 \text{ times})$ Again $2^{4n} = (16)^n \Rightarrow$ unit digit is 6, for every $n \in N$ Hence, the required unit digit = 6.

- 23. (c); The last digit of the expression will be same as the last digit of $2^{888} + 8^{222}$. Now the last digit of 2^{888} is 6 and the last digit of the 8^{222} is 4. Thus the last digit of $2^{888} + 8^{222}$ is 0 (zero), since 6 + 4 = 10.
- 24. (a); 111! = 1 × 2 × 3 × 4 × 5 × ... × 100 × 111
 Since there is a product of 5 and 2 hence it will give zero as the unit digit.
 Hence the unit digit of 111! is 0 (zero).
- 25. (d); $4^{6n} 6^{4n} = (64)^{2n} (36)^{2n} = (64^n + 36^n) (64^n 36^n)$ For n = 1, 3, 5, ... etc. $(64^n + 36^n)$ is divisible by 100 and all its factors. Also $(64^n - 36^n)$ is divisible by 28 and all its factors. Again for n = 2, 4, 6, ... etc. $(64^n - 36^n)$ is always divisible by 100 and all its factors. Also it is
- divisible by 28 and all its factors.
 26. (d); 19ⁿ 1 is divisible by 18 = (19 1) when n is even or odd. So (a) is correct.
 19ⁿ 1 is divisible by 20 only when n is even so (b) is wrong.
 19ⁿ 1 is never divisible by 19 which is correct. Thus (d) is the most appropriate answer.
- 27. (a); The remainder when 10^1 is divided by 6 is 4 The remainder when 10^2 is divided by 6 is 4 The remainder when 10^3 is divided by 6 is 4 The remainder when 10^4 is divided by 6 is 4 The remainder when 10^5 is divided by 6 is 4 Thus the remainder is always 4.

So, the required remainder $4 + 4 + 4 + \dots 99$ times $= \frac{396}{100}$ Thus the remainder is zero. 28. (b); Let the number be N then $N = 34Q + R_{i}$... (i) where Q is any quotient Again N = 5D and D is also a quotient but D = R + 8N = 5 (R + 8)... (ii) SO 5(R+8) = 34Q + R*.*.. 5R + 40 = 34Q + R34Q - 40 = 4R \Rightarrow 17Q - 2R = 20 \rightarrow So the minimum possible value of Q = 2 and the corresponding value of R = 7 $N = 34 \times 2 + 7$ So N = 75Hence (b) is correct Choice. 29. (a); Since the product of 4 prime factors = 1365 $= 3 \times 5 \times 7 \times 13$ and the sum of the 3 prime factors = 25 = (5 + 7 + 13)Now, total number of factors of the required number N = 24 $= 2^3 \times 3 \Longrightarrow (1 + 1)(1 + 1)(1 + 1)(2 + 1)$ Let N can be expressed as $N = 3^p \times 5^q \times 7^r \times 13^s$ Thus, for N to be greatest possible number in the above expressed form, the power of the greatest prime factors will be greater. $N = 3 \times 5 \times 7 \times 13^2$ So. $= 105 \times 169 = 17745$

30. (a); Total numbers in the set = (800 – 200) + 1 = 601 Number of numbers which are divisible by 5

$$=\frac{(800-200)}{5}+1=121$$

Number of numbers which are divisible by 7

$$=\frac{(798-203)}{7}+1=86$$

Number of numbers which are divisible by both 5 and 7 $\,$

$$= \left(\frac{770 - 210}{35}\right) + 1 = 17$$

 \therefore Number of numbers which are either divisible by 5 or 7 or both

Thus the number of numbers in the given set which are neither divisible by 5 nor by 7

Hence (a) is correct option.

14. (b): Expression =
$$(2^{n} + 2^{n} + 2^{n} + 2^{n})$$
 21. (d):
= $2^{n}(1 + 2 + 4 + 8) = 2^{n} \times 15 = 2^{n} \times 3 \times 5$
Which is exactly divisible by 10.
15. (b): Given, remainder = 4
According to the question,
Divisor = 3 × Remainder
 \Rightarrow Divisor = 3 × 4 = 12
Again, divisor = 4 × Quotient
 \Rightarrow 4 × Quotient = 12
 \Rightarrow Quotient = $\frac{12}{4} = 3$
Dividend = Quotient × Divisor + Remainder
= 3 × 12 + 4 = 40
16. (c): If a number is divisible by two numbers
separately, then it should be divisible by their
product.
17. (a): (xⁿ + yⁿ) is exactly divisible by (x + y)
when, n is odd.
Here, x = 13, y = 11
and n = 5, 7.
 \therefore The common factor
= x + y = 13 + 11 = 24
18. (d): Let three consecutive even integers be x, x + 2
and x + 4, respectively.
According to the question.
x + x + 2 + x + 4 = 54
 \Rightarrow 3x + 6 = 54 \Rightarrow 3x = 48
 \therefore x = 16
 \therefore The least even number = 16
19. (a): We know that
 $2^1 = 2, 2^2 = 4,$
 $2^3 = 8$
 $2^4 = 16$
 $2^5 = 32$
2 repeats at unit's place after power of 4.
Now, (122)ⁿⁿ = (122)ⁿⁿ 122
Unit digit in (22)ⁿ² = Unit digit in
(122)ⁿ² × Unit digit in 122
= Unit digit in (6 × 2) = 2
20. (b): The least number of 5-digits = 10000
41) 10000 (243
 $\frac{82}{180}$
 $\frac{164}{160}$
 $\frac{123}{37}$
 \therefore Required number
= 10000 + (41 - 37) = 10004

QUANTITATIVE APTITUDE

1. (d); Let the number be x and quotient be y.

$$\therefore \text{ Case I } \frac{x}{13} = y \frac{1}{13}$$

Case II Now, quotient is divided by 5 and remainder is 3.

$$\therefore \quad \frac{y}{5} = 1\frac{3}{5}$$

$$\therefore \quad y = (5 \times 1) + 3 = 8$$

and
$$\frac{x}{13} = 8\frac{1}{13}$$

$$x = (8 \times 13) + 1 = 105$$

Now,
$$\frac{105}{65} = 1\frac{40}{65}$$

Remainder = 40 2. (c); Since, p, q, r are in geometric progression. \therefore q² = pr

Then,
$$q = \sqrt{pr}$$

 3. (c); Expression = 4 + 44 + 444 + ... to n terms = 4 (1 + 11 + 111 + ... to n terms) multiplying and dividing by 9.

$$=\frac{4}{9}(9+99+999+...$$
 to n terms)

On rearranging

$$=\frac{4}{9}[(10-1)+(100-1)+(1000-1)+... n \text{ terms}]$$

 $=\frac{4}{9}[(10+10^2+10^3+...n \text{ terms})-n]$

$$=\frac{4}{9}[(10(1+10+10^2+...n \text{ terms})-n]]$$

$$=\frac{40}{9}\cdot\frac{(10^n-1)}{9}-\frac{4}{9}n$$

[Sum of n terms of the GP given as $\left(\frac{10^n - 1}{9}\right)$

$$=\frac{40}{81}(10^{n}-1)-\frac{4}{9}n$$

24. (b); Expression $= 2.3\overline{49} = 2 + 0.3\overline{49}$

$$=2+\frac{(349-3)}{990}=2\frac{346}{990}=\frac{2326}{990}$$

25. (c): Given,
$$(5^2 + 6^2 + 7^2 + ... + 10^2)$$

Sum of squares of first n natural numbers

$$= \frac{n(n+1)(2n+1)}{6}$$
Required sum = (sum of squares of natural numbers from 1 to 10) - (sum of squares of natural numbers from 1 to 4)

$$= \frac{10 \times (10+1)(20+1)}{6} - \frac{4 \times (4+1)(8+1)}{6}$$

$$= \frac{10 \times 11 \times 21}{6} - \frac{4 \times 5 \times 9}{6}$$

$$= 385 - 30 = 355$$
26. (c): Let the two numbers be x and y, respectively

$$\therefore \quad \frac{x}{y} = \frac{1}{2} \quad (given)$$
or $y = 2x$ (i)
Now, when 4 is added to each number the ratio
becomes 2 : 3.
Then, $\frac{x+4}{y+4} = \frac{2}{3}$
On solving,
 $3x + 12 = 2y + 8$
 $3x + 12 = 2(2x) + 8$
 $3x + 12 = 2(2x) + 8$
 $x + 4 = 2(3)$
(from Eq. (i))
 $3x + 12 = 2(2x) + 8$
 $x + 2 = 2(2x) + 8$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
Now, from Eq. (i)
 $y = 2x$
 $x = 4$
 x

QUANTITATIVE APTITUDE

LCM and HCF

Factors and Multiples: If a divides b exactly, we say that a is a factor of b and also we say that b is multiple of a.

i.e. 7 is a factor of 14, 8 is factor of 24 e.t.c. or 14 is multiple of 7, 24 is multiple of 8.

HCF/G.C.D/G.C.M: The HCF of two or more than two numbers is the greatest number that divides each of them exactly.

Method of finding HCF

(i) Factorization method: Express each one of the given numbers as the product of prime factors. The product of common prime factors with least power gives HCF.

Example: Find the HCF of 42, 63 and 140, $42 = 7 \times 2 \times 3$, $63 = 7 \times 3 \times 3$, $140 = 7 \times 5 \times 2 \times 2$, So HCF = 7

(i) Division Method: Suppose we have find the HCF of two given numbers. Divide the larger number by the smaller one. Now divide the divisor by the remainder . Repeat this process till remainder is zero. The last divisor is required HCF.

Example: Find the HCF of 148 and 185

148)185(1

i.e. HCF = 37.

LCM : The least number which is exactly divisible by each one of the given number is called their LCM.

Methods

(1) Factorization method: Resolve each of the given number into a product of prime factors. LCM is the product of terms of highest power of all factors.

Product of two numbers = their LCM × their HCF

Co-prime: Two numbers are said to be co-prime if their HCF is 1.

i.e. 4 and 3 arc co-prime numbers.

HCF and LCM of fractions

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	HCF of numerators		LCM of numerators
(I)	HCF = $\overline{\text{LCM of denominators}}$	(II) LCM =	HCF of denominators

Important Results

- (i) Product of two numbers = HCF of the numbers  $\times$  LCM of the numbers
- (ii) The greatest number which divides the number x, y and z leaving remainders a, b and c respectively. = HCF of (x - a) (y - b) (z - c)
- (iii) The least number which when divided by x, y and z leaves the remainder a, b and c respectively, is given by [LCM of (x, y, z) + K], where K = (x a) = (y b) = (z c)
- (iv) The least number which divided by x, y and z leaves the same remainder k in each case, is given by [LCM of (x, y, z) + K]

#### LCM AND HCF

- (v) The greatest number that will divide x, y and z leaving the same remainder in each case, is given by [HCF of (x y), (y z), (z x)]
- (vi) When the HCF of each pair of n given numbers is a and their LCM is b, then product of these numbers is given by  $(a)^{n-1} \times b$  or  $(HCF)^{n-1} \times LCM$

#### **Types of Questions**

1. HCF of  $\frac{2}{3}$ ,  $\frac{4}{5}$  and  $\frac{6}{7}$ 

Sol. HCF of fractions =  $\frac{\text{HCF of numerators}}{\text{LCM of denominators}}$ 

 $=\frac{\text{HCF}(2,4,6)}{\text{LCM}(3,5,7)}=\frac{2}{105}.$ 

- 2. The HCF (GCD) of a, b is 12 and a and b are positive integers and a > b > 12. The smallest value of (a, b) are respectively
- Sol. Given HCF of a, b = 12

Let the numbers be 12x and 12 y, where x and y are co-prime.

But given a > b > 12

- i.e. a = 36
  - b = 24
- 3. The LCM of three different numbers is 120. Which of the following cannot be HCF

(i) 4 (ii) 12 (iii) 35 (iv) 8

Sol. LCM of three no is = 120

Now, factors of  $120 = 2 \times 2 \times 2 \times 3 \times 5$ ,

Hence HCF can be 4, 8, 12

But 35 can't be HCF.

- 4. Two numbers are in the ratio 3 : 4. If their LCM is 84, then the greater number is
- Sol. Let the number be 3x and 4x

```
LCM of 3x and 4x = 12x
```

LCM = 8412x = 84 x = 7

. . . . . .

Greatest Number =  $4 \times 7 = 28$ 

5. A rectangular piece of cloth has dimentions 16 m and 12m. What is the least number of equal square that can be cut out of this cloth?

Sol. HCF of 16 and 12 = 4

No of pieces = 
$$\frac{16 \times 12}{4 \times 4} = 3 \times 4 = 12$$

- 6. Find the largest number, which divides 34, 90, 104, leaving the same remainder in each case.
- Sol. Difference between numbers = 90 34, 104 90 and 104 – 134

= 56, 14 and 70.

HCF of 56, 14 and 70 = 14

- i.e. 14 is largest number.
- 7. Which is the smallest multiple of 7, which when divided by 6, 9, 15 and 18 respectively leaves 4 as remainder in each case.

Sol. LCM of 6, 9, 15 and 18 = 90

Remainder = 4, but number is also divisible by 7 so required number

By putting

k = 1, 2, 3, 4 ..... and checking if it is divisible by 7 Required number =  $90k + 4 = 90 \times 4 + 4 = 364$ 

	Foun	dat	ion ]	
	Questions		The product of two	ro numbers is 4107. If the HCF of the e greater number is
			(a) 185	(b) 111
1.	LCM of $\frac{2}{3}, \frac{4}{9}, \frac{5}{6}$ is		(c) 107	(d) 101
	3 9 6	12.		numbers is 3 : 4 and their HCF is 5.
	(a) $\frac{20}{3}$ (b) $\frac{10}{3}$		Their LCM is	
	(a) 3 (b) 3		(a) 80	(b) 48
	20 8		(c) 120	(d) 60
	(c) $\frac{20}{27}$ (d) $\frac{8}{27}$	13.		numbers is 1820 and their HCF is
2.	The HCF of two numbers is 8. Which one of the			is 130. Then, the other number is
	following can never be their LCM?		(a) 70	(b) 1690
	(a) 24 (b) 48		(c) 364	(d) 1264
	(c) 56 (d) 60	14.		numbers 12906 and 14818 is 478.
	The LCM of two numbers is 520 and their HCF is 4. If		Their LCM is	(1) 200042
	one of the numbers is 52, then the other number is		(a) 400086	(b) 200043
	(a) 40 (b) 42		(c) 60012	(d) 800172
	(c) 50 (d) 52	15.		est number which will divide 110
•	The HCF of two numbers is 96 and their LCM is 1296.			remainder 2 in each case?
	If one of the numbers is 864, the other is		(a) 8	(b) 18
	(a) 132 (b) 135	11	(c) 28	(d) 38
	(c) 140 (d) 144	16.	and 18 is	ect square divisible by each of 6, 12
	The product of two numbers is 216. If the HCF is 6, then their LCM is		(a) 196	(b) 144
	(a) 72 (b) 60		(c) 108	(d) 36
	(c) 48 (d) 36	17	.,	
	Two numbers are in the ratio 3 : 4. If their HCF is 4,	17.		is divided by 15, 20 and 35, each er is 8. Then, that smallest number
<i>.</i>	then their LCM is		is	er 13 0. Then, that smallest humber
	(a) 48 (b) 42		(a) 428	(b) 427
	(c) 36 (d) 24	13	(c) 328	(d) 388
	The LCM of two numbers, which are multiples of 12	18	Find the HCF of 3	( )
	is 1056. If one of the numbers is 132, the other number	10.	(a) 5	(b) 6
	is		(c) 7	(d) 8
	(a) 12 (b) 72	10		product of two numbers are 15 and
	(c) 96 (d) 132	17.		7. The number of possible pairs of
	Two numbers are in the ratio 3 : 4. The product of		the numbers are.	
	their HCF and LCM is 2028. The sum of the numbers		(a) 4	(b) 3
	is		(c) 2	(d) 1
	(a) 68 (b) 72	20.	• •	numbers is 12 times their HCF. The
	(c) 86 (d) 91 Two numbers are in the ratio 2: 4. If their LCNA is 240			and the LCM is 403. If one of the
	Two numbers are in the ratio 3 : 4. If their LCM is 240, the smaller of the two number is		numbers is 93, the	en other number is
	(a) 100 (b) 80		(a) 124	(b) 128
	(a) 100 (b) 80 (c) 60 (d) 50		(c) 134	(d) 138
0	The HCF of two numbers is 16 and their LCM is 160.	21.	Find the least nun	nber exactly divisible by 12, 15, 20,
υ.	If one of the number is 32, then the other number is		27.	
	(a) 48 (b) 80		(a) 450	(b) 540
	(c) 96 (d) 112		(c) 230	(d) 640
	(~,			

22.	The largest number	er which divides 25, 73 and 97 to	27.	Four runners star	rted running simultaneously from
	leave the same remainder in each case, is:		_ <i>.</i>		r track. They took 200 s, 300 s, 360 s
	(a) 24	(b) 23		and 450 s to com	plete one round. After how much
	(c) 21	(d) 6		5	et at the strarting point for the firs
23.	.,	digits number which is exactly		time?	() 0 ( 0 0
	divisible by 12, 15			(a) 1800 s	(b) 3600 s
	(a) 90000	(b) 99999	20	(c) 2400 s	(d) 4800 s positive integers is twice the large
	(c) 99010	(d) 99900	20.		ference of the smaller number and
24.	Find the least number which when divided by 20, 25, 35, 40 leaves remainders 14, 19, 29 and 34 respectively.				o numbers is 4. The smaller numbe
				is:	
				(a) 12	(b) 6
	(a) 1220	(b) 1394		(c) 8	(d) 10
	(c) 1365	(d) 1470	29.		nce tolling together at intervals of 2
25.		ners contain 496l, 403l and 713l			2 s, respectively. In 30 min., hov
		d water. What biggest measure of		many times do th (a) 16	(b) 15
		asure all the 3 quantities exactly?.		(a) 10 (c) 10	(d) 4
	(a) 31 l	(b) 41 l	30	• •	e of buying bread rolls and buns fo
	(c) 51 l	(d) 52 l	001		e 10 buns in each box of buns and a
26.		multaneously at 11am. They ring			ch box of bread rolls. Rajesh want
	0	Is of 20 min, 30 min and 40 min,			e same number of buns and bread
	next is:	me when all the three ring together			smallest number of boxes he should
	(a) 2 pm	(b) 1 pm		buy for buns alor	
	-	•		(a) 10	(b) 8
	(c) $1.15 \text{ nm}$			(c) 1	
	(c) 1:15 pm	(d) 1:30 pm		(c) 4	(d) 5
	(c) 1:15 pm	(d) 1:30 pm	era		(d) 5
1.		Mode	era		(d) 5
1.	Three tankers cor		era 5.	te	
1.	Three tankers cor respectively. Th container that car	Modentain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three	т	te The sum of two n	numbers is 45. Their difference is $\frac{1}{9}$
1.	Three tankers cor respectively. Th container that car containers in exact	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of measure the diesel of the three t number of times is	т	<b>te</b> The sum of two n of their sum. The	numbers is 45. Their difference is $\frac{1}{9}$
1.	Three tankers cor respectively. Th container that car containers in exact (a) 31 I	Mode ntain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I	т	The sum of two n of their sum. The (a) 200	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250
1.	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I	5.	te The sum of two n of their sum. The (a) 200 (c) 100	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A	т	te The sum of two n of their sum. The (a) 200 (c) 100 The ratio of the	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellir	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in	5.	<b>te</b> The sum of two n of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12	numbers is 45. Their difference is $\frac{1}{c}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A	5.	<b>te</b> The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come	5.	te The sum of two n of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of	numbers is 45. Their difference is $\frac{1}{g}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly into
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellir the opposite direc km and C travels 8	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come	5.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t	numbers is 45. Their difference is $\frac{1}{g}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly into the minimum number of students in
1.	Three tankers cor respectively. Th container that can containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc km and C travels 8 together again afte	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel oath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r:	5.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 f a class can be grouped exactly into the minimum number of students in
2.	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc km and C travels 8 together again afte (a) 25 h (c) 15 h	Mode that A03 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h	5.	te The sum of two n of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60	numbers is 45. Their difference is $\frac{1}{g}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 fa class can be grouped exactly into the minimum number of students in (b) 120
	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc km and C travels 8 together again afte (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h (d) 20 h at three different road crossings 36 s and 54 s, respectively. If they	5. 6. 7.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly into the minimum number of students in (b) 120 (d) 240
2.	Three tankers correspectively. The container that care containers in exact (a) 31 l (c) 41 l A, B and C start tog around a circular pand B are travelling the opposite direct km and C travels 8 together again after (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3 all change simultation what time will the traffic lights a change simultation of the traffic li	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h (d) 20 h at three different road crossings 36 s and 54 s, respectively. If they neously at 10 : 15 : 00 am, then at y again change simultaneously?	5.	<b>te</b> The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers a is 12. The LCM of	numbers is 45. Their difference is $\frac{1}{g}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 fa class can be grouped exactly into the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCI f the numbers is
2.	Three tankers cor respectively. Th container that can containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc km and C travels 8 together again afte (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3 all change simulta what time will the (a) 10 : 16 : 54 am	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h (d) 20 h at three different road crossings 36 s and 54 s, respectively. If they neously at 10 : 15 : 00 am, then at y again change simultaneously? (b) 10 : 18 : 36 am	5. 6. 7.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers a is 12. The LCM of (a) 144	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly into the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCB f the numbers is (b) 192
2.	Three tankers correspectively. The container that care containers in exact (a) 31 l (c) 41 l A, B and C start tog around a circular pand B are travelling the opposite direct km and C travels 8 together again after (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3 all change simultation what time will the traffic lights a change simultation of the traffic li	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h (d) 20 h at three different road crossings 36 s and 54 s, respectively. If they neously at 10 : 15 : 00 am, then at y again change simultaneously?	5. 6. 7.	<b>te</b> The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers a is 12. The LCM of	numbers is 45. Their difference is $\frac{1}{c}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 fa class can be grouped exactly inte the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCI f the numbers is
<u>2</u> . 3.	Three tankers correspectively. The container that care containers in exact (a) 31 l (c) 41 l	Mode that Add Add Add Add Add Add Add Add Add Ad	5. 6. 7.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers at is 12. The LCM of (a) 144 (c) 96	numbers is 45. Their difference is $\frac{1}{9}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly into the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCB f the numbers is (b) 192
2.	Three tankers correspectively. The container that care containers in exact (a) 31 l (c) 41 l A, B and C start tog around a circular pand B are travelling the opposite direct km and C travels 8 together again after (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3 all change simulta what time will the (a) 10 : 16 : 54 am (c) 10 : 17 : 02 am Sum of two numb	Mode that Add Add Add Add Add Add Add Add Add Ad	5. 6. 7.	<b>te</b> The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers a is 12. The LCM of (a) 144 (c) 96 The greatest comm	numbers is 45. Their difference is $\frac{1}{g}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly inte the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCI f the numbers is (b) 192 (d) 72
<u>2.</u> 3.	Three tankers cor respectively. Th container that car containers in exact (a) 31 I (c) 41 I A, B and C start tog around a circular p and B are travellin the opposite direc km and C travels 8 together again afte (a) 25 h (c) 15 h The traffic lights a change after 24 s, 3 all change simulta what time will the (a) 10 : 16 : 54 am (c) 10 : 17 : 02 am Sum of two numb 48. The difference	Mode tain 403 I, 434 I, 465 I of diesel, en, the maximum capacity of a measure the diesel of the three t number of times is (b) 62 I (d) 84 I gether from the same point to travel bath of 30 km in circumference. A ng in the same direction and C in tion. If A travels 5 km, B travels 7 km in an hour, then they all come r: (b) 30 h (d) 20 h at three different road crossings 36 s and 54 s, respectively. If they neously at 10 : 15 : 00 am, then at y again change simultaneously? (b) 10 : 18 : 36 am (d) 10 : 22 : 12 am ers is 384, HCF of the numbers is of the number is	5. 6. 7.	te The sum of two m of their sum. The (a) 200 (c) 100 The ratio of the numbers is 7 : 12 number is (a) 20 (c) 12 If the students of 6 or 8 or 10, then t the class must be (a) 60 (c) 180 Three numbers at is 12. The LCM of (a) 144 (c) 96	numbers is 45. Their difference is $\frac{1}{6}$ ir LCM is (b) 250 (d) 150 sum to the LCM of two natura . If their HCF is 4, then the smalle (b) 16 (d) 8 a class can be grouped exactly inte the minimum number of students in (b) 120 (d) 240 re in the ratio 2 : 3 : 4 and their HCI f the numbers is (b) 192 (d) 72 mon divisor of $3^{333} + 1$ and $3^{334} + 1$ i

	M AND HCF			
10.	A milk vendor has 21 l of cow milk, 42 l of toned milk and 63 l of double toned milk. If he wants to pack them in cans, so that each can contains same number		The sum of two numbers is 36 and their HCF is 4 How many pairs of such numbers are possible?	
			(a) 1 (b) 2	
	of litres of milk and does not want to mix any two		(c) 3 (d) 4	
	kinds of milk in a can, then the least number of cans	20.	The HCF of two numbers 12908 and 14808 is 672	
	required as		Their LCM is	
	(a) 3 (b) 6		(a) 284437 (b) 200043	
	(c) 9 (d) 12		(c) 60012 (d) 800172	
11.	There are 24 peaches, 36 apricots and 60 bananas and they have to be arranged in several rows in such a way that every row contains the same number of fruits of only one type. What is the minimum number of rows required for this to happen?		Two jars of capacity 50 I and 80 I are filled with oil	
			What must be the capacity of a mug that car completely measure the oil of the two jars?	
			(a) 5 l (b) 15 l	
	(a) 12 (b) 9		(c) 10 l (d) 20 l	
	(c) 10 (d) 6	22.	The traffic lights at three different road crossings	
12.	Three numbers which are coprimes to one another are such that the product of the first two is 551 and that of the last two is 1073. The sum of the three		change after every 48 sec, 72 sec, and 108 sec respectively. If they all change simultaneously at 8 20 hours, then at what time will they again change simultaneously?	
	numbers is		(a) 8 : 27 : 12 hours (b) 8 : 25 : 14 hours	
	(a) 75 (b) 81		(c) 8:24:12 hours (d) 8:29:12 hours	
10	(c) 85 (d) 89	22		
13.	Three sets of English, Mathematics and Science books		The LCM of two numbers is 2310 and their HCF is 30. If one of the number is $7 \times 30$ , Find the other	
	containing 336, 240 and 96 books, respectively have		number.	
	to be stacked in such a way that all the books are stored subject–wise and the height of each stack is		(a) 320 (b) 330	
	the same. Total number of stacks will be		(a) 320 (b) 330 (c) 340 (d) 350	
	(a) 14 (b) 21	24		
14	(c) 22 (d) 48 The sum of two numbers is 36 and their HCF and	24.	What is the least multiple of 7, which when divided by 2, 3, 4, 5 and 6 leaves the remainders 1, 2, 3, 4 and 5 respectively?	
	LCM are 3 and 105, respectively. The sum of the		(a) 117 (b) 119	
	reciprocals of two numbers is		(c) 121 (d) 123	
	2 2	25	The least number, which when divided by 12, 15, 20	
	(a) $\frac{2}{35}$ (b) $\frac{3}{25}$	20.	or 54 leaves a remainder 4 in each case is:	
	35 25		(a) 450 (b) 454	
	12 2			
	(c) $\frac{12}{35}$ (d) $\frac{2}{25}$	2/		
15.	What is the least number of square tiles required to		The maximum number of students among whom 1001 pens and 910 pencils can be distributed in such	
	pave the floor of a room 15 m 17 cm long and 9 m 2 cm broad?		a way that each student gets same number of pens and same number of pencils, is	
	(a) 840 (b) 841		(a) 91 (b) 910	
	(c) 820 (d) 814			
16	The HCF (GCD) of a, b is 12. a, b are positive integers	77	(c) 1001 (d) 1911	
10.	and $a > b > 12$ . The smallest values of (a, b) are respectively.		A, B and C start running at the same time and from the same point in the same direction in a circular stadium. A completes a round in 252 s, B in 308 s and	
	(a) 12, 24 (b) 24, 12		C in 198s. After what time will they meet again at the	
	(c) 24, 36 (d) 36, 24		starting point?	
17.	If $P = 2^3 \times 3^{10} \times 5$ and $Q = 2^5 \times 3 \times 7$ , then HCF of P and		(a) 26 min 18 s (b) 42 min 36 s	
	Qis		(c) 45 min (d) 46 min 12 s	
	(a) $2 \cdot 3 \cdot 5 \cdot 7$ (b) $3 \cdot 2^3$	28	Three men step-off together from the same spot. Their	
	(c) $2^2 \cdot 3^7$ (d) $2^5 \cdot 3^{10} \cdot 5.7$	20.	steps measures 63 cm, 70 cm and 77 cm, respectively.	
18.			The minimum distance each should cover, so that all	
	Total number of such pairs of numbers is		can cover the distance in complete steps, is	
	(a) 2 (b) 3		(a) 9630 cm (b) 9360 cm	
	(c) 4 (d) 5		(c) 6930 cm (d) 6950 cm	
	· · · · · · · · · · · · · · · · · · ·			

LCI	M AND HCF		QUANTITATIVE APTITUDE
29.	Find the largest number of four digits such that on dividing by 15, 18, 21 and 24 the remainders are 11, 14, 17 and 20, respectively. (a) 6557 (b) 7556 (c) 5675 (d) 7664		The total number of integers between 100 and 200, which are divisible by both 9 and 6 is (a) 5 (b) 6 (c) 7 (d) 8
	Dif	ficu	lt ]
1.	The largest possible length of a tape which can measure 525 cm, 1050 cm and 1155 cm length of cloths in a minimum number of attempts without measuring the length of a fraction of the tape's length is (a) 25 (b) 105 (c) 75 (d) None of these	9	(a) 231(b) 301(c) 371(d) 441Three bells, toll at interval of 36 sec, 40 sec and 48 secrespectively. They start ringing together at particulartime. They next toll together after :(a) 6 minutes(b) 12 minutes
2.	There are three drums with 1653 litre 2261 litre and 2527 litre of petrol. The greatest possible size of the measuring vessel with which we can measure up the petrol of any drum while every time the vessel must be completely filled is: (a) 31 (b) 27 (c) 19 (d) 41		<ul> <li>(c) 18 minutes</li> <li>(d) 24 minutes</li> <li>Mr. Black has three kinds of wine, of the first kind</li> <li>403 litres, of the second 434 litres and of the third 465 litres. What is the least number of full corks of equal size in which these can be stored without mixing?</li> <li>(a) 31</li> <li>(b) 39</li> <li>(c) 42</li> <li>(d) 51</li> </ul>
3.	Mr. Baghwan wants to plant 36 mango trees, 144 orange trees and 234 apple trees in his garden. If he wants to plant the equal no. of trees in every row, but the rows of mango, orange and apple trees will be separate, then the minimum number of rows in his garden is : (a) 18 (b) 23		Abhishek, Bobby and Charlie start from the same point and travel in the same direction round an Island 6 km in circumference. Abhishek travels at the rate of 3km/hr, Bobby at the rate of $2\frac{1}{2}$ km/hr and
4.	<ul> <li>(c) 36</li> <li>(d) Can't be determined</li> <li>Find the least possible perfect square number which is exactly divisible by 6, 40, 49 and 75</li> <li>(a) 176400</li> <li>(b) 15000</li> <li>(c) 175600</li> <li>(d) 16500</li> </ul>		Charlie at the rate of $1\frac{1}{4}$ km/hour. In how many hours will they come together again? (a) 6 hrs (b) 12 hrs (c) 24 hrs (d) 15 hrs
5.	Three bells in the Bhootnath temple toll at the interval of 48, 72 and 108 seconds individually. If they have tolled all together at 6:00 AM then at what time will they toll together after 6:00 AM? (a) 6:07:15 AM (b) 6:07:12 AM		The LCM of two numbers is 4 times their HCF. The sum of LCM and HCF is 125. If one of the numbers is 100, then the other number is (a) 5 (b) 25 (c) 100 (d) 125 LCM of two numbers is 120 and their HCF is 10.
6.	<ul> <li>(c) 4:04:12 AM</li> <li>(d) 6:06:12 AM</li> <li>What is the least possible number which when divided by 18, 35 and 42 leaves 2, 19 and 26 as the remainders respectively?</li> <li>(a) 400</li> <li>(b) 740</li> <li>(c) 614</li> <li>(d) 621</li> </ul>		Which of the following can be the sum of those two numbers? (a) 140 (b) 80 (c) 60 (d) 70
7.	Find the HCF of 0.0005, 0.005, 0.15, 0.175, 0.5 and 3.5.	14.	A fraction becomes $\frac{1}{6}$ when 4 is subtracted from its numerator and 1 is added to its denominator. If 2
8.	(a) .0005 (b) .005 (c) .05 (d) .5 The least number which when divided by 2, 3, 4, 5		and 1 are respectively added to its numerator and
0.	The least number which when divided by 2, 3, 4, 5 and 6 leaves the remainder 1 in each case. If the same number is divided by 7 it leaves no remainder. The number is:		the denominator, it becomes $\frac{1}{3}$ . Then, the LCM of the numerator and denominator of the said fraction, must be

	AND HCF				
	(a) 14	(b) 350		(a) 70	(b) 77
	(c) 5	(d) 70		(c) 63	(d) 56
15.	From a point on a circular track 5 km long, A, B and C started running in the same direction at the same		18.	The number of in are divisible by 4	tegers in between 100 and 600, whic I and 6 both is
	time with speeds of $2\frac{1}{2}$ km/h, 3 km/h and 2 km/h,			(a) 40	(b) 42
				(c) 41	(d) 50
	respectively. Ther meet again after: (a) 30 h	n, on the starting point all three will (b) 6 h	19.		r, which when divided by 18, 27 an eaves remainders 5, 14 and 2
	(c) 10 h	(d) 15 h		(a) 95	(b) 113
16.	The HCF of two n	umbers is 15 and their LCM is 300.		(c) 149	(d) 77
	If one of the num	pers is 60, the other is	20.	.,	er of five digits which, when divide
	(a) 50	(b) 75	20.		36 leaves the same remainder 10 i
	(c) 65	(d) 100		each case, is	
17.	HCF and LCM	of two numbers are 7 and 140,		(a) 99279	(b) 99370
		e numbers are between 20 and 45,		(c) 99269	(d) 99530
	the sum of the nu	mbers is			
			Me	mory Base	d)
1.	The HCF and LC	M of two numbers are 44 and 264		(a) 48	(b) 36
		e first number is divided by 2, then		(c) 24	(d) 16
	quotient is 44. The	e other number is	8.	.,	e LCM and the HCF of two number
	(a) 147	(b) 528	0.		rence of the numbers is 2, then th
	(c) 132	(d) 264		greater of the nur	
2.	The ratio of two numbers is 5 : 6 and their LCM is			(a) 3	(b) 4
	480, then their $H($	(b) 16		(c) 6	(d) 8
	(a) 20 (c) 6	(d) 5	9.	and the second se	roduct of two numbers are 15 an
3.	Product of two coprime numebers is 117, then their				ly. The number of possible pairs of
J.	LCM is			the numbers is	
	(a) 9	(b) 13	1	(a) 4	(b) 3
	(c) 39	(d) 117		(c) 2	(d) 1
4.	The LCM of two numbers is 48. The numbers are in		10.	The LCM of two	numbers is 20 times their HCF. Th
	the ratio 2 : 3. The sum of the numbers is			sum of HCF and LCM is 2520. If one of the number	
	(a) 28	(b) 32		is 480, the other I	
_	(c) 40	(d) 64		(a) 400	(b) 480
5.	The ratio of two numbers is 4 : 5 and their HCF is 8. Then, their LCM is			(c) 520 2 4	(d) 600
	(a) 130	(b) 140	11.	HCF of $\frac{2}{3}, \frac{4}{5}$ and	$I \frac{1}{7}$ is
	(c) 150	(d) 160			
		CM of two consecutive (positive) and 84 respectively, then the sum		(a) $\frac{48}{105}$	(b) $\frac{2}{105}$
5.	of the numbers is 2			1	24
5.		(b) 26		(c) $\frac{1}{105}$	(d) $\frac{24}{105}$
6.	of the numbers is		10	(c) $\frac{1}{105}$	(d) $\frac{24}{105}$
6. 7.	of the numbers is (a) 30 (c) 14	(b) 26 (d) 34	12.	The LCM and the	(d) $\frac{24}{105}$ e HCF of the numbers 28 and 42 ar
	of the numbers is (a) 30 (c) 14 The HCF and LC	(b) 26	12.		

expression is $x^3 + 3x + 2$ , then find the other. (a) $x^3 + 5x + 4$ (b) $x^3 - 5x + 4$ (c) $x^4 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^4 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5x + 5$	LCI	M AND HCF			QUANTITATIVE APTITUDE
(a) $x^2 + 5x + 4$ (b) $x^2 - 5x + 4$ (c) $3^7$ (c) $3^6$ (c) $x^2 + 4x + 5$ (c) $x^2 - 4x + 5$ (c) $3^7$ (c) $3^$	13.	8) (x+ 1) and (x +	1) respectively and one of the	22.	that the resulting number when divided by 9, 10 and
14. Two numbers are in the ratio 3 : 4. Their LCM is 84. Then, the greater number is (a) 21 (b) 24 (c) 28 (c) 8423. The largest number, which divides 25, 73 and 97 leave the same remainder in each case, is (a) 23 (c) 24 (c) 23 (c) 24 (c) 23 (c) 669 (c) 66623. (c) 24 (c) 23 (c) 669 (c) 66624. (c) 669 (c) 666 (c) 669 (c) 666 (c) 669 (c) 66624. (c) 669 (c) 666 (c) 669 (c) 66624. (c) 252 (c) 84024. (c) 252 (c) 84017. The HCF and LCM of two numbers are 11 and 385, respectively. The numbers are 12 and 700 (c) 44 and 77 (c) 22 and 770 (c) 64. 80 (c) 90. 96 (c) 64. 80 (c) 90. 9626. (c) 17 (c) 23 (c) 16 (c) 10 (c) 20 (c) 16 (c) 10 (c) 20 (c) 16 (c) 10 (c) 20 (c) 16 (c) 10 (c) 12826. (c) 16 (c) 10 (c) 12820. What is the least number which and vide 1356, 78 (d) 320 (c) 16 (c) 124 (c) 12827. (c) 16 (c) 12828. (c) 16 (c) 17 (c) 23 (c) 4. (d) 620. What is the least number which and vide 1356, 1868, 2764 leaving the same remainder 1 neach case is (a) 900 (c) 1600 (c) 124 (c) 12828. (c) 16 (c) 16 (c) 17 (c) 23 (c) 36020. What is the least number which, when divided by 56, 73 and 3 leaving remainders 3 and 7 respectively, is (a) 1463 (c) 17329. (c) 16 (c) 124 (c) 12820. What is the least number which, when divided by 70, 16 and 24 leave remainder 2 and 24 leave remainders 2 and 24 leave remainders 3 and 7 respectively. Is (c) 163 (c) 179321. The greatest number which, when divided by 70, 16 and 24 leave remainders 2 and 24 leave remainders 2 and 24 leave remainders 3 and 7 respectively. Is (c) 163 (c) 17322. What is the least number which, when divided by 70, 16 and 24 leave remainders 2 and 24 leave remainders 3 and 7 respe		-			(a) 37 (b) 36
14. Two numbers are in the ratio 3 : 4. Their LCM is 84. Then, the greater number is (a) 21 (b) 24 (c) 28 (c) 8423. The largest number which divides 25. 73 and 97 leave the same remainder in each case, is (a) 24 (b) 23 (c) 24 (c) 2324. The least multiple of 13, which on dividing by 4, 5 7 and 8 leaves remainder 2 in each case, is (a) 966 (b) 696 (c) 669 (c) 66624. The least multiple of 13, which on dividing by 4, 5 7 and 8 leaves remainder 2 in each case, is (a) 250 (b) 842 (c) 250 (c) 842 (c) 2522 (c) 84015. Two numbers, both greater than 29, have HCF 29 and LCM 4147. The sumbers are 11 and 385 respectively. The numbers are 10 and 15 leaves in each case as ame remaind 480 respectively. The numbers are 11 and 385 respectively. The numbers are 11 and 385 respectively. The numbers are 10 and 320 (a) 40. 48 (b) 60, 72 (c) 44. (c) 124 (c) 16 (c) 4026 (c) 17 (c) 2317. The HCF and LCM of two 2 digits number which will exactly divide 200 and 320. (a) 10 (b) 20 (c) 16 (c) 124 (c) 16 (c) 124 (c) 16 (c) 12826 (c) 16 (c) 4019. The greatest number which, when divided by 5, 7, and 8 gives the remainder 3 in this divisible by 97 (a) 1463 (c) 179320. What is the least number which, when divided by 5, 7, and 8 gives the remainder 3 and 77 (c) 1683 (c) 179320. What is the least number which, when divided by 5, 7, and 8 gives the remainder 3 and 77 (a) 1463 (c) 157320. (b) 56 (c) 5675 (c) 756621. The greatest number of four digits which when divided by 12,		( )			
(a) 21 (b) 24 (c) 23 (c) 24 (c) 22 (c) 24 (c) 23 (c) 24 (c) 22 (c) 24 (c) 25 (c) 26 (	14.	Two numbers are i	n the ratio 3 : 4. Their LCM is 84.	23.	The largest number, which divides 25, 73 and 97 to
(c) 28 (c) 84 (c) 27 (c) 44 The least multiple of 13, which on dividing by 4, 5 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 7 and 8 leaves remainder 2 in each case, is 30 leaving remainder 3 and 7, respectively? (a) 15 (c) 44 (c) 12 2 (c) 252 (c) (b) 842 (c) 252 (c) (b) 840 (c) 16 (c) 10 (c) 10 (c) 10 (c) 10 (c) 10 (c) 16 (c) 10 (c) 15 (c) 17 (c) 23 (c) 16 (c) 12 (c) 10 (c) 12 (c) 16 (c) 14 (c) 12 (c					(a) 24 (b) 23
15. Two numbers, both greater than 29, have HCF 29 and LCM 4147. The sum of the numbers is (a) 966 (b) 696 (c) 669 (c) 666 (c) 2522 (c) 840 (c) 252 (c) 64. 80 (c) 20 and 320 (c) 80. 96 (c) 44. 80 (c) 20 (c) 64. 80 (c) 80. 96 (c) 44. 81 (c) 96 (c) 16 (c) 17 (c) 23 (c) 17 (c) 12 (c) 16 (c) 17 (c) 12 (c) 1		.,			(c) 21 (d) 6
(c) 669 (c) 166 (c) 2522 (c) 840 (c) 2530 12 (c) 23 (c) 44 and 77 (c) 22 and 770 (c) 44 and 70 (c) 26 (c) 16 (c) 174 (c) 90 (c) 16 (c) 10 (c) 12 (c) 16 (c) 124 (c) 90 (c) 124 (c) 90 (c) 124 (c) 90 (c) 163 (c) 179 (c) 163 (c) 1793 (c) 163 (c) 1793 (c) 1633 (c) 1793 (c) 16357 (c) 7 7664 30. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 12 (b) 24 (c) 9807 (c) 9807 (c) 9807 (c) 9998 (c) 30 (c) 120 Foundation 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 1. (c) Mortumerators $\frac{1-CM(2,4,5)}{3} - \frac{20}{3}$ (c) Mor	15.	Two numbers, bot	h greater than 29, have HCF 29	24.	7 and 8 leaves remainder 2 in each case, is
16. The HCF and LCM of two numbers are 11 and 385, respectively. The numbers are (a) 40, 48 (b) 55 and 77 (c) 44 and 77 (d) 22 and 770 (d) 22 and 770 (d) 23 (d) 17 The HCF and LCM of two 2 digit numbers are 16 and 480, respectively. The numbers are (a) 40, 48 (b) 60, 72 (c) 44 and 70 (d) 20 (c) 16 (d) 40 (d) 5 (c) 44 and 320. (a) 10 (b) 20 (c) 16 (d) 40 (d) 5 (c) 44 (d) 5 (c) 16 (d) 40 (d) 15 leaves in unber of digits of N is (a) 3 (b) 5 (c) 4 (c) 6 (d) 40 (d) 6 (d) 40 (d) 15 leaves in unber of digits of N is (a) 3 (b) 5 (c) 4 (c) 6 (d) 40 (d) 5 (c) 24 (c) 32 (d) 5 (c) 4 (d) 6 (d) 40 (d) 5 (c) 24 (d) 32 (d) 173 (d) 24 (d) 32 (d) 179 (d) 24 (c) 30 (d) 120 (c) 168 (d) (d) 1573 (c) 1683 (d) 1793 (d) 1973 (c) 1683 (d) 1793 (d) 19970 (c) 30 (d) 120 (foundation) (f) 120		(a) 966	(b) 696		(a) 2520 (b) 842
16. The HCF and LCM of two numbers are 11 and 385, respectively. The numbers are 23 and 5725. What is the greatest number that will divide 307 and 30 leaving remainders 3 and 7, respectively.(a) 45 and 77(b) 55 and 77(c) 44 and 77(d) 22 and 770(a) 19(b) 16(c) 17(c) 42(a) 40, 48(b) 60, 72(c) 44, 80(d) 80, 96(c) 14(d) 6(c) 14(d) 6(b) 46, 80(d) 80, 96(c) 44, 60(d) 6(c) 44(d) 6(c) 44(d) 6(c) 44, 80(d) 80, 96(c) 12(c) 44(d) 5(c) 44(d) 6(a) 10(b) 20(c) 16(c) 40(c) 2500(d) 3600(c) 16(c) 124(c) 128(c) 2500(d) 3600(c) 124(c) 128(c) 244(d) 3220. What is the least number which, when divided by 5(c) 124(c) 128(c) 244(c) 163(d) 1793(c) 244(d) 3221. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14(c) 5675(c) 7664(c) 9807(d) 99970(c) 30(d) 120Foundation1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 2.(d) HCF of two numbers is 8. This means 8 is a fact common to both the numbers. (c) 301. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 2.(d) HCF of two numbers is 8. This means 8 is a fact common to both the numbers. (c) 301. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ (a) HCF of two		.,			
(a) 35 and 37 (b) 35 and 77 (c) 22 and 77 (c) 22 and 77 (c) 22 and 77 (c) 22 and 77 (c) 27 (c) 23 (c) 4, 80 (c) 80, 96 (c) 26 (c) 4 (c) 9 (c) 16 (c) 26 (c) 17 (c) 23 (c) 17 (c) 18 (c) 17 (c) 18 (c) 17 (c) 18 (c) 124 (c) 10 (c) 124 (c) 128 (c) 16 (c) 124 (c) 128 (c) 16 (c) 124 (c) 128 (c) 1573 (c) 1683 (c) 1573 (c) 1683 (c) 1573 (c) 1683 (c) 1573 (c) 1683 (c) 173 (c) 18 (c) 18 (c) 124 (c) 18 (c	16.	The HCF and LCM	1 of two numbers are 11 and 385,	25.	330 leaving remainders 3 and 7, respectively?
(c) 44 and 77(c) 22 and 77017. The HCF and LCM of two 2 digit numbers are (a) 40, 48(b) 60, 72(a) 40, 48(b) 60, 72(a) 40, 48(b) 60, 72(c) 64, 80(c) 80, 9618. Find the greatest number which will exactly divide 200 and 320.(a) 10(b) 10(b) 20(c) 16(c) 4019. The greatest number which can divide 1356, 1868, (c) 124(d) 12820. What is the least number which, when divided by 5, (c) 124(d) 12820. What is the least number which, when divided by 5, (c) 1643(d) 179321. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974(b) 997021. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{LCM0(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ 24. LCM of fractions $= \frac{LCM0(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$		(a) 55 and 57	(b) 55 and 77		
17. The Probability of Value 200 products are (a) 40, 48 (b) 60, 72 (c) 64, 80 (d) 80, 96by 4, 6, 10 and 15 leaves in each case same remain (2 be N. The sum of digits of N is (a) 3 (b) 5 (c) 4 (d) 5 (c) 16 (d) 4018. Find the greatest number which will exactly divide 200 and 320. (a) 10 (b) 20 (c) 16 (c) 12 (d) 40(a) 10 (b) 20 (c) 16 (c) 124 (d) 128(a) 10 (c) 20 (c) 124 (d) 128(a) 10 (c) 20 (c) 124 (d) 128(a) 10 (c) 20 (c) 124 (d) 128(b) 64 (c) 124 (d) 128(c) 24 (c) 32020. What is the least number which, when divided by 5, (a) 1463 (b) 1573 (c) 1463 (c) 1793(c) 5675 (c) 160 (c) 224 (c) 32(c) 3683 (c) 179321. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (c) 9807 (c) 99970(c) 30 (c) 12020FoundationSolutions1. (a): Given, fractions $\frac{2}{3} \cdot \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ (c) 16 and 24 leave free and 14 respectively.1. (a): Given, fractions $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ (c) 20(c) 30 (c) 120Foundation1. (a): Given, fractions $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ (c) 30 (c) 120Foundation2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. ∴ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8. Second number3. (a): HCF × LCM = Product of two numbers. HCF(3, 9, 6) = $\frac{2}{3}$ (c) 20		(c) 44 and 77	(d) 22 and 770		~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~
(a) 40, 48 (b) 60, 72 (c) 64, 80 (c) 80, 96 (c) 16 (c) 4 (c) 920 (c) 16 (c) 16 (c) 124 (c) 128 (c) 124 (c) 128 (c) 124 (c) 128 (c) 1463 (c) 1573 (c) 1463 (c) 1573 (c) 1683 (c) 1793 (c) 1683 (c) 1697 (c) 1683 (c) 1573 (c) 1683 (c) 1793 (c) 1683 (c) 1697 (c) 1683 (c) 1697 (c) 1683 (c) 1793 (c) 1697 (c) 9807 (c) 9807 (c) 9998 (c) 30 (c) 120 (c) 9807 (c) 9998 (c) 30 (c) 120 (c) 9807 (c) 9998 (c) 30 (c) 120 (	17.		0	26.	by 4, 6, 10 and 15 leaves in each case same remainde
(c)64, 80(d)80, 9618. Find the greatest number which will exactly divide 200 and 320.(a)10(b)20(a)10(b)20(c)16(c)(a)10(b)20(c)1600(c)(c)16(c)4(d)619. The greatest number which can divide 1356, 1868, 2764 leaving the same remainder in each case is (a)260(b)64(c)124(d)12829The dreatest number, which divides 989 and 13 leaving remainders 5 and 7 respectively, is (a)8(b)(c)124(d)12829Find the largest number of four digits such that divided by 12, 16 and 24 leave remainder 2, 6 and 1430The greatest number, that divides 122 and 243 leavi respectively is (a)21. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 1430The greatest number, that divides 122 and 243 leavi respectively 2 and 3 as remainders is (a)21. (a)9974 (b)9970 (c)9807(c)30(d)21. (a)Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions2.(d)HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM on numbers. $4 \times 520 = 52 \times$ Second number1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ HCF of denominators2.(d)HCF of two numbers. $4 \times 520 = 52 \times$ Second number2. (d): HCF of LCM of numerators $HCF of denominators\therefore Second number$		(a) 40, 48	(b) 60, 72		
18. Find the greatest number which will exactly divide 200 and 320.27. The smallest square number divisible by 10, 16 an 24 is: (a) 10 (b) 20 (c) 16 (c) 14 (c) 140 (c) 128 (c) 124 (c) 128 (c) 1683 (c) 1773 (c) 1683 (c) 1793 (c) 1683 (c) 19970 (c) 9807 (c) 9998 (c) 30 (c) 120 (c) 30 (c) 1		(c) 64, 80	(d) 80, 96		
(c) 16 (d) 40 (e) 900 (d) 3600 (c) 2500 (d) 360 (c) 2200 (c) 220 (c) 2500 (d) 3600 (c) 2500 (d) 360 (c) 220 (c) 220 (c) 220 (c) 360 (c) 24 (d) 32 (c) 1683 (d) 1793 (c) 1664 (c) 30 (d) 120 (c) 30 (c) 120 (c) 3	18.	Ũ	umber which will exactly divide	27.	The smallest square number divisible by 10, 16 and
(c) 16(d) 40(c) 2500(d) 360019. The greatest number which can divide 1356, 1868, 2764 leaving the same remainder in each case is (a) 260(b) 64(c) 124(d) 12820. What is the least number which, when divided by 5, 6, 7 and 8 gives the remainder 3 but is divisible by 9? (a) 1463(b) 1573(c) 24(d) 3220. What is the least number which, when divided by 5, (a) 1463(b) 1573(c) 24(d) 3229. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is(a) 6557(b) 755621. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is(a) 6557(b) 24(c) 9807(d) 9998(c) 30(d) 120Foundation2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. $(c) 30, (d) 120$ 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. $(c) 30, (d) 120$ 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. $(c) 30, (d) 120$ 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM of fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ (a) (2): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. $(c) 30, (c) 120$ 2. (d): HCF vLCM = Product of two numbers. $4 \times 520 =$		(a) 10	(b) 20		(a) 900 (b) 1600
19. The greatest number which can divide 1356, 1868, 2764 leaving the same remainder in each case is (a) 260 (b) 64 (c) 124 (d) 12828. The greatest number, which divides 989 and 13 leaving remainders 5 and 7 respectively, is (a) 8 (b) 16 (c) 24 (c) 3220. What is the least number which, when divided by 5, 6, 7 and 8 gives the remainder 3 but is divisible by 97 (a) 1463 (b) 1573 (c) 1683 (c) 1683 (c) 179328. The greatest number, which divides 989 and 13 leaving remainders 5 and 7 respectively, is (a) 8 (b) 16 (c) 24 (c) 3220. What is the least number which, when divided by 5, 6, 7 and 8 gives the remainder 3 but is divisible by 97 (a) 1463 (b) 1573 (c) 1683 (c) 1683 (c) 179328. The greatest number, which divides 989 and 13 leaving remainders 5 and 7 respectively, is (a) 8 (b) 16 (c) 24 (c) 3221. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (c) 9807 (d) 999830. The greatest number, that divides 122 and 243 leaving respectively, 2 and 3 as remainders is (a) 12 (b) 24 (c) 30 (d) 120FoundationSolutions1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions = $\frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. ∴ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8. (a): HCF × LCM = Product of two numbers. 4 × 520 = 52 × Second number1. (a): Given, fractions = $\frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ 30. (a): HCF × LCM = Product of two numbers. 4 × 520 = 52 × Second number<		(c) 16	(d) 40		
(c) 124(d) 128(c) 124(d) 12820. What is the least number which, when divided by 5, 6, 7 and 8 gives the remainder 3 but is divisible by 9? (a) 1463(b) 1573(c) 24(d) 32(a) 1463(b) 1573(c) 1683(d) 1793(e) 6575(f) 7556(c) 1683(d) 1793(e) 6575(f) 766421. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974(b) 9970(e) 5675(f) 766420. What is fully a grad for the sectively is (c) 9807(f) 9998(c) 30(f) 120(f) 120FoundationSolutions1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ 2.(d) HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM of fractions $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ 3.(a) HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times$ Second number3. Cond number $= \frac{4 \times 520}{52} = 40$ (f) 4000	19.	2764 leaving the sa	me remainder in each case is	28.	The greatest number, which divides 989 and 132
20. What is the least number which, when divided by 5, 6, 7 and 8 gives the remainder 3 but is divisible by 9? (a) 1463 (b) 1573 (c) 1683 (d) 1793 (a) 1463 (d) 1793 (b) 1573 (c) 1683 (d) 1793 (c) 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (c) 9807 (d) 9998 (c) 30 (d) 120 (c) 9807 (d) 9998 (c) 30 (d) 120 (c) 30 (c) 31 (c) 120 (c) 30 (c) 30 (c) 120 (c) 30 (c)		(a) 260	(b) 64		(a) 8 (b) 16
6, 7 and 8 gives the remainder 3 but is divisible by 9? (a) 1463 (b) 1573 (c) 1683 (c) 1793 (d) 1793 (e) 556 21. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (c) 5675 (d) 7664 (f)		(c) 124	(d) 128		(c) 24 (d) 32
(c) 1683 (d) 1793 (a) 6557 (b) 7556 21. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (a) 12 (b) 24 (c) 9807 (d) 9998 (c) 30 (d) 120 Foundation Solutions 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8. 3. (a): HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times$ Second number $= \frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ $\therefore$ Second number $= \frac{4 \times 520}{52} = 40$	20.	6, 7 and 8 gives the	remainder 3 but is divisible by 9?	29.	dividing by 15, 18, 21 and 24 the remainders are 11
21. The greatest number of four digits which when divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (c) 9807 (c) 9908 (c) 30 (d) 120 Foundation Solutions 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions = $\frac{LCM of numerators}{HCF (3, 9, 6)} = \frac{20}{3}$ (c) 5675 (d) 7664 The greatest number, that divides 122 and 243 leavi respectively, 2 and 3 as remainders is (a) 12 (b) 24 (c) 30 (d) 120 Foundation 2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8. 3. (a): HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times Second number$ $\therefore$ Second number $= \frac{4 \times 520}{52} = 40$					
divided by 12, 16 and 24 leave remainder 2, 6 and 14 respectively is (a) 9974 (b) 9970 (a) 12 (b) 24 (c) 9807 (d) 9998 (c) 30 (d) 120 <b>Foundation</b> <b>Solutions</b> 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ 1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ $LCM of fractions = \frac{LCMof numerators}{HCF of denominators}$ $= \frac{LCM(2, 4, 5)}{HCF(3, 9, 6)} = \frac{20}{3}$ <b>Solutions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b>Contractions</b> <b></b>	01	.,			
(c) 9807 (d) 9998 (c) 30 (d) 120 Foundation Solutions 1. (a); Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{\text{LCM of numerators}}{\text{HCF of denominators}}$ $= \frac{\text{LCM}(2,4,5)}{\text{HCF}(3,9,6)} = \frac{20}{3}$ (c) 30 (d) 120 (d) HCF of two numbers is 8. This means 8 is a fact common to both the numbers. $\therefore$ LCM must be multiple of 8. By going throw the options, 60 cannot be the LCM since it is r a multiple of 8. 3. (a); HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times \text{Second number}$ $\therefore$ Second number $= \frac{4 \times 520}{52} = 40$	21.	divided by 12, 16 a	-	30.	The greatest number, that divides 122 and 243 leaving
FoundationSolutions2. (d); HCF of two numbers is 8. This means 8 is a fact common to both the numbers. LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is n a multiple of 8.1. (a); Given, fractions $\frac{2}{3}$ , $\frac{4}{9}$ and $\frac{5}{6}$ 2. (d); HCF of two numbers is 8. This means 8 is a fact common to both the numbers. LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is n a multiple of 8.1. (a); Given, fractions $= \frac{LCM of numerators}{HCF of denominators}$ 3. (a); HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times$ Second number $= \frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ $\therefore$ Second number $= \frac{4 \times 520}{52} = 40$		(a) 9974	(b) 9970		(a) 12 (b) 24
Solutions2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): LCM of fractions $= \frac{LCM of numerators}{HCF of denominators}$ 3. (a): HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times$ Second number $= \frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ Second number $= \frac{4 \times 520}{52} = 40$		(c) 9807	(d) 9998		(c) 30 (d) 120
Solutions2. (d): HCF of two numbers is 8. This means 8 is a fact common to both the numbers. LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): Given, fractions $\frac{2}{3}, \frac{4}{9}$ and $\frac{5}{6}$ LCM must be multiple of 8. By going throu the options, 60 cannot be the LCM since it is r a multiple of 8.1. (a): DCM of fractions $= \frac{LCM of numerators}{HCF of denominators}$ 3. (a): HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times$ Second number $= \frac{LCM(2,4,5)}{HCF(3,9,6)} = \frac{20}{3}$ Second number $= \frac{4 \times 520}{52} = 40$			Found	lat	ion
1. (a): Given, fractions $\frac{2}{3}$ , $\frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions $= \frac{\text{LCM of numerators}}{\text{HCF of denominators}}$ $= \frac{\text{LCM}(2,4,5)}{\text{HCF}(3,9,6)} = \frac{20}{3}$ Common to both the numbers. $\therefore$ LCM must be multiple of 8. By going throw the options, 60 cannot be the LCM since it is r a multiple of 8. 3. (a): HCF × LCM = Product of two numbers. $4 \times 520 = 52 \times \text{Second number}$ $\therefore$ Second number $= \frac{4 \times 520}{52} = 40$		0			
1. (a); Given, fractions $\frac{2}{3}$ , $\frac{4}{9}$ and $\frac{5}{6}$ LCM of fractions = $\frac{\text{LCM of numerators}}{\text{HCF of denominators}}$ = $\frac{\text{LCM}(2,4,5)}{\text{HCF}(3,9,6)} = \frac{20}{3}$ (a); HCF × LCM = Product of two numbers. 4× 520 = 52 × Second number ∴ Second number = $\frac{4 \times 520}{52} = 40$		50	DIUTIONS	Ζ.	common to both the numbers.
LCM of fractions = $\frac{1}{\text{HCF of denominators}}$ = $\frac{1}{\text{HCF}(3,9,6)} = \frac{20}{3}$ $\therefore$ Second number = $\frac{4 \times 520}{52} = 40$	1.	(a); Given, fraction	<b>o</b> , <b>o</b>		the options, 60 cannot be the LCM since it is no
$=\frac{\text{LCM}(2,4,5)}{\text{HCF}(3,9,6)} = \frac{20}{3}$ $\therefore \qquad \text{Second number} = \frac{4 \times 520}{52} = 40$		LCM of fractions – LCM of numerators		3.	(a); $HCF \times LCM = Product of two numbers.$
					$4 \times 520 = 52 \times \text{Second number}$
Ear Mara Study Matar		$=\frac{LCM(2,4,5)}{HCF(3,9,6)}$	$=\frac{20}{3}$		$\therefore \qquad \text{Second number } = \frac{4 \times 520}{52} = 40$
		34			For More Study Materia

For More Study Material Visit: studyiq.com LCM AND HCF

#### QUANTITATIVE APTITUDE

4. (d): HCF × LCM [12.  
= First number × Second number  

$$\therefore$$
 Second number =  $\frac{96 \times 1296}{864}$  = 144  
5. (d): HCF × LCM = Product of two numbers.  
Then,  
LCM =  $\frac{216}{6}$  = 36 [13.  
6. (a): Let the numbers be 3x and 4x  
HCF = x = 4  
LCM of 3x and 4x = 12x = 12 × 4 = 48  
7. (c): Given, first number = 132 [14.  
Since, each of the two numbers is a multiple of 12  
(given),  
 $\therefore$  HCF = 12 and LCM = 1056 (given)  
LCM × HCF = First number × Second number  
 $\therefore$  Second number =  $\frac{1056 \times 12}{132}$  = 96 [15.  
8. (d): Let the numbers be 3x and 4x respectively.  
HCF × LCM  
= First number × Second number  
 $\therefore$  2028 = 3x × 4x  
 $x^2 = \frac{2028}{12} = 169$ ,  $x = 13$   
Numbers are = 39, 52  
Sum of numbers be 3x and 4x.  
LCM of 3x and 4x = 12x [17.  
But given, LCM = 240  
 $\therefore$  12x = 240  
 $\Rightarrow$   $x = \frac{240}{12} = 20$   
 $\therefore$  Smaller number = 3x = 3 × 20 = 60  
10. (b): HCF × LCM = Product of two number  
 $\therefore$  Second number  $= \frac{16 \times 160}{32} = 80$  [18.  
11. (b): HCF × LCM = Product of two numbers  
 $\therefore$  LCM =  $\frac{4107}{37} = 111$ ,  $ab × HCF = LCM$  [19.  
where a, b are prime factors  $ab = \frac{111}{37} = 3$   
Prime number pairs (3, 1)  
Numbers are 111 and 37.  
Hence, 111 is the greater number

2. (d); The ratio of two numbers is 3 : 4 and their HCF is 5. Their LCM is Given that the numbers are in ratio of 3 : 4, First number = 3 × 5 = 15 Second number = 4 × 5 = 20 LCM × HCF = Product of two numbers

$$LCM = \frac{15 \times 20}{5} = 60$$

*.*..

*.*..

3. (c); We know that, LCM × HCF = Product of two numbers

$$\therefore \qquad \text{Second number} = \frac{26 \times 1820}{130} = 364$$

 (a); We know that, HCF × LCM = Product of two numbers

$$LCM = = \frac{12906 \times 14818}{478}$$

5. (b); Required number

 = HCF of {(110 - 2) and (128 - 2)}
 = HCF of 108 and 126
 By Division Method

- :. Greatest number = 18
- 16. (d); The LCM of 6, 12 and 18 = 36 36 is a perfect square of 6.
- 7. (a); The smallest number = [LCM of (15, 20, 35) +k]

 $LCM = 4 \times 7 \times 5 \times 3 = 420$ Smallest number = 420 + 8 = 428

8. (a); 30 
$$5 \times 3 \times 2$$
  
35  $5 \times 7$ 

So, HCF = 5

*.*..

*.*..

19. (c); Let two numbers be 15x and 15y. Where x and y are co-prime to each other.

$$\therefore$$
 15x × 15y = 6300

$$x \times y = \frac{6300}{15 \times 15}$$
  
x \times y = 28  
Factors of 28 are 1, 2, 4, 7, 28  
28 = 1 \times 28 or 4 \times 7

There are only two possible pairs

#### LCM AND HCF

#### QUANTITATIVE APTITUDE

20. (a); HCF + LCM = 403 HCF + 12 HCF = 403 (It is given that LCM = 12 × HCF) 13 × HCF = 403 HCF = 31
∴ Product of two number is equal to product of their LCM and their HCF.

 $\therefore$  93 × other number = 31 × 12 × 31

Other number = 
$$\frac{31 \times 12 \times 31}{93} = 124$$

21. (b); We need to find the LCM of 12, 15, 20, 27.

$$12 = 2^2 \times 3$$

- $15 = 3 \times 5$
- $20 = 2^2 \times 5$

 $27 = 3^3$ 

- LCM = Product of highest powers of factors =  $2^2 \times 3^3 \times 5 = 540$
- 22. (a); Let x be the remainder then (25 x), (73 x) and (97 - x) will be exactly divisible by the required number. Required number = HCF of (73 - x) - (25 - x), (97 - x) - (73 - x) and (97 - x) - (25 - x)
  - = HCF of (73 25), (97 73) and (97 25)
- = HCF of 48, 24 and 72 = 24
- 23. (d); LCM of 12, 15, 18, 27 = 540
   Largest number of 5 digits = 99999
   On dividing 99999 by 540, remainder = 99
   ∴ Required number = 99999 99 = 99900
- 24. (b); 20 14 = 25 19 = 35 29 = 40 34 = 6Required number = (LCM of 20, 25, 35, 40) - 6 = 1400 - 6 = 1394
- 25. (a); To find the biggest measure, we have to find the HCF of 496, 403 and 713.
   HCF of 496, 403 and 713 = 31
- 26. (b); Required time = LCM of 20, 30 and 40

 $LCM = 10 \times 2 \times 3 \times 2 = 120$ 

Hence, the bells will simultaneously ring after 2h i.e., at 1 pm

- 27. (a); Required time = LCM of (200, 300, 360, 450) s.

$$\therefore LCM = 10 \times 5 \times 3 \times 2 \times 2 \times 3 = 1800 \text{ s}$$

- 28. (c); Let the numbers be ax and bx, where x is the HCF and bx > ax.
  - $\therefore$  LCM = abx
    - abx = 2bx
  - $\Rightarrow$  a = 2

 $\Rightarrow$ 

=

- Again, ax x = 4
- Putting the value of a, we get

$$2x - x = 4$$

$$X = 4$$

- $\therefore$  Smaller number = ax = 2 × 4 = 8
- 29. (a); All the 6 bells ring together will be LCM of (2, 4, 6, 8, 10 and 12)

... They will ring together after

- $= 2 \times 2 \times 2 \times 3 \times 5 = 120 \text{ s}$
- i.e., they will ring together after 2 min
- $\therefore$  Number of time they will ring together in 30

min = 
$$1 + \frac{30}{2} = 1 + 15 = 16$$
 times

30. (c); Smallest number of boxes for buns alone

$$\frac{\text{LCM of 10 and 8}}{\text{Number of buns in a box}} = \frac{40}{10} = 4$$

			Mode	erat	te	
1.	<b>(a)</b> ;	Capacity of three containers containing of 403 I, 434 I and 465 I, respectively.	diesel is	4.	(C);	Let the numbers be 48a and 48b, where a and b are coprimes,
		Now, maximum capacity of the container that can measure the diesel of the three containers exactly				$\therefore$ 48a + 48b = 384 $\Rightarrow$ 48 (a +b) = 384
		= HCF of quantity of three containers				$\Rightarrow \qquad a+b=\frac{384}{48}=8 \qquad \dots (i)$
		= HCF (403, 434, 465) 403)434(1 403				Possible valid pairs of a and b satisfying this condition are $(1, 7)$ and $(3, 5)$ . $\therefore$ Numbers are $48 \times 1 = 48$
		31)403(13 <u>×</u>				and $48 \times 7 = 336$ or or, $48 \times 3 = 144$ and $48 \times 5 = 240$
		Again, 31)465(15				<ul> <li>∴ Required difference = 336 - 48 = 288</li> <li>or 240 - 144 = 96</li> </ul>
		$\overline{\times}$ So, Capacity of container = 31 L		5.	(C);	Let the numbers be a and b. According to the question,
2.	<b>(b)</b> ;	Time taken by A = $\frac{30}{5}$ h	12			a + b = 45 (i) Again, $a - b = \frac{1}{9}(a + b)$
		Time taken by B = $\frac{30}{7}$ h				$\Rightarrow a-b = \frac{1}{9} \times 45 \Rightarrow a-b = 5 \qquad \dots (ii)$
		Time taken by C = $\frac{30}{8}$ h				Adding equ. (i) and (ii), we get 2a = 50
		Time taken by all to come together				$a = \frac{50}{2} = 25$
		$=$ LCM of $\frac{30}{5}$ , $\frac{30}{7}$ and $\frac{30}{8}$				On putting the value of a Eq. (i) we get
		$=\frac{\text{LCM of } 30,30 \text{ and } 30}{\text{HCF of } 5,7 \text{ and } 8}=\frac{30}{1}=30\text{ h}$	1			25 + b = 45 $\Rightarrow b = 45 - 25 = 20,$ a = 25 and $b = 20$
3.	<b>(b)</b> ;	LCM of 24, 36 and 54				:. LCM of 25 and 20.
		2 24,36,54 2 12,18,27				5         25,20           5         5,4
		2 6,9,27				1,4
		3 3,9,27 3 1,3,9				$LCM = 5 \times 5 \times 4 = 100$
		3 1,1,3 1,1,1 1,1,1		6.	(C);	Let the numbers be 4a and 4b where a and b are coprimes. LCM = 4ab
		Required time = LCM of 24, 36 and 54 s	= 216 s			$\therefore \qquad \frac{(4a+4b)}{4ab} = \frac{7}{12}$
		$=\frac{216}{60}=3\frac{36}{60}$ min				$\Rightarrow \qquad \frac{1}{a} + \frac{1}{b} = \frac{7}{12} = \frac{1}{3} + \frac{1}{4}$
		= 3 min 36 s				$a \ b \ 12 \ 3 \ 4$ $\Rightarrow a = 3, b = 4$
		Time when they will change simultar	neously			$\therefore  \text{First number} = (4 \times 3) = 12$
		= 10 : 15 : 00 + 3 min 36 s = 10 : 18 : 36 am				Second number = $(4 \times 4) = 16$ $\therefore$ Smaller number = 12

7. 12. (c); Let the numbers be p, q and r which are coprime (b); Minimum number of students = LCM of 6, 8, 10. to one another. 2 | 6, 8, 10 Now, pq = 551 and qr = 10732 3, 4, 5 q = HCF of 551 and 1073 2 3, 2, 5 551)1073(1 3, 1, 5 551  $LCM = 2 \times 2 \times 2 \times 3 \times 5 = 120$ 522)551(1 Hence, the minimum number of students = 120 522 8. (a); Let the number be 2x, 3x and 4x, respectively. 29)522(18 ∴ HCF = x = 12 522 × :. Numbers  $2 \times 12 = 24$ ,  $3 \times 12 = 36$ ,  $4 \times 12 = 48$ LCM of 24, 36, 48  $\therefore$  q = 29  $\therefore$  p =  $\frac{551}{29}$  = 19 2 | 24, 36, 48 2 12, 18, 24  $r = \frac{1073}{29} = 37$ 2 6, 9, 12 and 2 3, 9, 6 • Sum of three numbers. 3 3, 9, 3 = 19 + 29 + 37 = 853 1, 3, 1 13. (a); Number of books in each stack = HCF of (336, 1, 1, 1 240, 96)  $\therefore$  LCM = 2 × 2 × 2 × 2 × 3 × 3 = 144 240) 336(1 9. (d); Given, 240 96)240(2  $3^{3^{333}}$  + 1 and  $3^{3^{334}}$  + 1 or  $27^{333}$  +  $1^{333}$  and  $27^{334}$  +  $1^{334}$ 192 Now,  $x^m + a^m$  is divisible by (x + a) when m is 48)96(2 odd. 27³³³+ 1³³³ is divisible by (27 + 1) =28 Similarly,  $27^{334} + 1^{334}$  is never divisible by (x + a):. Number of books in each stack = 48 So, the greatest common divisor between  $\therefore \text{ Total number of stacks} = \frac{336}{48} + \frac{240}{48} + \frac{96}{48}$  $(3^{3^{333}}+1)$  and  $(3^{3^{334}}+1)$  is 1. 10. (b); Maximum quantity in each can = 7 + 5 + 2 = 14= HCF of (21, 42 and 63) L = 21 L 14. (c); Givn, HCF = 3, LCM = 105 By Division Method Now, let the numbers be 3a and 3b, 21**)** 42 (2 42 ∴ 3a + 3b = 36  $\Rightarrow$  a + b = 12 ... (i) × 21) 63 (3 and LCM 3ab = 105 ... (ii) Dividing Eq. (i) by Eq. (ii), we have  $\frac{a}{3ab} + \frac{b}{3ab} = \frac{12}{105}$ HCF = 21 L : Least number of cans  $\Rightarrow \frac{1}{3a} + \frac{1}{3b} = \frac{4}{35} \Rightarrow \frac{1}{a} + \frac{1}{b} = \frac{12}{35}$  $=\frac{21}{21}+\frac{42}{21}+\frac{63}{21}=1+2+3=6$  cans. 11. (c); To find the minimum number of rows, we 15. (d); Length of the floor = 15 m 17 cm = 1517 cmdetermine the HCF of 24, 36 and 60. Breadth of the floor = 9 m 2 cm = 902 cm HCF of 24, 36 and 60 = 12 • A rea of the floor =  $1517 \times 902$  cm² Thus, 12 fruits are there in a row. The number of square tiles will be least, when Number of rows  $=\frac{24}{12} + \frac{36}{12} + \frac{60}{12}$ the size of each tile is maximum. *:*.. :. Size of each tile = HCF of 1517 and 902 = 2 + 3 + 5 = 10

16.

17.

18.

19.

20.

21.

### QUANTITATIVE APTITUDE

$$\frac{902}{615} \frac{902}{615} \frac{90$$

				<u> </u>
29.	(b); LCM of 15, 18, 21, 24			2520)9999(3
	2   15, 18, 21, 24			7560
				2439
	2 15, 9, 21, 12			Required number = $9999 - 2439 - 4 = 7556$
	2 15, 9, 21, 6			•
	3 15, 9, 21, 3			(15 - 11 = 4  or)
				18 - 14 = 4  or
	3 5, 3, 7, 1			vertice, $4 = 21 - 17 = 4 \text{ or}$
	5 5, 1, 7, 1			Where, $4 = \begin{cases} 13 - 11 = 4 \text{ or } \\ 18 - 14 = 4 \text{ or } \\ 21 - 17 = 4 \text{ or } \\ 24 - 20 = 4 \end{cases}$
	7 1, 1, 7, 1		4.5	$\left(24-20-4\right)$
		30.	(b);	LCM of 9 and 6 = 18
				Total numbers from 1 to 200 divisible by 18 = 11
	$LCM = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$			Total numbers from 1 to 100 divisible by 18 = 5
	Largest number of four digit = 9999			Required numbers from 100 to 200
				divisible by 18 = 11 – 5 = 6
	Dif	ficu	lt	
1.	(b); The largest possible length of the tape = HCF o	f		= (LCM of 18, 35 and 42) – 16
1.	525, 1050, 1155 = 105	· · · · ·		
	Hence (b) is the correct answer.			$= 630 - 16  [\because (18 - 2) = (35 - 19) = (42 - 26) = 16]$
2		£		= 614
2.	(c); The maximum capacity of the vessel = HCF o			
	1653, 2261 and 2527 = 19	7.	(a);	$0.0005 \Rightarrow 5$
	Hence, (c) is the correct option.			$0.0050 \implies 50$
3.	(b); Minimum number of rows means max. numbe			0.1500 ⇒ 1500
	of trees per row, also equal number of trees pe			
	row is required so we need to find the HCF of 36			
	144 and 234 to find the maximum number of tree	S		$0.5000 \Rightarrow 5000$
	in a row.			$3.5000 \implies 35000$
	Thus HCF of 36, 144 and 234 = 18			
	Thus the number of rows =	-		Then the HCF of 5, 50, 1500, 1750, 5000 and 35000
	Total no. of trees $36 \pm 144 \pm 234$			is 5.
	$=\frac{\text{Total no. of trees}}{\text{No. of trees in a row}} = \frac{36 + 144 + 234}{18} = 23$			So the HCF of the given number is 0.0005 (since
				there are four digits in all the adjusted (or
	Hence (b) is correct answer.	1000		equated) decimal places.)
4.	(a); The required number must be divisible by the	e 8.	(b);	The required number = $(LCM of 2, 3, 4, 5, 6) K +$
	given numbers so it can be the LCM or its multiple	е		1 = 7I = 60K + 1 = 7I
	number.			(0) 1
	Now the LCM of 6, 40, 49 and 75			$\Rightarrow \frac{60k+1}{7} = 1$
	$= 2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 7$			7
	But the required number is a perfect square			Now put the least possible value of k such that I
	Thus the LCM must be multiplied by $2 \times 3 = 6$ .			must be a positive integer. Hence at $k = 5$ , I is an
	Thus the required number			integer. Thus, the required value is $60 \times 5 + 1 =$
	•			301.
	$= (2 \times 2 \times 2 \times 3 \times 5 \times 5 \times 7 \times 7) \times (2 \times 3)$	9.	<b>(b)</b> ;	The required time = LCM of 36, 40 and 48
	$= 2 \times 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 5 \times 7 \times 7$			= 720 seconds = 12 minutes
	= 176400			Hence, (b) is the right choice.
5.	(b); The three bells toll together only at the LCM o	f 10	(a);	
	the times they toll individually.	10.	(C);	Minimum number of corks =
	Thus the LCM of 48, 72 and 108 is 432 seconds	5.		403 + 434 + 465 1302
	Therefore all the bells will toll together at 6 : 07	:		$\frac{403 + 434 + 465}{\text{HCF of } (403, 434, 465)} = \frac{1302}{31} = 42$
	12 AM			
	$(\because 432 \text{ seconds} = 7 \text{ minutes } 12 \text{ seconds})$	11.	(C);	Time taken for each of three persons is
6.	(c); Since the difference between the divisors and the	Δ		66.6.
0.	respective remainders is same.	0		respectively $\frac{6}{3}$ , $\frac{6}{2\frac{1}{2}}$ and $\frac{6}{1\frac{1}{4}}$ hrs
	-			$\frac{2}{2} \frac{1}{3} = 1 \frac{1}{4}$
	Hence the least possible number			Ζ 4

i.e.,  $\frac{2}{1}$ ,  $\frac{12}{5}$  and  $\frac{24}{5}$  hrs. So, it is required to find the LCM of  $\frac{2}{1}, \frac{12}{5}, \frac{24}{5} = \frac{24}{1} = 24$ hr Hence, (c) is the right choice. 12. (b); Let LCM be x and HCF be y. According to the question,  $LCM = 4 \times HCF$  $\Rightarrow x = 4y$ According to the question, LCM + HCF = 125x + y = 125Putting the value of x, we get 5y = 125 $\Rightarrow$  y = 25  $\therefore$  HCF = 25 amd LCM = 4 × 25 = 100 We know that, HCF × LCM = First number × Second number Second number =  $\frac{\text{HCF} \times \text{LCM}}{\text{First number}}$  $=\frac{100\times25}{100}=25$ 13. (d); Let the numbers be 10a and 10b, where a and b are coprime :. LCM of 10a and 10b = 10ab  $\Rightarrow$  10ab = 120  $\Rightarrow$  ab = 12 Possible pairs = (3, 4) or (1, 12)Sum of the numbers : (a, b) = (3, 4):  $(3 \times 10) + (4 \times 10) = 30 + 40 = 70$ (a, b) = (1, 12):  $(1 \times 10) + (12 \times 10)$ = 10 + 120 = 13014. (d); Let the original fraction be  $\frac{2}{3}$ According to the question,  $\frac{x-4}{y+1} = \frac{1}{6} \Longrightarrow 6x - 24 = y + 1$  $\Rightarrow 6x - y = 25$ ... (i) Again, according to the question,  $\frac{x+2}{y+1} = \frac{1}{3}$  $\Rightarrow$  3x + 6 = y + 1  $\Rightarrow 3x - y = -5$ ... (ii)

On subtracting Eq. (ii) from Eq. (i), we get 6x - y = 253x - y = -53x = 30 $x = \frac{30}{2} = 10$ on putting the value of x in Eq. (i), we get  $6 \times 10 - y = 25$  $\Rightarrow$  -y = 25 - 60  $\Rightarrow$  -y = -35  $\Rightarrow$  y = 35  $\therefore$  x = 10 and y = 35 LCM of 10 and 35 5 | 10,35 2,7  $LCM = 2 \times 7 \times 5 = 70$ 15. (c); A makes one complete round in 5/(5/2) $\left(:: \text{Speed} = \frac{\text{Distance}}{\text{Time}}\right)$ = 2 hB completes in  $\frac{5}{3}h$  and C completes in  $\frac{5}{2}h$ . Hence, the required time = LCM of  $\left(2, \frac{5}{3} \text{ and } \frac{5}{2}\right)h$  $=\frac{\text{LCM of } 2,5,5}{\text{HCF of } 3,2}=\frac{10}{1}=10\text{h}$ Hence, A, B and C will meet after 10 h. 16. (b); By the Technique First number × Second number = HCF × LCM  $\therefore$  Second number =  $\frac{15 \times 300}{60} = 75$ 17. (c); Let the numbers be 7a and 7b, where a and b are coprime. Now, LCM of 7a and 7b = 7ab 7ab = 140 *.*..  $ab = \frac{140}{7} = 20$ Now, required values of a and b whose product is 20 are 4 and 5. Numbers are 28 and 35 and they lie between 20 and 45. Sum of the numbers = 28 + 35 = 6318. (c); We know that Numbers divisible by 4 and 6 will be multiples of the LCM of 4 and 6 i.e., 12 Now, numbers from 1 to 600 divisible by

_

### QUANTITATIVE APTITUDE

9. (c); Let the numbers are ax and bx 13. (a); LCM =  $(x^2+6x+8)(x+1)$ where x = HCF = 15or (x+4)(x+2)(x+1)HCF = (x+1)ATO.  $ax \times bx = 6300$ 1st expression =  $x^2$ + 3x+2 or (x+1)(x+2) $ab = \frac{6300}{225} = 28$ As we know that, product of two expressions = LCM × HCF  $\therefore$  possible pairs  $\Rightarrow$  28  $\times$  1, 7  $\times$  4  $(x+1)(x+2) \times 2nd expression$ Hence there are two pairs. = (x+4)(x+2)(x+1)(x+1)10. (d); Let LCM be x and HCF be y. 2nd expressions According to the question.  $=\frac{(x+4)(x+2)(x+1)(x+1)}{(x+1)(x+2)}$  $LCM = 20 \times HCF$ i.e., x = 20 y $= (x + 4)(x + 1) = x^{2} + 4x + x + 4 = x^{2} + 5x + 4$ and x + y = 252014. (c); Let the numbers be 3x and 4x. Putting the value of x, we get LCM of 3x and 4x = 12x20y + y = 2520Now, LCM = 84 $\Rightarrow$  21y = 2520 Then, 12x = 84 $\Rightarrow y = \frac{2520}{21} = 120$  $\Rightarrow x = \frac{84}{12} = 7$ :. LCM =  $x = 120 \times 20 = 2400$  $\therefore$  Greatest number = 4x = 4 ×7 = 28 LCM × HCF = Product of two numbers 15. (b); Let the number be 29a and 29b, respectively  $2400 \times 120 = 48 \times x$ , x = 600where a and b are coprimes LCM of 29a and 29b = 29ab 11. (b); Given fractions =  $\frac{2}{4}, \frac{4}{5}$  and  $\frac{6}{7}$ Now, 29ab = 4147 :.  $ab = \frac{4147}{29} = 143$ HCF of fractions = HCF of numerators LCM of deno min ators Thus,  $ab = 11 \times 13$  $=\frac{\text{HCF}(2,4,6)}{\text{LCM}(3,5,7)}=\frac{2}{105}$ First number = (29 ×11) = 319 Second number =  $(29 \times 13) = 377$ :. Sum of numbers = 319 + 377 = 696 12. (a); LCM of 28 and 42 16. (b); Factors of 11 and 385 are 2 | 28, 42  $11 = 11 \times 1$ ,  $385 = 11 \times 5 \times 7$ 2 14.21  $\therefore$  LCM = 11 × 5 × 7 = 385 7 7,21 HCF = 111.3 First number =  $11 \times 5 = 55$  $\therefore$  LCM = 2 × 2 × 7 × 3 = 84 Second number =  $11 \times 7 = 77$ HCF of 28 and 42  $\Rightarrow$  (11, 385) or (55, 77) By Division method 17. (d); HCF of the two digit numbers = 1628)42(1 Hence, let the numbers be 16a and 16b. <u>28</u> 14)28(2 <u>28</u> where, a and b are coprimes. Now,  $HCF \times LCM = Product of two numbers.$  $\Rightarrow$  16a × 16b = 16 × 480  $\Rightarrow ab = \frac{16 \times 480}{16 \times 16} = 30$ ∴ HCF = 14 :. Ratio =  $\frac{\text{LCM}}{\text{HCF}} = \frac{84}{14} = \frac{6}{1} = 6:1$ Possible pairs of a and b satisfying the condition ab = 30 are (3, 10), (5, 6), (1, 30), (2, 15). Since the

22. (c); LCM of 9, 10 and 15 numbers are of 2 digit each. Hence, required pair is (5, 6). 2 | 9,10,15 First number =  $16 \times 5 = 80$ 3 9,5,15 Second number =  $16 \times 6 = 96$ 3 3,5,5 18. (d); Greatest number that can exactly divide 200 and 5 1,5,5 320 = HCF of 200 and 320 = 40 200)320(1 1,1,1 200  $\therefore$  LCM = 2 × 3 × 3 × 5 = 90 120)200(1 90)1936(21 120 180 80)120(1 136 90 46  $\therefore$  Required number = 46 – 7 = 39 23. (a); Required number Hence the greatest number is 40. = HCF of [|25 – 73 |, |73–97 |, |97–25 |] 19. (d); Required number = HCF of = HCF of {48, 24, 72} {(1868–1356), (2764–1868), (2764–1356)}  $HCF = 2 \times 2 \times 2 \times 3 = 24$ = HCF of (512, 896, 1408) ∴ HCF = 24 512)896(1 :. Largest number = 24 512 24. (c); LCM of 4, 5, 6, 7 and 8 = 840 384)512(1 Required number = 840x + 2384 By Hit and Trial 128)384(3 Putting x = 3384 we get =  $840x + 2 = 840 \times 3 + 2 = 2522$ 2522 is a multiple of 13. Hence, required number is 128. 25. (a); Greatest number 20. (c); LCM of 5, 6, 7,  $8 = 35 \times 24 = 840$ = HCF of [(307 – 3), (330 – 7)] Required number = 840x + 3, such that it is exactly = HCF of (304, 323) divisible by 9. By hit and Trial 304)323(1 for x = 2, it is divisible by 9. 304 Required number =  $840x + 3 = 840 \times 2 + 3 = 1683$ 19)304(16 (these type of questions can be solved with the 304 help of given options) :. Required number = 19 (Out of all the given options, only 1683 is divisible 26. (b); Least six digit number is 100000 by 9.) LCM of 4, 6, 10, 15 21. (a); LCM of 12, 16 and 24 2 | 4, 6, 10, 15 2 | 12, 16, 24 2 2,3,5,15 2 6, 8, 12 3 1,3,5,15 3 3, 4, 6 5 1,1,5,5 2 1, 4, 2 1, 1, 1, 1 2 1, 2, 1  $\therefore$  LCM = 2 × 2 × 3 × 5= 60 1, 1, 1 60)100000(1666  $= 2 \times 2 \times 2 \times 2 \times 3 = 48$ 60 48)9999(208 400 96 360 400 360 15 400 : Greatest four digit numbers divisible by 48 9999-15= 9984 360 40 :. Required number = 9984–10 = 9974 (10 is the difference of each remainder) .:. Required number

= 100000 + (60 - 40) + 2 = 10002229. (b); LCM of 15, 18, 21, 24 : Sum of the digits of 2 | 15, 18, 21, 24 N = 1 + 0 + 0 + 0 + 2 + 2 = 52 15,9,21,12 27. (d); LCM of 10, 16, 24 2 15,9,21,6 2 | 10,16,24 3 15,9,21,3 2 5,8,12 3 5,3,7,1 2 5,4,6 5 5,1,7,1 5,2,3 7 1,1,7,1 :. LCM of  $2^2 \times 2^2 \times 5 \times 3$ 1,1,1,1 [::powers must be equal for number to be perfect  $LCM = 2 \times 2 \times 2 \times 3 \times 3 \times 5 \times 7 = 2520$ square] Largest number of four digit = 9999 .:. Required number 2520)9999(3  $= 2^2 \times 2^2 \times 5^2 \times 3^2 = 4 \times 4 \times 25 \times 9 = 3600$ 7560 28. (c); By the technique 2439 Required number Required number = 9999 - 2439 - 4 = 7556= HCF of [(989 – 5), (1327 – 7)] 15 - 11 = 4 or= HCF of (984, 1320)  $18 - 14 = 4 \, \text{or}$ where, 4 =984)1320(1 21 - 17 = 4 or 984 21 - 20 = 4336)984(2 30. (d); Required number = HCF of [(122-2),(243-3)] 672 i.e., HCF of (120, 240) 312)336(1 By Division Method 312 120)240(2 24)312(13 240  $\therefore$  Required number = 120 ∴ HCF = 24  $\therefore$  Required number = 24





# Surds and Indices

Index: $a \times a \times a \times a \times a \times a$ m timesor $(a \times a \times a \times .....m times) \times (a \times a \times a \times ....m times)$ i.e. $a \times a \times a \times ....m times$ Important formulae : If a > 0,  $a \neq 1$ , m and n are integers then

(i)  $a^{m} \times a^{n} = a^{m+n}$  (ii)  $a^{m} \times a^{n} \times a^{Q} = a^{m+n+Q}$  (iii)  $(a^{m})^{n} = a^{mn}$  (iv)  $\frac{a^{m}}{a^{n}} = a^{m-n}$ (v)  $a^{0} = 1$  (vi)  $a^{-m} = \frac{1}{a^{m}}$  (vii)  $a^{m^{n}} = a^{(m)^{n}}$  (viii)  $(ab)^{n} = a^{n}b^{n}$ 

Surd : If 'a' is a rational number and n is a positive integer such the nth root of 'a', i.e.,  $a^{1/n} \sqrt[n]{a}$  is an irrational number, then  $a^{1/n}$  is called a surd. In other words, an irrational root of a rational number is called a surd.

Example:  $\sqrt{2}$ ,  $\sqrt[3]{4}$ ,  $\sqrt[4]{18}$ ,  $\sqrt[7]{4}$ ,  $\sqrt[3]{9}$  etc. are surds

i.e. we can say that every number expressed in a surd is an irrational number.

Types of surds:

- (i) Pure Surd:  $\sqrt{7}$ ,  $3\sqrt{11}$ ,  $\sqrt[4]{125}$  are pure surds.
- (ii) Mixed Surd:  $3\sqrt{2}$ ,  $7\sqrt[2]{11}$ ,  $\sqrt{32}$  are mixed surds.
- (iii) Similar surds:  $3\sqrt{3}$ ,  $\sqrt{3}$  and  $6\sqrt{5}$ ,  $7\sqrt{125} = 35\sqrt{5}$

order of surds:  $\sqrt{7}$ ,  $\sqrt[3]{4}$ ,  $\sqrt[4]{8}$ ,  $\sqrt[5]{125}$  are respectively surds of order 2, 3, 4 and 5

Conjugate of surds : Two binomial surds which differ only in sign (+ or –) between the terms connecting them, are known as conjugate surds

Example: Conjugate of  $5+\sqrt{7}$  is  $5-\sqrt{7}$ 

Condition for two Surds to be equal : If a, b, c, d are all rational numbers and b and d are not perfect square then  $a + \sqrt{b} = c + \sqrt{d}$ , i.e. a = c and b = d

Square root of surd of  $a + \sqrt{b}$  form

$$\sqrt{-+\sqrt{b}} = \sqrt{\frac{a+\sqrt{a^2-b}}{2}} + \sqrt{\frac{a-\sqrt{a^2-b}}{2}} , \qquad \sqrt{-\sqrt{b}} = \sqrt{\frac{\sqrt{2-b}}{2}} - \sqrt{\frac{a-\sqrt{a^2-b}}{2}}$$

Important formulae:

(i)  $a^{-P} = \frac{1}{a^{P}}$ (ii) If  $a^{y} = n$  then  $a = (n)^{\frac{1}{y}}$ (iii) If  $a^{x} = b^{y}$  then  $a = (b)^{\frac{y}{x}}$ (iv)  $x^{n} = a, x = \sqrt[n]{a}$ (v)  $\sqrt[n]{a} = a^{\frac{1}{n}}$ (vi)  $(\sqrt[n]{a})^{m} = a^{\frac{m}{n}}$ (vii)  $\sqrt[n]{a} \cdot \sqrt[n]{b} = \sqrt[n]{ab}$ 

## **Types of Questions**

1. The greatest among 
$$\sqrt{7} - \sqrt{5}$$
,  $\sqrt{5} - \sqrt{3}$ 

$$\sqrt{9} - \sqrt{7}$$
,  $\sqrt{11} - \sqrt{9}$ 

Sol. On rationalising

$$\frac{\left(\sqrt{7} - \sqrt{5}\right) \times \left(\sqrt{7} + \sqrt{5}\right)}{\sqrt{7} + \sqrt{5}}, \frac{\left(\sqrt{5} - \sqrt{3}\right) \times \left(\sqrt{5} + \sqrt{3}\right)}{\sqrt{5} + \sqrt{3}}, \frac{\left(\sqrt{9} - \sqrt{7}\right) \times \left(\sqrt{9} + \sqrt{7}\right)}{\sqrt{9} + \sqrt{7}}, \frac{\left(\sqrt{11} - \sqrt{9}\right) \times \left(\sqrt{11} + \sqrt{9}\right)}{\left(\sqrt{11} + \sqrt{9}\right)}$$

$$= \frac{2}{\sqrt{7} + \sqrt{5}}, \frac{2}{\sqrt{5} + \sqrt{3}}, \frac{2}{\sqrt{9} + \sqrt{7}}, \frac{2}{\sqrt{11} + \sqrt{9}}$$
  
smallest one 
$$= \frac{2}{\sqrt{11} + \sqrt{9}} = \sqrt{11} - \sqrt{9}$$

Greatest one = 
$$\frac{2}{\sqrt{5} + \sqrt{3}} = \sqrt{5} - \sqrt{3}$$

2. Greatest among the following numbers  $\sqrt[3]{9}, \sqrt{3}, \sqrt[4]{16}, \sqrt[6]{80}$ 

Sol. LCM 3, 2, 4, and 6 = 12

9^{12/3}, 3^{12/2}, 16^{12/4}, and 80^{12/6} 9⁴, 3⁶, 16³, 80² 6561, 729, 4096, 6400 i.e. largest one =  $\sqrt[3]{9}$ .

- 3. By how much does  $\sqrt{12} + \sqrt{18}$  exceed  $\sqrt{3} + \sqrt{2}$ ?
- Sol. Required value will be the differnce between  $\sqrt{12} + \sqrt{18}$  and  $(\sqrt{3} + \sqrt{2})$

$$= (\sqrt{12} + \sqrt{18}) - (\sqrt{3} + \sqrt{2})$$
$$= (2\sqrt{3} + 3\sqrt{2}) - (\sqrt{3} + \sqrt{2})$$
$$= \sqrt{3} + 2\sqrt{2}$$

4. Is 
$$2^{x} = 3^{y} = 6^{-z}$$
 then  $\left(\frac{1}{x} + \frac{1}{y} + \frac{1}{z}\right)$  is equal to  
Sol. Let  $2^{x} = 3^{y} = 6^{-z} = k$   
i.e.  $2 = k^{1/x}$ ,  $3 = k^{1/y}$ ,  $6 = k^{-1/z}$ .  
 $2 \times 3 = 6$   
 $k^{1/x} \times k^{1/y} = k^{-1/z}$ ,  $k^{1/x + 1/y} = k^{-1/z}$   
 $\frac{1}{x} + \frac{1}{y} = -\frac{1}{z}$ ,  $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} = 0$   
5. Find the value of  $3 + \frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3} + 3} + \frac{1}{\sqrt{3} - 3}$   
Sol.  $3 + \frac{1 \times \sqrt{3}}{\sqrt{3} \times \sqrt{3}} + \frac{1}{(\sqrt{3} + 3)} \times \frac{3 - \sqrt{3}}{3 - \sqrt{3}} + \frac{1}{(\sqrt{3} - 3)} \times \frac{3 + \sqrt{3}}{3 + \sqrt{3}}$   
 $= 3 + \frac{\sqrt{3}}{3} + \frac{3 - \sqrt{3}}{6} - \frac{3 + \sqrt{3}}{6} = \frac{18}{6} = 3$   
6. The value of  $\sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}}$   
Sol. Expression  $\sqrt{5 + 2\sqrt{6}} - \frac{1}{\sqrt{5 + 2\sqrt{6}}}$   
 $= \frac{\left(\sqrt{5 + 2\sqrt{6}}\right)^{2} - 1}{\sqrt{5 + 2\sqrt{6}}} = \frac{5 + 2\sqrt{6} - 1}{\sqrt{5 + 2\sqrt{6}}}$ 

$$= \frac{1}{\sqrt{3} + \sqrt{2}} \times \left(\frac{1}{\sqrt{3} - \sqrt{2}}\right)$$
  
=  $4\sqrt{3} + 6\sqrt{2} - 4\sqrt{2} - 4\sqrt{3} = 2\sqrt{2}$   
7. If a = 64 and b = 289, then the value of  $\left(\sqrt{\sqrt{a} + \sqrt{b}} - \sqrt{\sqrt{1 - \sqrt{a}}}\right)^{1/2}$   
Sol.  $\left(\sqrt{\sqrt{1 + \sqrt{289}}} - \sqrt{\sqrt{1 - \sqrt{289}}}\right)^{1/2}$   
 $\left(\sqrt{8 + 17} - \sqrt{-8 + 17}\right)^{1/2} = (5 - 3)^{1/2} = \sqrt{2}$ 

	Foundation						
	Que	stions	11.	$If\left(\frac{p}{q}\right)^{n-1} = \left(\frac{q}{p}\right)^{n-3}, tI$	hen the value of n is:		
1.	If $3^x - 3^{x-1} = 18$ , then $x^3$	' is equal to		(y) (p)			
	(a) 3	(b) 8		(a) $\frac{1}{2}$	(b) $\frac{7}{2}$		
	(c) 27	(d) 216		^(a) 2	2		
2.	If $a^{2x+2} = 1$ , where a is	a positive real number other		(c) 1	(d) 2		
	than 1, then $x = ?$		12.	Value of ? in ∛512 ÷	$\sqrt[4]{16} + \sqrt{576} = ?$ is:		
	(a) – 2	(b) – 1		(a) 24	(b) 31		
	(c) 0	(d) 1		(c) 28	(d) 18		
3.	$\frac{\left[(12)^{-2}\right]^2}{\left[(12)^2\right]^{-2}} = ?$		13.	Value of $3 + \frac{1}{\sqrt{3}} + \frac{1}{3} + \frac{1}{3}$	$\frac{1}{\sqrt{3}} + \frac{1}{\sqrt{3}-3} - 3$ is:		
	(a) 12	(b) 4.8		(a) $3 + \sqrt{3}$	(b) 3		
				(c) 1	(d) 0		
	(c) $\frac{12}{144}$	(d) 1	14.	$16^{5/4} = ?$			
		1.00		(a) 64	(b) 31		
4.	Value of ? in expression			(c) 32	(d) 33		
	$7^{8.9} \div (343)^{1.7} \times (49)^{4.8} =$			$\left(\frac{32}{243}\right)^{-3/5} = ?$			
	(a) 13.4	(b) 12.8	15.	$\left(\frac{1}{243}\right) = ?$			
-	(c) 11.4	(d) 9.6			77		
5.	If $\{(2^4)^{1/2}\}^? = 256$ , find t			(a) $\frac{27}{8}$	(b) $\frac{27}{7}$		
	(a) 1	(b) 2			110		
,	(c) 4 $(1/)^{6}$ $(1/)^{4}$ $1/^{3}$ $(1/)^{4}$	(d) 8		(c) $\frac{27}{6}$	(d) $\frac{27}{2}$		
6.	$(16)^9 \div (16)^4 \times 16^3 = (16)^4 \times 16^3 \times $			0	2		
	(a) 6.75	(b) 8 (d) 12	16.	Find the value of (24	$(243)^{0.16} \times (243)^{0.04}$		
7	(c) 10 (42 $\times$ 220) $\times$ (0261)1/3	(d) 12		(a) 0.16	(b) $\frac{1}{3}$		
7.	$(42 \times 229) \div (9261)^{1/3} =$ (a) 448	(b) 452			C C		
	(c) 456			(c) 3	(d) 0.04		
8.	Evaluate (0.00032) ^{2/5} .	(d) 458	17.	$17^{3.5} \times 17^{7.3} \div 17^{4.2} = 1$			
0.				(a) 8.4 (c) 6.6	(b) 8 (d) 6 4		
	(a) $\frac{1}{625}$	(b) $\frac{1}{225}$		(C) 0.0	(d) 6.4		
	625	225	18.	If $289 = 17^{\frac{x}{5}}$ , then x =	=?		
	, 1	, 1		(a) 16	(b) 8		
	(c) $\frac{1}{125}$	(d) $\frac{1}{25}$		. ,	0		
				(c) 10	(d) $\frac{2}{5}$		
9.	If $\frac{\sqrt{1-\sqrt{5}}}{\sqrt{2}} = a + b\sqrt{35}$	, then the value of (a – b) is:			5		
				$\left[ \left( 1 \right)^2 \right]^{-2} \right]^{-1}$			
	(a) 5	(b) 6	19.	$\left\{ \left( -\frac{1}{2} \right)^2 \right\}^{-2} = ?$			
	(c) 8	(d) None of these		_ <u> </u>			
10.	If P = 124, then $\sqrt[3]{P(P^2)}$	+3P+3)+1 = ?		(a) $\frac{1}{16}$	(b) 16		
	(a) 5	(b) 7		16	、 <i>′</i>		
	(c) 123	(d) 125		(c) $-\frac{1}{16}$	(d) – 16		
	(0) 120	(4) 120		16	$(\alpha) = 10$		

SURDS AND INDICES							
20.	Find the value of (10) ²⁰	⁰ ÷ (10) ¹⁹⁶ .	5				
		(b) 1000	24	$\left[\left(\sqrt[5]{\frac{-3}{5}}\right)^{-\frac{5}{3}}\right]^{5} = ?$			
		(d) 100000	20.	$\left[\left(\sqrt[5]{x^{5}}\right)\right]^{-1}$			
	<u>.</u>			(a) x ⁵	(b) x ⁻⁵		
21.	If $\left(\frac{1}{5}\right)^{3a} = 0.008$ , find the	he value of (0.25)ª.					
	(5)			(c) x	(d) $\frac{1}{x}$		
	(a) 20.5	(b) 22.5			x		
	(c) 0.25	(d) 6.25	07		$2^2$		
		1	27.	$\left(\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{+\dots}}}}}\right)$	÷2 = ?		
22.	Value of $\sqrt{+2\sqrt{6}} - \frac{1}{\sqrt{2}}$	is:		(a) 0	(b) 1		
	$\sqrt{2}$	5−2√6		(c) 2	(d) 8		
	(a) _{2√2}	(b) 0	28.		1, then what is the value of $c^{z}$ ?		
		.,		(a) a	(b) b		
	(c) 2√3	(d) $\sqrt{5} - 1$		(u) u			
	1 -	1 1		(c) ab	(d) $\frac{a}{b}$		
23.	$\frac{1}{1+v^{b-a}+v^{c-a}}+\frac{1+v^{a-b}}{1+v^{a-b}}$	$\frac{1}{x^{b-c} + x^{b-c}} + \frac{1}{1 + x^{b-c} + x^{a-c}} = ?$			Б		
			29.	If $16 \times 8^{n+2} = 2^m$ , then n	n is equal to:		
	.,	.,		(a) n + 8	(b) 2n + 10		
24	$[\mathbf{b}_{(p-c)}]_{(p+c)} \cdot [\mathbf{b}_{(c-a)}]_{(c+a)}$			(c) 3n + 2	(d) 3n + 10		
24.				E.			
	(a) 0	(b) P ^{abc}	30.	If $x = \frac{\sqrt{3}+1}{\sqrt{2}}$ and $y = \frac{1}{\sqrt{2}}$	$\sqrt{3} - 1$ , then x ² + y ² is equal to:		
	(c) 1	(d) P ^{a + b + c}		$\sqrt{3}-1$	/3+1		
25	If $\sqrt{5+\sqrt[3]{x}}=3$ , then the	e value of x is:		(a) 14	(b) 13		
201	(a) 64	(b) 125		(c) 15	(d) 10		
	(a) 04 (c) 9	(d) 27					
	(C) 9	···	-				
		Mod	era	te			
	$16 \times 2^{n+1} - 4 \times 2^n$			6	5		
1.	$\frac{16 \times 2^{n+1} - 4 \times 2^{n}}{16 \times 2^{n+2} - 2 \times 2^{+}} = ?$			(a) $\frac{3}{13}$	(b) $\frac{5}{13}$		
	(a) 1	(b) 2					
				(c) $\frac{8}{13}$	(d) $\frac{1}{10}$		
	(c) $\frac{1}{2}$	(d) $\frac{1}{4}$		10	15		
	2	т	5.		$3^{b+1} = 5$ , the values of a and b		
2	$\frac{2^{2^3} \div (2^2)^3 \times 2^{-2}}{4^{2^3} \div (4^2)^3 \times 4^{-2}} = ?$			are:			
Ζ.	$4^{2^3} \div (4^2)^3 \times 4^{-2}$ -:			(a) $a = 2, b = 3$ (c) $a = 3, b = 2$	(b) $a = 4, b = 0$		
	( )						
	(a) 2	(b) $\frac{1}{2}$		$3\sqrt{2}$ $4\sqrt{3}$	$\frac{\sqrt{6}}{\sqrt{3}+\sqrt{2}}$ is simplified to		
		(d) – 2	6.	$\frac{1}{\sqrt{6}+\sqrt{3}} - \frac{1}{\sqrt{6}+\sqrt{2}} + \frac{1}{\sqrt{6}+\sqrt{6}+\sqrt{2}} + \frac{1}{\sqrt{6}+\sqrt{6}+\sqrt{2}} + \frac{1}{\sqrt{6}+\sqrt{2}} + \frac{1}{\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+\sqrt{6}+6$	$\sqrt{3} + \sqrt{2}$   is simplified to		
	(c) 1	(d) – 2		E · · ·	· _		
	$(0.6)^0 - (0.1)^{-1}$	$(8)^{-\frac{1}{3}}$		(a) 0	(b) 1		
3.	$-\frac{(0.6)^{0}-(0.1)^{-1}}{\left(\frac{3}{2^{3}}\right)^{-1}\left(\frac{3}{2}\right)^{3}+\left(-\frac{1}{3}\right)^{-1}}+$	$+\left(\frac{1}{27}\right) = ?$		(c) √3	(d) $\sqrt{6}$		
	$\left(\frac{3}{2^3}\right)\left(\frac{3}{2}\right)+\left(-\frac{1}{3}\right)$	(27)		26 6			
	(2) (2) (3) (a) 1		7.	Find the value of $\frac{2(\sqrt{2})}{3\sqrt{2}}$	$\frac{+\sqrt{6}}{\sqrt{6}}$ .		
		(b) 0		3√.	2+3		
	1			. 1	2		
	(c) $\frac{1}{2}$	(a) —					
	(c) $\frac{1}{2}$	4		(a) $\frac{1}{3}$	(b) $\frac{2}{3}$		
Л	Z	4		(a) $\frac{1}{3}$	5		
4.	Z	4		5	5		
4.	Z	(d) $\frac{1}{4}$ $3^{9}$ , then find the value of x.		(a) $\frac{-2}{3}$ (c) $-\frac{2}{3}$	(b) $\frac{1}{3}$ (d) $\frac{4}{3}$		

SURDS AND INDICES

#### QUANTITATIVE APTITUDE

8.	If $x = \frac{\sqrt{5} - 2}{\sqrt{5} + 2}$ , then $x^4 + \frac{1}{\sqrt{5} + 2}$	x ⁻⁴ is	17.	$\frac{2^{n+4}-2\times 2^n}{2\times 2^{n+3}}+2^{-3}=?$	
	(a) a surd			(a) 1	(b) 2
	<ul><li>(b) a rational number b</li><li>(c) an integer</li></ul>	ut not an integer		(c) $\frac{1}{2}$	(d) $\frac{1}{3}$
	(d) an irrational number but not a surd		18.	If $10^{0.48} = x$ , $10^{0.7} = y$ and	5
9.	The simplified value of	$\sqrt{\frac{19+8\sqrt{3}}{7-4\sqrt{3}}}$ is :		(a) $1\frac{11}{12}$	(b) $2\frac{11}{12}$
	(a) $11 - 6\sqrt{3}$	(b) $11 + 6\sqrt{3}$		(c) $3\frac{11}{12}$	(d) $-2\frac{11}{12}$
	(c) $10 + 5\sqrt{3}$	(d) $10-5\sqrt{3}$			2 [ 5] ⁻⁹ 10
10.	The simplified value of	$(28+10\sqrt{3})^{\frac{1}{2}} - (7-4\sqrt{3})^{-\frac{1}{2}}$ is:	19.		$(27)^{-\frac{2}{3}} + \left[ \left( 2^{-\frac{2}{3}} \right)^{-\frac{5}{3}} \right]^{-\frac{1}{10}}$ is:
	(a) 1 (c) 3	(b) 2 (d) 4		(a) $\frac{11}{18}$	(b) $-\frac{11}{18}$
11.	The simplified value of	$\sqrt{6-4\sqrt{3}+\sqrt{16-8\sqrt{3}}}$ is:		(c) $\frac{17}{18}$	(d) $-\frac{17}{18}$
		(b) $\sqrt{3} + 1$	20.	Find the value of $\sqrt{8+3}$	$\overline{\sqrt{7}} - \sqrt{7 + 3\sqrt{5}}$ .
	(c) $\sqrt{3} - 1$	(d) $\sqrt{3} + \sqrt{2}$		(a) $\frac{\sqrt{14} + \sqrt{10}}{2}$	(b) $\frac{\sqrt{14} - \sqrt{10}}{2}$
12.	If $x = \sqrt{\frac{+2\sqrt{6}}{5-2\sqrt{6}}}$ , then the value of $x^{2}(x - 10)^{2}$ is				Z
	$\sqrt{5-2\sqrt{6}}$ (a) 0	(b) 1		(c) $\frac{\sqrt{14} + \sqrt{10}}{4}$	(d) $\frac{\sqrt{14} - \sqrt{10}}{4}$
	(c) – 1	(d) 2	21.	Find the value of $\sqrt{38+}$	$\frac{1}{5\sqrt{3}} + \sqrt{-\sqrt{5}}$
12	The simplified value of	$\int \frac{\sqrt{-\sqrt{7}}}{\sqrt{-\sqrt{7}}}$ is:			1.0
15.				(a) $\frac{5\sqrt{6}-\sqrt{10}}{2}$	(b) $\frac{5\sqrt{6} + \sqrt{10}}{2}$
	(a) 1 (c) – 1	(b) 2 (d) – 2		(c) $\frac{5\sqrt{6}-\sqrt{10}}{4}$	(d) $\frac{5\sqrt{6} + \sqrt{10}}{4}$
14.	$\frac{(625)^{6.25} \times (25)^{2.6}}{(625)^{6.75} \times (5)^{1.2}} = ?$		22.	Find the value of $\sqrt{4-\sqrt{4-\sqrt{4-1}}}$	$\overline{\sqrt{7}}$ + $\sqrt{8}$ + $\sqrt{-1}$
	(a) 5	(b) 10		(a) $\sqrt{2}(\sqrt{7}+1)$	(b) $\sqrt{2} + 1$
	(c) 15	(d) 25		(c) 1	
15.	The simplified value of	$\frac{2+\sqrt{3}}{2-\sqrt{3}}$ is:	23.	If $\sqrt{5} = 2.236$ and $\sqrt{10} =$	= 3.162 , then the value of
		(b) $7 - 4\sqrt{3}$		$\frac{15}{\sqrt{10} + \sqrt{20} + \sqrt{40} - \sqrt{5} - \sqrt{5}}$	- <u>√80</u> is:
		(d) $7 - 2\sqrt{3}$		(a) 4.398	(b) 5.398
		$1(1)^{\frac{1}{2}}$ 1 2			(d) 5.938
16	The simplified value of	$\frac{(0.3)^{\frac{1}{3}} \left(\frac{1}{27}\right)^{\frac{1}{4}} (9)^{\frac{1}{6}} (0.81)^{\frac{2}{3}}}{(0.9)^{\frac{2}{3}} (3)^{-\frac{1}{2}} (243)^{-\frac{1}{4}}} \text{ is :}$	24.	$\frac{(2 - 3.2)(3 - 2.3)}{3^{n-4}(4^{n+3} - 2^{2n})}$	= ?
10.				(a) $\frac{1}{2}$	(b) $\frac{1}{4}$
	(a) 2.2 (c) 2.4	(b) 2.7 (d) 2.6		(c) $-\frac{1}{2}$	(d) $\frac{1}{6}$
				2	<u> </u>