

ADVANCED MATHS

for SSC, Railways & Other Govt Examinations

BASED ON LATEST PATTERN

- 3 Levels of Exercise
- 2000+ Multiple Choice Questions with 100% Solutions
- Includes the Previous Years' Questions of all the Topics
- Also includes the Latest Questions of SSC CGL Exams.

CONTENT

1.	LINE, ANGLE AND TRIANGLE	5
2.	CIRCLE	
3.	QUADRILATERALS	80
4.	CO-ORDINATE GEOMETRY	102
5.	ALGEBRA	126
6.	TRIGONOMETRY	157
7.	HEIGHT AND DISTANCE	
8.	MENSURATION-I	221
9.	MENSURATION-II	
Upc	lated Questions (Based on Latest Pattern)	
1.	MENSURATION	
2.	ALGEBRA	295
3.	TRIGONOMETRY	
4.	GEOMETRY	307
15 F	Practice Sets (Based on Latest Pattern)	
Pract	tice Set – 01	
Pract	tice Set – 02	324
Pract	tice Set – 03	329
Pract	tice Set – 04	
Pract	tice Set – 05	
Pract	tice Set – 06	
Pract	tice Set – 07	
Pract	tice Set – 08	353

Practice Set – 09	358
Practice Set – 10	363
Practice Set – 11	368
Practice Set – 12	374
Practice Set – 13	379
Practice Set – 14	383
Practice Set – 15	386

5 Practice Sets SSC CGL Tier-II (Based on Latest Pattern)

Practice Set – 01	390
Practice Set – 02	396
Practice Set – 03	402
Practice Set – 04	409
Practice Set – 05	414

Line, Angle and Triangle

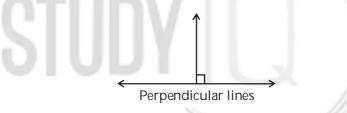
-Ray

Line and Angle

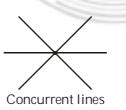
Point : An infinitely small figure of whose length breadth and height cannot be measured. Line : A line is made up of infinite number of points and has length only

Line Segment : The part of a straight line whose both ends are fixed is called a line segment.

4


Ray : If one point of line is fixed then it called Ray. It extends indefinitely in one direction

Important Lines


Parallel lines : Two lines, lying in a plane and has no common intersecting point are called parallel lines. They never meet at any point and distance between them is always constant.

Parallel lines

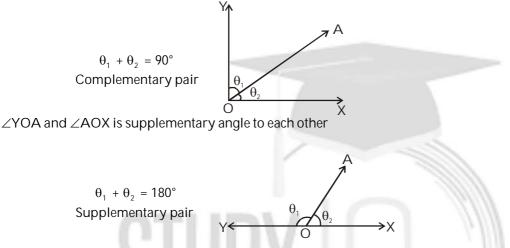
Perpendicular line : Two line which intersect each other in a plane at 90° are called perpendicular line.

Concurrent line : When more than two lines intersect at a common point, then they are called concurrect lines

Important Points to Remember:

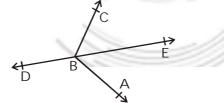
- A line is made up of infinitely many points.
- The intersection of two of different lines is called a point.
- Concurrent lines pass through a single point.
- There are infinite no. of planes which pass through a single point.
- When more than three points lie in the same plane, they are called as coplanar else they are called as non-coplanar.
- When more than one line lie in the same plane, then these lines are called as coplanar else they are called as non-coplanar.
- Two lines which are perpendicular to any other line are necessarily parallel to each other in the same plane.

QUANTITATIVE APTITUDE

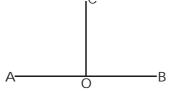

Collinear and Non - Collinear points: If three or more points lie on straight line, they are called collinear point. If three or more points do not lie on straight line, they are called non-collinear points. Types of Angle:

According to Measurement

- (i) Acute angle : Angle between two lines lies $0 < \theta < 90^{\circ}$.
- (ii) Right angle : Angle Measurement between two lines lies 90°.
- (iii) Obtuse angle : Angle between two line lies $90^{\circ} < \theta < 180^{\circ}$.
- (iv) Straight angle : Angle Measurement is between two line lies 180°.
- (v) Reflex angle : Angle between two line lies $180^{\circ} < \theta < 360^{\circ}$.

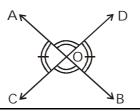

Complementary and Supplementary angle: If the sum of two angle is equal to 90°. They form a set of complementary angle. If the sum of two angles is equal to 180°, they form a set of supplementary angle

 $\angle \mathsf{YOA} \text{ and } \angle \mathsf{AOX} \text{ is complementary angle to each other}$



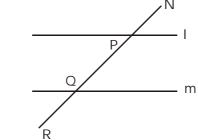
Adjacent angle : If angle having the common vertex, a common side and their uncommon sides are situated at two different side of common side.

 \angle DBC and \angle DBA are adjacent angles. \angle EBC and \angle DBC are also adjacent angles.



Linear pair : In figure, $\angle AOC$ and $\angle COB$ are adjacent angle and AOB is straight line. One side must be common (OC) and these two angle must be supplementary So, these type of angles are called linear pair of angle.

Vertically Opposite angle : If two straight line meet at a point, then angles facing each other are called vertically opposite angle.


 $\angle AOD = \angle COB$ and $\angle AOC = \angle DOB$.

STUDYIQ Publications

QUANTITATIVE APTITUDE

Transversal line : A straight line intersecting two or more lines at different points is called a transversal line.

RN = Transversal line

Corresponding angles : When two lines are intersected by a transversal line, then they form four pair of corresponding angles.

Corresponding angles are:

- ∠SOM, ∠UQO (∠2, ∠6)
- ∠SOQ, ∠UQN (∠3,∠7)
- ∠TOM, ∠VQO (∠1, ∠5)
- ∠TOQ, ∠VQN (∠4,∠8)

Exterior angles and Interior angles : Exterior angles

- ∠SOM, ∠2
- ∠TOM, ∠1
- ∠UQN, ∠7
- ∠VQN, ∠8

Alternate Angle : These two pairs are alternate angles

 \angle SOQ, \angle VQO (\angle 3, \angle 5)

∠UQO, ∠TOQ (∠6, ∠4)

Theorems Based on Angle and Straight line:

Theorem 1 : If a ray is inclined on a line then the sum of linear pair of angle thus formed is equal to 180°

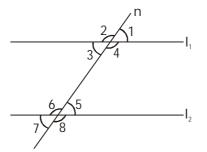
(ii) $\theta_1 + \theta_2 + \theta_3 + \theta_4 + \theta_5 + \theta_6 = 180$

B

(i) $\alpha + \theta = 180^{\circ}$

Interior angles

∠SOQ, ∠3


∠TOQ, ∠4

∠UQO, ∠6

∠VQO, ∠5

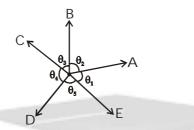
Theorem 2 : If transversal line n, intersect two parallel lines I_1 and I_2 then the pair of corresponding angles thus formed are equal and converse is also true.

 $\angle 1 = \angle 5$, $\angle 2 = \angle 6$, $\angle 3 = \angle 7$ and $\angle 4 = \angle 8 \rightarrow$ Corresponding angles are equal.

STUDYIQ Publications

Theorem 3 : If a transversal line intersects two parallel lines then pair of alternate angle are equal.

 $\angle 3 = \angle 5$ and $\angle 4 = \angle 6 \rightarrow$ Alternate interior angle


 $\angle 1 = \angle 7$ and $\angle 2 = \angle 8 \rightarrow$ Alternate exterior angle

Theorem 4 : When a transversal line intersects two parallel lines, sum of consecutive interior angle is 180°.

 $\angle 4 + \angle 5 = 180^{\circ}$ and $\angle 3 + \angle 6 = 180^{\circ}$

Theorem 5 : Sum of all angles around a point is 360°

 $\angle \theta_1 + \angle \theta_2 + \angle \theta_3 + \angle \theta_4 + \angle \theta_5 = 360^\circ$

Polygons: It is a closed plane figure bounded by three or more than three straight lines. There are two types of polygon.

- Convex Polygon: A polygon in which none of its interior angle is more than 180°, then it is known as convex polygon.
- Concave Polygon: A polygon in which atleast one interior angle is more than 180°, then it is called concave polygon.

Regular Polygon : A polygon in which all the sides are equal and all interior angles are also equal, then it is called a regular polygon.

Properties:

- Sum of all interior angle of n sided regular polygon is (n 2) 180
- Each interior angle is equal to $\frac{(n-2)180^{\circ}}{n}$ or (180° exterior angle).
- Sum of all exterior angle is equal to 360°
- Each exterior angle is equal to $\left(\frac{360}{\text{Number of sides}}\right)$ (in degree)
- Number of diagonals is equal to $\frac{n(n-3)}{2}$ where, n = number of sides.
- Area of regular polygon is equal to $\frac{na^2}{4} \cot\left(\frac{180^\circ}{n}\right)$; where, n = number of sides, a = length of side.
- Sum of Internal angle and External angle of regular polygon = 180°

Triangle

A triangle is a two dimensional figure enclosed by three sides. In figure given below is a triangle with sides AB, BC and CA measuring c, a and b units respectively. A line from A to BC which is perpendicular to BC is denoted by h. Properties of a Triangle:

- Sum of all the angles of a triangle is 180°
- The sum of lengths of any two sides is > Length of the third side •
- Difference of any two sides of triangle is < length of the third side
- Perimeter of a triangle is always greater than the sum of its median.
- Side opposite to largest angle will be largest and side opposite to smallest angle will be smallest.
- $If \begin{cases} a^2 = b^2 + c^2, \text{ triangle is Right angled} \\ a^2 > b^2 + c^2, \text{ triangle is obtuse} \\ a^2 < b^2 + c^2, \text{ triangle is Acute} \end{cases}$

Area of Triangle:

There are several methods to find the area of triangle

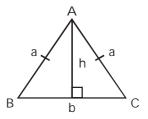
- Area of any triangle = $\frac{1}{2}$ × base × perpendicular to base from opposite vertex
- Area of any triangle = $\sqrt{S(S-a)(S-b)(S-c)}$ where S is semiperimeter of the traingle and a, b, c are sides of a triangle.
- Area of any triangle = $\frac{1}{2}$ × bc sinA, where A = ∠BAC

$$=\frac{1}{2} \times ac \sin B$$
, where $B = \angle ABC$

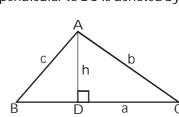
$$\frac{1}{2}$$
 × ab sinC, where C = \angle ACB

- Area of any triangle = rS, where r is inradius of inscribed circle in triangle and S is semiperimeter of triangle.
- Area of any triangle = $\frac{abc}{4R}$, where R is circumradius of circumscribing circle of the triangle.

Classification of Triangles:


- (a) According to side
 - 1. Scalene triangle

A triangle whose all sides are of different length is called a scalene triangle.


2. Isosceles triangle

A triangle whose two sides are equal in length is called an isosceles triangle.

• Area =
$$\frac{b\sqrt{4a^2 - b^2}}{4}$$

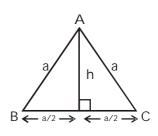
• Height = $\frac{\sqrt{4a^2 - b^2}}{2}$

For More Study Material Visit: studyig.com

3. Equilateral triangle

A triangle whose all sides are equal in length is called an equilateral triangle a = b = c.

- Area = $\frac{\sqrt{3}}{4}a^2$
- Height = $\frac{\sqrt{3}}{2}a$
- $\angle A = \angle B = \angle C = 60^{\circ}$
- Inradius of equilateral triangle = $\frac{a}{2\sqrt{3}}$
- Circumradius of equilateral triangle = $\frac{a}{\sqrt{3}}$
- (b) According to angle
 - 1. Right-angled Triangle


A triangle whose one angle is of 90° is called as right-angled triangle. The side opposite to the right angle is called Hypotenuse A

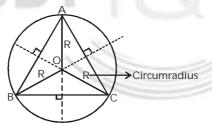
Area = $\frac{1}{2}$ × product of sides containing right angle • h $=\frac{1}{2} \times b \times h$ $d^2 = h^2 + b^2$ (Pythagoras theorem) B \cap b 2. Acute-Angle Triangle Each angle of a triangle is less then 90° $A < 90^{\circ}$, B < 90°, C < 90° В 3. Obtuse-Angle Triangle one of the angles is obtuse (i.e. greater than 90°), then it is called obtuse angle triangle. ∠B > 90°

Important Terms

Term	Definition	Diagram
Altitude	The perpendicular drawn to a side from opposite vertex in a triangle is called an altitude of the triangle. AD, BE, CF are the altitudes	

For More Study Material Visit: studyiq.com

R

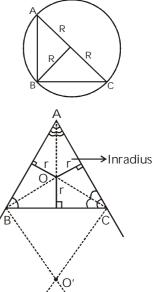

QUANTITATIVE APTITUDE

Term	Definition	Diagram
Median	The line segment Joining the mid point of a side of triangle to the vertex opposite to side is called median. Median divides the area of triangle into two equal parts Area ($\triangle ABD$) = area ($\triangle ADC$) = $\frac{1}{2}$ area ($\triangle ABC$)	A F D C
Angle bisector	A line which bisects the angle of triangle and originates from vertex is called an angle bisector $\angle OBF = \angle OBD = \frac{1}{2} \angle ABC$	A F D C
Perpendicular side bisector	A line segment which bisects a side perpendicularly is called perpendicular bisector of side. DO, EO, FO are the perpendicular side bisectors.	A F O B D C

Circumcentre:

Circumcentre is the point of intersection of the perpendicular side bisectors of the triangle. Circumcentre is equidistant from its vertex and distance of circumcentre from vertex of triangle is called circumradius (R) of the triangle

The circle drawn with the circumcentre as the centre and circumradius as the radius is called the circumcircle of the triangle and it touches all the vertex of the triangle



- Circumcentre of acute angle triangle always lie inside the triangle
- Circumcentre of abtuse angle triangle always lie outside the triangle and opposite to the largest angle
- Circumcentre of right angle triangle always lie at the mid point of hypotenuse
- ∠BOC = 2∠A

Incentre:

Incentre is the point of intersection of the internal bisectors of the three angles. Incentre is equidistant from the three sides of the triangle, i.e. the perpendiculars drawn from the incentre to the three sides are equal in length and are called inradius of the triangle.

The circle drawn with the incentre as centre and inradius as the radius and it touches all the three sides of triangle from inside.

- $\angle BOC = 90 + \frac{1}{2} \angle A$.
- $\angle BO'C = 90 \frac{1}{2} \angle A$

(where BO', CO' are external bisectors of $\angle B$ and $\angle C$)

• In right angled triangle, Inradius = semi perimeter – length of Hypotenuse

Centroid:

Point of intersection of three medians of a triangle is called centroid divides median in the ratio 2 : 1

$$\frac{AG}{GD} = \frac{BG}{GE} = \frac{CG}{GF} = \frac{2}{1}$$

Orthocentre:

Orthocentre is the point of intersection of the altitudes i.e. perpendicular drawn on side from opposite vertex

- ∠BOC = 180 ∠A
- For right triangle orthocentre lies at the vertex containing right angle.
- In obtuse angle triangle it lies opposite to largest side and outside the triangle.

Theorem	Statement	Diagram
Basic Proportionality Theorem	Any line parallel to one side of a triangle divides the other two sides proportionally $\frac{AD}{DB} = \frac{AF}{FC}, \frac{AD}{AB} = \frac{AF}{AC}, \frac{AD}{DF} = \frac{AB}{BC}$	A D B C
Mid Point theorem	Any line Joining the mid-points of two adjacent sides of a triangle is parallel and half of the third side vice-versa is also true. $DE = \frac{1}{2}a$	$ \begin{array}{c} $
Apollonius Theorem	In a triangle, the sum of the squares of any two adjacent sides of a triangle is equal to twice the sum of square of the median to third side and square of half the third side. $AB^2 + AC^2 = 2(AD^2 + BD^2)$	A B D C
Extension of Apollonius theorem	$3(AB^2 + BC^2 + CA^2) = 4(AD^2 + BE^2 + CF^2)$	A B D C

QUANTITATIVE APTITUDE

Theorem	Statement	Diagram
Exterior Angle Bisector	In a triangle the angle bisector of any exterior angle of a triangle divides the side opposite to the external angle in the ratio of the remaining two sides as given below i.e. $\frac{BE}{AE} = \frac{BC}{AC}$	A B C D
Interior angle Bisector	In a triangle the angle bisector of an angle divides the opposite side to the angle in the ratio of the remaining two sides, $\frac{AB}{AC} = \frac{BD}{CD}$	A B D C

Congruency of Triangles:

Two figure are said to be congruent if, when placed one over the other, they completely overlap each other. They would have the same shape, the same area and will be identical in every aspect.

Condition for congruency of two triangles:

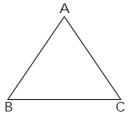
- 1. S S S rule
 - If each side of one triangle is equal to the side of the other triangle, the two triangles are congruent.
- 2. S A S rule

If one angle in each triangle and sides containing the angle of each triangle are equal, the two triangles are congruent.

3. A – S – A rule

If two angles and angles containing the side of two triangles are equal then two triangles are congruent.

4. R-H-Srule


This rule is for right angled triangle. If hypotenuse and one of the sides of two triangles are equal, then the triangles are congruent.

Similarity of Triangles

Two Triangles are similar if

(i) their corresponding angles are equal (ii) their corresponding sides are in the same ratio

If $\triangle PQR$ and $\triangle ABC$ are similar

- $\angle A = \angle P$, $\angle B = \angle Q$, $\angle C = \angle R$
- $\frac{AB}{PQ} = \frac{BC}{QR} = \frac{CA}{RP}$

QUANTITATIVE APTITUDE

Condition for Similarity:

1. AAArule

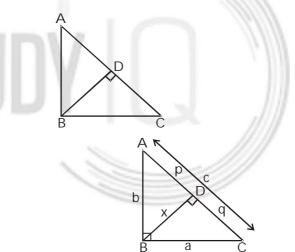
If in two triangles, the corresponding angles are equal, then their corresponding sides will also be proportional so triangles are similar.

2. SSSrule

If the corresponding sides of two triangles are proportional then their corresponding angles will also be equal. So, triangles are similar

3. SASrule

If one angle of triangle is equal to one angle of the other triangle and the sides including these angles are proportional then triangles are similar.


4. The ratio of the areas of the two similar triangles is equal to the ratio of the squares of their corresponding sides.

$$\frac{AB^2}{PQ^2} = \frac{BC^2}{QR^2} = \frac{CA^2}{RP^2} = \frac{ar(\Delta ABC)}{ar(\Delta PQR)}$$

- 5. If perpendicular drawn from the vertex of the right angle of a right-angled triangle to the hypotenuse the triangles on each side of perpendicular drawn are similar to whole triangle and to each smaller triangle.
- **Δ**ABC ~ **Δ**ADB ~ **Δ**BDC

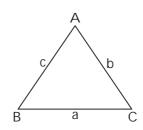
Some important Conclusions

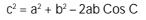
AB = b, BC = a, AC = c
 BD = x, AD = p, DC = q

• a² = cq

then,

• b² = cp

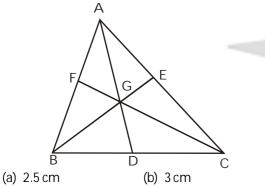

•
$$a.b = cx$$
, $\frac{1}{a^2} + \frac{1}{b^2} = \frac{1}{x^2}$
• $p.q = x^2$


In any ∆ABC

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$$
, where R is circumradius.

Cosine Rule:

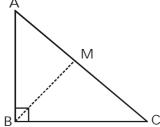
 $a^2 = b^2 + c^2 - 2bc \cos A$, $b^2 = a^2 + c^2 - 2ac \cos B$,



LINE, ANGLE AND TRIANGLE QUANTITATIVE APTITUDE Foundation D Questions In the given figure, $\angle ABD = 90^\circ$, $\angle BDA = 30^\circ$ and 1. \angle BCA = 20°. What is the value of \angle CAD? R 105 F (a) 55° (b) 65° (c) 75° (d) 80° In the adjoining figure $\angle APO = 42^{\circ} \angle CQO = 38^{\circ}$. 8. Find the value of $\angle POQ$: (a) 10° (b) 20° D (d) 15° (c) 30° В In the given figure AB is parallel to CD and BE is 2. parallel to FH. Measure of ∠FHE is: N C D В Ο (a) 68° (b) 72° Н (c) 80° (d) 126° 9. In the given figure, straight lines AB and CD intersect 60 50° С at O. If $\angle COA = 3 \angle AOD$, then $\angle AOD$ is equal to: D (a) 110° (b) 120° D (d) 130° (c) 125° In the figure given below AB is parallel to LM. Angle 3. a is equal to: ►B (b) 45° (a) 40° (d) 55° (c) 50° 10. In the given figure, AB | | CD and EF | | GH. Find the ►M relation between a and b. (a) $\pi + b + c$ (b) $2\pi - b + c$ (c) $2\pi - b - c$ (d) $2\pi + b - c$ Which angle is two third of its complementary angle? 4. (a) 36° (b) 45° Α (c) 48° (d) 60° 5. What is the measure of the angle which is one fifth of Ď C its supplementary part? (a) 15° (b) 30° (d) 75° (c) 36° 6. If each interior angle of a regular polygon is 144°, (a) $2a + b = 180^{\circ}$ (b) $a + b = 180^{\circ}$ then what is the number of sides in the polygon? (c) $a - b = 180^{\circ}$ (d) $a + 2b = 180^{\circ}$ (a) 10 (b) 20 11. A, B, C, are the three angles of a Δ . If A – B = 15° and $B - C = 30^\circ$, then $\angle A$ is equal to: (c) 24 (d) 36 (a) 65° (b) 80° In the following figure AB is a straight line. Find (x + 7. y): (c) 75° (d) 85° STUDYIQ Publications For More Study Material 15 Visit: studyig.com

~	E, ANGLE AND TRIANGLE	10	QUANTITATIVE APTITUDE
2.	In a \triangle ABC, If 2 \angle A = 3 \angle B = 6 \angle C then \angle A is equal to: (a) 60° (b) 30°	19.	If the angles of a triangle are in the ratio of 2:3:4, then the greatest angle of the triangle is:
	(a) 60° (b) 30° (c) 90° (d) 120°		(a) 75° (b) 80°
2	If one angle of a triangle is equal to the sum of the		(c) 90° (d) 120°
J.	other two, then the triangle is:	20.	Triangle ABC is such that $AB = 3 \text{ cm}$, $BC = 2 \text{ cm}$ and
	(a) Right-angled (b) Obtuse-angled		CA = 2.5 cm. Triangle DEF is similar to $\triangle ABC$. If EF =
	(c) acute-angled (d) None of these		4 cm, then the perimeter of ΔDEF is :
4.	In the given figure, if $\angle ABC = 90^\circ$, and $\angle A = 30^\circ$, then		(a) 7.5 cm (b) 15 cm
	∠ACD =		(c) 22.5 cm (d) 30 cm
		21.	ABC is a triangle and DE is drawn parallel to BC cutting the other sides at D and E. If $AB = 3.6$ cm, AC = 2.4 cm and AD = 2.1 cm, then AE is equal to:
			(a) 1.4 cm (b) 1.8 cm
			(c) 1.2 cm (d) 1.05 cm
		22.	The line segments joining the mid points of the sides
			of a triangle form four triangles each of which is:
	B C D (a) 120° (b) 100°		(a) similar to the original triangle
	(c) 110° (d) None of these		(b) congruent to the original triangle(c) an equilateral triangle
_			(d) an isosceles triangle
5.	80°	23.	In \triangle ABC and \triangle DEF, \angle A = 50°, \angle B = 70°, \angle C = 60°, \angle D = 60°, \angle E = 70° \angle F = 50°, then \triangle ABC is similar to:
	\mathcal{A}		(a) ΔDEF (b) ΔEDF
			(c) ΔDFE (d) ΔFED
	50° x	24.	The hypotenuse of a right angled triangle is 25 cms. The other two sides are such that one is 5 cm longer than the other. Their lengths (in cm) are:
			(a) 10, 15 (b) 20, 25
	Find the value of x and y		(c) 15, 20 (d) 25, 30
	(a) $x = 60^{\circ}$, $y = 80^{\circ}$ (b) $x = 80^{\circ}$, $y = 50^{\circ}$	25.	ABC is a triangle in which AB = AC. The base BC is
	(c) $x = 50^\circ$, $y = 80^\circ$ (d) None of these		produced to D and $\angle ACD = 130^{\circ}$. Then, $\angle A$ equals:
6.	In $\triangle ABC$, $\angle A > 90^{\circ}$ then $\angle B$ and $\angle C$ must be:		
	(a) acute (b) obtuse		A
	(c) one acute and one obtuse		
7	(d) Can't be determined In the following figure ADBC, BD = CD = AC, \angle ABC		
1.	= 27°, $\angle ACD = y$. Find the value of y:		
	1 ^A		
	D		
	V°		B C D
	770 79		(a) 80° (b) 60°
	B Z Z C		(c) 50° (d) 40°
	(a) 27° (b) 54°	26.	D, E, F are the mid points of the sides BC, CA and AB
	(c) 72° (d) 58°		respectively of $\triangle ABC$. Then $\triangle DEF$ is congruent to
8.	The internal bisectors of the angles B and C of a		triangle:
	triangle ABC meet at O. Then, \angle BOC is equal to:		(a) ABC (b) AEF
	(a) $90^{\circ} + \angle A$ (b) $2 \angle A$	77	(c) BFD, CDE (d) AFE, BFD, CDE
	(c) $90^{\circ} + \frac{1}{2} \angle A$ (d) $180^{\circ} - \angle A$	ΖΙ.	In the triangles ABC and DEF, angle A is equal to angle E, both are equal to 40° , AB : ED = AC : EF and angle F is 65° , then angle B is:

(b) 65° (a) 35° (c) 75° (d) 85°


- 28. If the medians of a triangle are equal, then the triangle is:
 - (a) isosceles (b) equilateral
 - (c) scalene (d) right angled
- 29. The circumcentre of a triangle is determined by the: (b) medians
 - (a) altitudes
 - (c) angle bisectors
 - (d) perpendicular bisectors of the sides
- 30. In $\triangle ABC$, the medians BE and CF intersect at G. AGD is a line meeting BC in D. If GD is 1.5 cm, then AD is equal to :

- (c) 4 cm
- 31. If S is the circumcentre of $\triangle ABC$, then :
 - (a) S is equidistant from its sides
 - (b) S is equidistant from its vertices
 - (c) SA, SB, SC are the angular bisectors
 - (d) AS, BS, CS produced are the altitudes on the opposite sides.

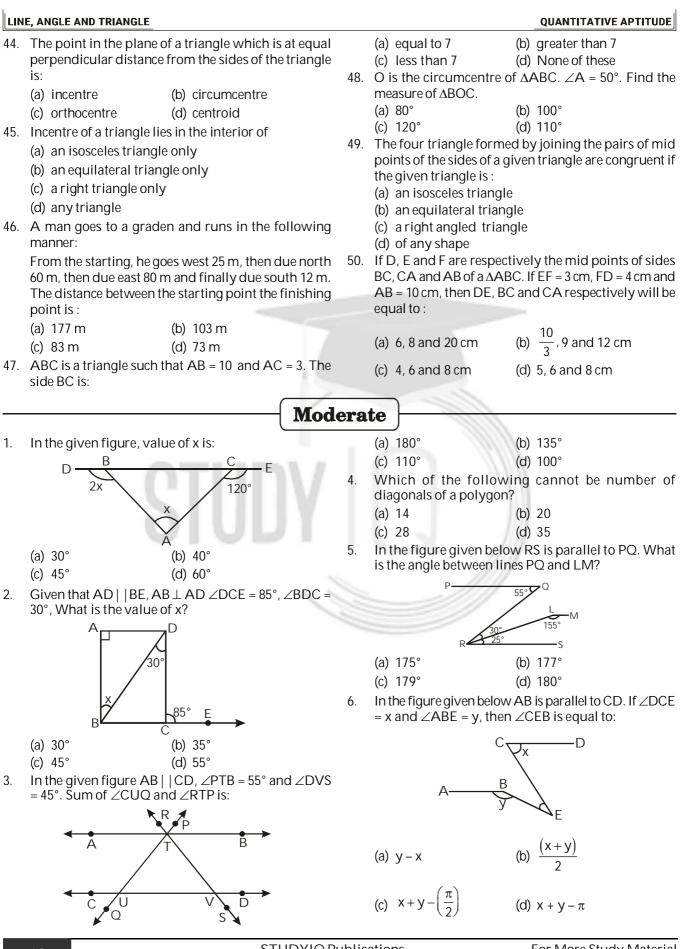
(d) 4.5 cm

- 32. The number of points in the plane of a triangle ABC which is equidistant from the vertices of the triangle is :
 - (a) 0 (b) 1 (d) 4 (c) 2
- 33. In the given figure,

 $\angle ABC = 90^{\circ}$ and BM is a median, AB = 8 cm and BC = 6 cm. Then, length BM is equal to:

- (a) 3 cm (b) 4 cm
- (c) 5 cm (d) 7 cm
- 34. In an equilateral triangle PQR, if p, q and r denote the lengths of perpendiculars from P, Q, R respectively on the opposite sides, then :

- (a) $p \neq q \neq r$ (b) p = q = r
- (c) $p \neq q = r$ (d) $p = q \neq r$
- 35. The ratio of the length of a side of an equilateral triangle and its height is :


(a) 2:1 (b) 1:2

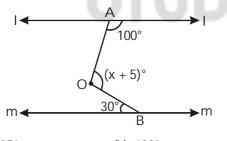
(d) $\sqrt{3}:2$ (c) $2:\sqrt{3}$

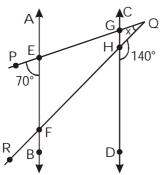
- 36. If D, E, F are respectively the mid points of the sides BC, CA and AB of \triangle ABC and the area of \triangle ABC is 24 sq. cm. then the area of ΔDEF is:
 - (a) 24 cm² (b) 12 cm²
 - (c) 8 cm^2 (d) 6 cm^2
- 37. If O is a point inside a triangle ABC, which of the following is true?
 - (a) 2(AO + BO + CO) > (AB + BC + CA)
 - (b) (AO + BO + CO) > (AB + BC + CA)
 - (c) AO + BO + CO = AB + BC + CA
 - (d) None of these
- 38. One side other than the hypotenuse of a right angled isosceles triangle is 4 cm. The length of the perpendicular on the hypotenuse from the opposite vertex is:
 - (b) $4\sqrt{2}$ cm (a) 8 cm
 - (d) $2\sqrt{2}$ cm (c) 4 cm
- 39. In a triangle ABC, the sum of the exterior angles at B and C is equal to :
 - (a) 180° ∠BAC (b) 180° + ∠BAC
 - (c) 180° 2∠BAC (d) 180° + 2∠BAC
- 40. In $\triangle ABC$, $\angle B = 3x$, $\angle A = x$, $\angle C = y$ and 3y 5x = 30, then the triangle is :
 - (a) isosceles (b) equilateral
 - (c) right angled (d) scalenane
- 41. Consider the following statements:
 - 1. If three sides of a triangle are equal to three sides of another angle, then the triangles are congrunet.
 - 2. If three angles of a triangle are respectively equal to three angle of another triangle, then the two triangle are congruent. Of these statements,
 - (a) 1 is correct and 2 is false
 - (b) both 1 and 2 are false
 - (c) both 1 and 2 are correct
 - (d) 1 is flase and 2 is correct
- 42. The internal bisectors of $\angle B$ and $\angle C$ of $\triangle ABC$ meet at O. If $\angle A = 80^\circ$, then $\angle BOC$ is:
 - (a) 50° (b) 100°
 - (c) 130° (d) 160°
- 43. The medians of a triangle pass through the same point which divides each of the medians in the ratio:

(a) 2:1	(b) 1:3
(c) 2:3	(d) 3:2

QUANTITATIVE APTITUDE

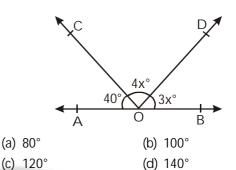
7. If difference of interior and external angle at a vertex of a regular polygon is 150°; number of sides in the polygon is:

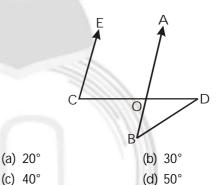

- (a) 10 (b) 15
- (c) 24 (d) 30
- 8. If sum of internal angles of a regular polygon is 1080°, then number of sides in the polygon is:
 - (a) 6 (b) 8
 - (c) 10 (d) 12
- 9. If one internal angle of a regular polygon is 135°, then number of diagonals in the polygon is:
 - (a) 16 (b) 18
 - (c) 24 (d) 20
- 10. In the given figure, AB | |CD. If \angle CAB = 80° and \angle EFC = 25°, then \angle CEF is equal to:


- (a) 65°
- (c) 45°
- 11. In the given figure, if I | | m, then find the value of x (in degrees)?

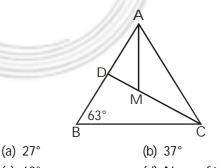
(b) 55°

(d) 75°

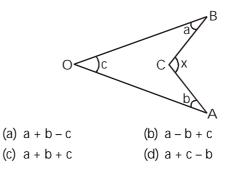

- (a) 105° (b) 100°
- (c) 110° (d) 115°
- 12. In the given figure, AB | |CD and they cut PQ and QR at E, G and F, H, respectively. If \angle PQR = x, then find the value of x (in degrees)?


(a) 20°	(b) 30°
(c) 24°	(d) 32°

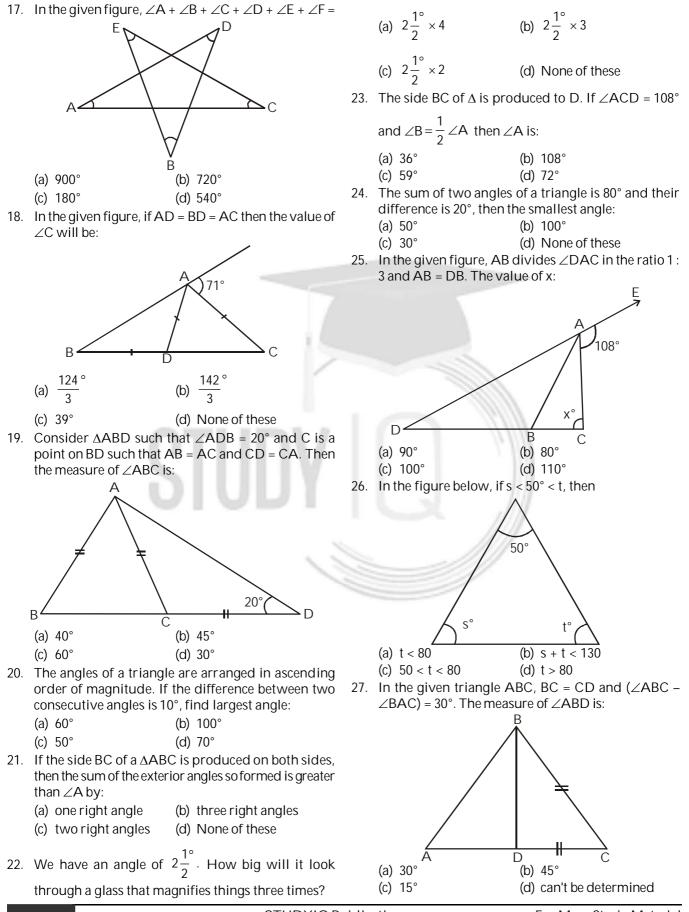
13. In the given figure, AOB is straight line if $\angle AOC = 40^{\circ}$, $\angle COD = 4x^{\circ}$ and $\angle BOD = 3x^{\circ}$, then $\angle COD$ is equal to:


QUANTITATIVE APTITUDE

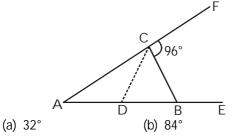
14. In the figure given below, EC is parallel to AB, \angle ECD = 70° and \angle BDO = 20°. What is the value of \angle OBD?



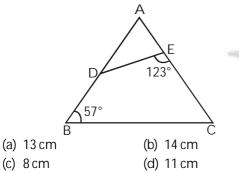
15. In the given figure, AM = AD, $\angle B = 63^{\circ}$ and CD is an angle bisector of $\angle C$, then $\angle MAC = ?$



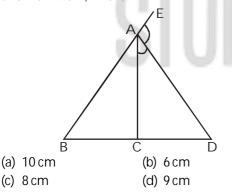
16. In the given figure, x = ?



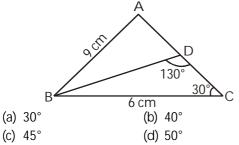
QUANTITATIVE APTITUDE



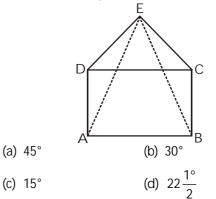
For More Study Material Visit: studyiq.com


28. In the given figure below, if AD = CD = BC, and $\angle BCF = 96^{\circ}$, How much is $\angle DBC$?

- (c) 64° (d) can't be determined
- 29. In the given figure, AD = 11 cm, AB = 18 cm and AE = 9 cm. Find EC:


30. In the given figure AD is the external bisector of $\angle EAC$, intersects BC produced at D. If AB = 12 cm, AC = 8 cm and BC = 4 cm, find CD:

31. In $\triangle ABC$, D is a point on BC such that $\frac{AB}{AC} = \frac{BD}{DC}$. If $\angle B = 70^{\circ}$, $\angle C = 50^{\circ}$, then the value of $\angle BAD$:

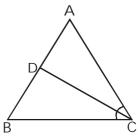

(a)
$$30^{\circ}$$
 (b) 60°

- (c) 40° (d) 50°
- 32. In the given figure, AD : DC = 3 : 2, then $\angle ABC$:

QUANTITATIVE APTITUDE

33. In the given figure, ABCD is a square and DCE is an equilateral triangle, then $\angle DAE$ will be:

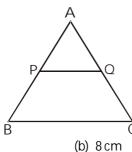
- 34. In a triangle ABC, \angle BAC = 90° and AD is perpendicular to BC. If AD = 6 cm and BD = 4 cm, then the length of BC is:
 - (a) 8 cm (b) 10 cm
 - (c) 9 cm (d) 13 cm
- 35. If G is centroid and AD, BE, CF are three medians of \triangle ABC with area 72 cm², then the area of \triangle BDG is: (a) 12 cm² (b) 16 cm²
 - (c) 24 cm^2 (d) 8 cm^2
- 36. D is any point on side AC of △ABC. If P, Q, X, Y are the mid-points of AB, BC, AD and DC respectively, then the ratio of PX and QY is:

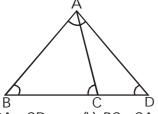

37. ABC is an equilateral triangle. P and Q are two points

on \overline{AB} and \overline{AC} respectively such that $\overline{PQ} | |\overline{BC}$. If

 $\overline{PQ} = 5$ cm the area of ΔAPQ is:

(a)
$$\frac{25}{4}$$
 sq. cm
(b) $\frac{25}{\sqrt{3}}$ sq. cm
(c) $\frac{25\sqrt{3}}{4}$ sq. cm
(d) $25\sqrt{3}$ sq. cm

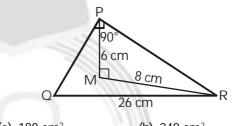

- 38. In ∆ABC, P and Q are the mid points of the sides AB and AC respectively. R is a point on the segment PQ such that PR : RQ = 1 : 2, If PR = 2 cm, then BC = (a) 4 cm
 (b) 2 cm
 - (c) 12 cm (d) 6 cm
- 39. In the given figure, $\angle BAC = \angle BCD$, AB = 32 cm and BD = 18 cm, then the ratio of perimeter of $\triangle BCD$ and $\triangle ABC$ is:


For More Study Material Visit: studyiq.com

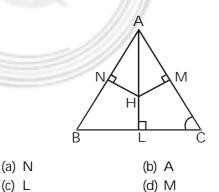
(a) 4	: 3	(b) 8:5
(c) 5	: 8	(d) 3:4

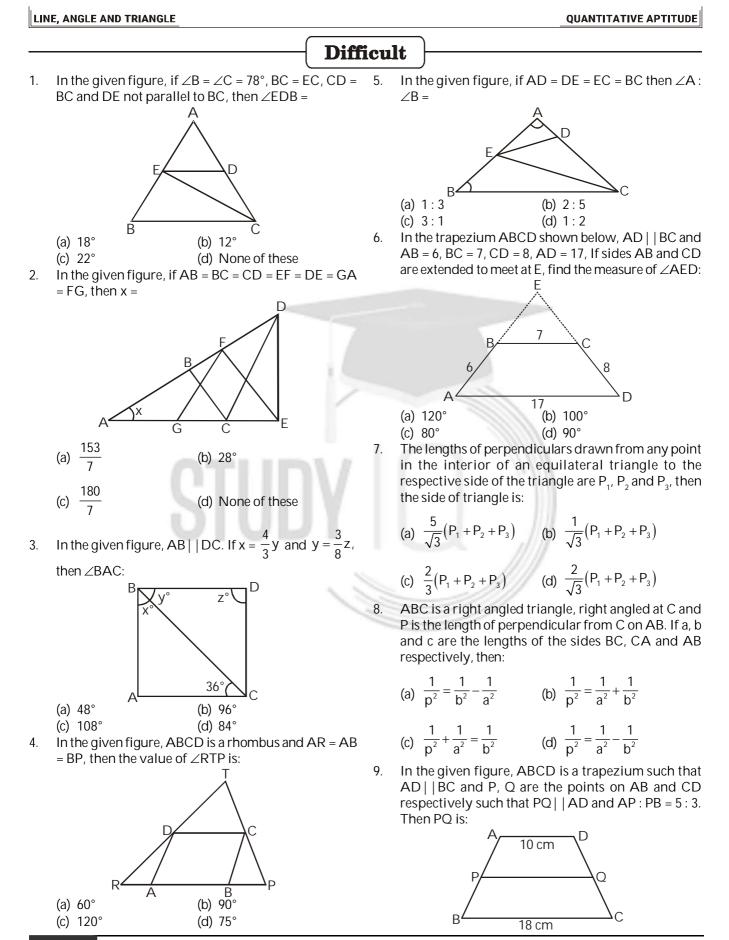
- 40. A straight line parallel to base BC of the triangle ABC intersects AB and AC at the points D and E respectively. If the area of the \triangle ACD is 36 sq. cm, then the area of \triangle ABE is:
 - (a) 36 sq. cm (b) 18 sq. cm
 - (c) 12 sq. cm (d) None of these
- 41. In the given triangle ABC, BP = 3 AP, QC = 3AQ and BC = 36 cm. Find the value of PQ?

- (a) 9 cm (b) 8 cm (c) 6 cm (d) 7 cm
- 42. If P and Q are the mid-points of the sides AC and BC respectively of a triangle ABC, right-angled at C, then the value of $4(AQ^2 + BP^2)$ is equal to:
 - (a) $4 BC^2$ (b) $2 AC^2$
 - (c) $2 BC^2$ (d) $5 AB^2$
- 43. If a, b and c are the sides of a triangle and $a^2 + b^2 + c^2$ = ab + bc + ca, then the triangle is:
 - (a) Equilateral (b) Isosceles
 - (c) Right-angled (d) Obtuse-angle
- 44. In the given figure, $\angle B = \angle C = 55^{\circ}$ and $\angle D = 25^{\circ}$ then:


- (a) BC < CA < CD (b) BC > CA > CD
- (c) BC < CA, CA > CD (d) BC > CA, CA < CD
- 45. In $\triangle ABC$, $\angle B = 90^\circ$, $\angle C = 45^\circ$ and D is the mid-point of AC. If AC = $4\sqrt{2}$ units, then BD is:
 - (a) $2\sqrt{2}$ units (b) $4\sqrt{2}$ units
 - (c) $\frac{5}{2}$ units (d) 2 units

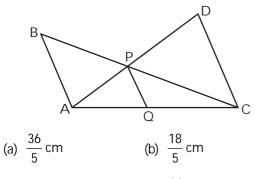
QUANTITATIVE APTITUDE


- 46. Two medians AD and BE of \triangle ABC intersect at G at right angles. If AD = 9 cm and BE = 6 cm, then the length of BD, in cm is:
 - (a) 10 (b) 6
 - (c) 5 (d) 3
- 47. The equidistant point from the vertices of a triangle is called its:
 - (a) centroid (b) incentre
 - (c) circumcentre (d) orthocentre
- 48. The in-radius of an equilateral triangle is 3 cm, Then the length of each of its medians is:

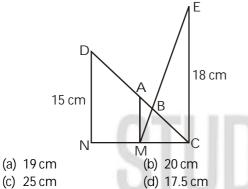

(a) 12 cm	(b) $\frac{9}{2}$ cm
(a) 12 cm	(b) <u>-</u> c

- (c) 4 cm (d) 9 cm
- 49. In the given figure $\angle QPR = 90^\circ$, QR = 26 cm, PM = 6 cm, MR = 8 cm and $\angle PMR = 90^\circ$, find the area of $\triangle PQR$?

- (a) 180 cm^2 (b) 240 cm^2 (c) 120 cm^2 (d) 150 cm^2
- 50. If H is the orthocentre of $\triangle ABC$, then the orthocentre of $\triangle HBC$ is (figure given):



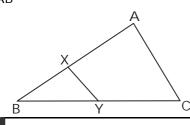
QUANTITATIVE APTITUDE


LINE, ANGLE AND TRIANGLE

- (a) 12.5 cm
- (c) 17.5 cm (d) 20 cm
- 10. In the given figure, AB | |CD| | PQ, AB = 12 cm, CD = 18 cm and AC = 6 cm. Then PQ is:

(b) 15 cm

- (c) 9 cm (d) $\frac{14}{5}$ cm
- 11. In the given figure, EC ||AM||DN and AB = 5 cm, BC = 10 cm. Find DC:



12. Find the maximum area that can be enclosed in a triangle of perimeter 24 cm:

(a) 32 cm^2 (b) $16\sqrt{3} \text{ cm}^2$

- (c) $16\sqrt{2}$ cm² (d) 27 cm²
- 13. The lengths of perpendiculars drawn from any point in the interior of an equilateral triangle to the respective sides are 6 cm, 8 cm, and 10 cm. The length of each side of the triangle is:
 - (a) $24\sqrt{3}$ cm (b) $8\sqrt{3}$ cm
 - (c) $16\sqrt{3}$ cm (d) 48 cm
- 14. In the given figure, the line segment XY | | AC and it divides the triangle into two parts of equal area. Find

(a)
$$\frac{1}{2}$$
 (b) $\frac{1}{\sqrt{2}}$
(c) $\frac{\sqrt{2}+1}{\sqrt{2}}$ (d) $\frac{\sqrt{2}-1}{\sqrt{2}}$

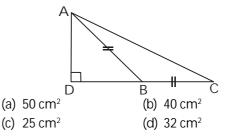
 D and E are the mid-points of AB and AC of ∆ABC, BC is produced to any point P; DE , DP and EP are joined. Then, area of:

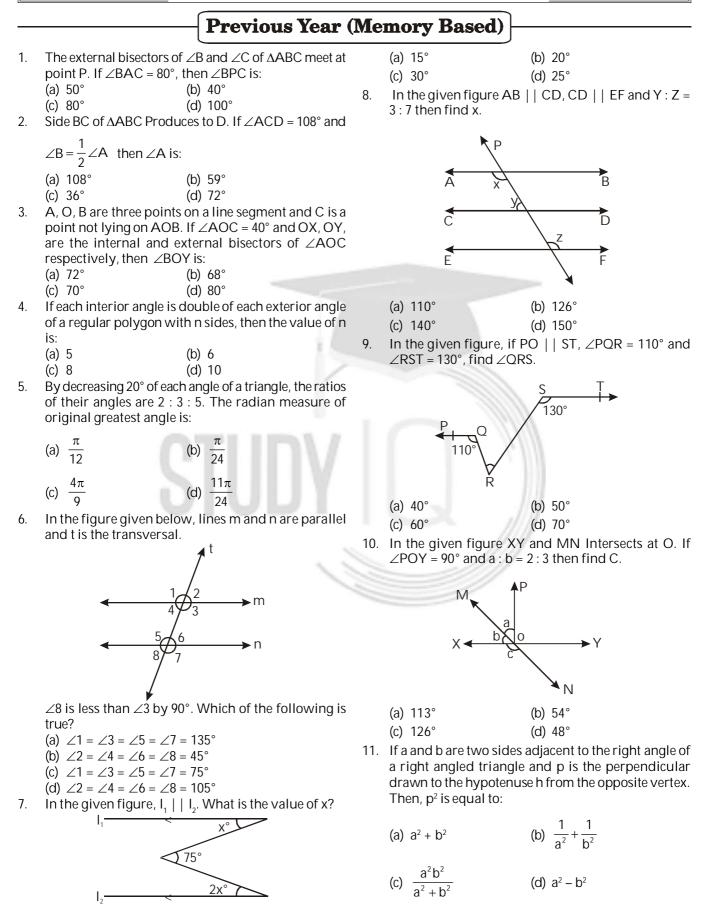
(a)
$$\Delta PED = \frac{1}{4} \Delta ABC$$
 (b) $\Delta PED = \Delta BEC$

(c)
$$\triangle ADE = \triangle BEC$$
 (d) $\triangle BDE = \triangle ABC$

- 16. In a \triangle ABC, D is the mid-point of BC and E is the midpoint of AD. The line BE is extended and it intersects AC at T. If AB = 18 cm, BC = 17 cm and AC = 15 cm. Find TC?
 - (a) 8 cm (b) 9 cm (c) 10 cm (d) 7 cm
- 17. In \triangle ABC, G is the centroid, AB = 15 cm, BC = 18 cm, and AC = 25 cm. Find GD, where D is the mid-point of BC:

(a)
$$\frac{1}{2}\sqrt{86}$$
 cm (b) $\frac{1}{3}\sqrt{86}$ cm
(c) $\frac{7}{3}\sqrt{86}$ cm (d) $\frac{2}{3}\sqrt{86}$ cm

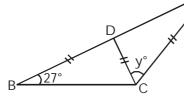

18. If G is the centroid of $\triangle ABC$ and AG = BC, then $\angle BGC$ is:


(c)
$$90^{\circ}$$
 (d) 60°

19. By decreasing 15° each angle of a triangle the ratios of their angles are 2 : 3 : 5, the radian measure for greatest angle is:

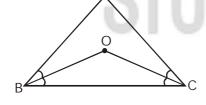
20. In the given figure, AB = BC and \angle BAC = 15°, AB = 10 cm. Find the area of \triangle ABC:

QUANTITATIVE APTITUDE


LIN	E, ANGLE AND TRIANGLE				QUANTITATIVE APTITUDE
12.	In a $\triangle ABC$, $\angle A + \frac{1}{2} \angle B$	$+ \angle C = 140^\circ$, then $\angle B$ is :	21.	In a $\triangle ABC$, AD, BE and C perimeter of $\triangle ABC$ is always	
	(a) 50° (c) 40°	(b) 80° (d) 60°		(a) equal to $\left(\overline{AD} + \overline{BE} + \overline{CF}\right)$	=)
13.	ABC is an isosceles tri	angle such that AB = AC and ne base BC with $\angle ABC = 35^\circ$.		(b) greater than $\left(\overline{AD} + \overline{BE}\right)$	$+\overline{CF}$
	Then, $\angle BAD$ is:			(c) less than $\left(\overline{AD} + \overline{BE} + \overline{C}\right)$	ZF)
	(a) 35°	(b) 55°		(d) None of the above	,
11	(c) 70°	(d) 110° Most and than 10 m due North	າາ	In a $\triangle ABC$, \overline{AD} , \overline{BE} and \overline{C}	E are three modians. Then
14.	A man goes 24 m due West and then 10 m due North. Then, the distance from the starting point is:		22.	the ratio $(\overline{AD} + \overline{BE} + \overline{CF})$:	
	(a) 17 m	(b) 26 m		· · · · · · · · · · · · · · · · · · ·	× ,
	(c) 28 m	(d) 34 m		(a) equal to $\frac{3}{4}$ (b)	$\frac{3}{-}$
15.	In a $\triangle ABC$, $\angle A - \angle B = 2$	20°, $\angle A - \angle C = 52^\circ$. Then, $\angle \frac{A}{2}$			
	is:			(c) greater than $\frac{3}{4}$ (c)	d) equal to $\frac{1}{2}$
	(a) 42°	(b) 90°	23.	If G be the centroid and A	ΔD be the median of ΔABC
14	(c) 75°	(d) 80° BP and CQ are two medians.		and AG = 4 cm, then DG i	is:
16.				(a) 2 cm (b	b) 3 cm
	Then, the value of $\frac{BP^2}{P}$	$\frac{+CQ^2}{CQ^2}$ is:			d) 5 cm
	I I I I I I I I I I I I I I I I I I I	30	24.	If ABC is an isosceles trian AB ² is equal to:	ngle right angled at C, then
	(a) $\frac{4}{5}$	(b) $\frac{5}{4}$			b) 4AC ²
	^(a) 5	(3) 4		.,	d) 5AC ²
	(c) $\frac{3}{4}$	(d) $\frac{3}{5}$	25.	If ABC is an equilateral tr	·
	(c) $\frac{1}{4}$	(d) $\frac{3}{5}$		BC such that $AD \perp BC$, the	•
17.	In \triangle ABC the straight line parallel to the side BC meets AB and AC at the points P and Q, respectively. If AP = QC and the length of AB is 12 units and the length of AQ is 2 units, then the length (in units) of CQ is:			(a) AB : BD = 1 : 1 (b	b) AB: BD = 1:2
				(c) $AB: BD = 2:1$ (c)	•
			26.	In a right angled triangle,	•
	(a) 4	(b) 6	9	hypotenuse. One of the ac	are of the third side, i.e., cute angles must be:
	(C) 8	(d) 10			o) 30°
18.	•	Δ similar triangles Δ ABC and		(c) 45° (c	d) 15°
	Δ PQR are 36 cm and 24 cm respectively. If PQ = 10 cm, then AB is:		27.	If in $\triangle ABC$, $\angle ABC = 5x$, $\angle ABC$ is equal to:	$\angle BAC = 3x, \angle ACB = x$ then
	(a) 15 cm (c) 14 cm	(b) 12 cm (d) 26 cm		(a) 80° (b	o) 100°
10	.,	. ,		• • • • •	d) 130°
17.	If the sides of a right-angled triangle are three consecutive integers, then the length of the smallest side is:		28.		DB = x - 2, AE = x + 2, EC =
	(a) 3 units	(b) 2 units		x - 1, then the value of x is	
	(c) 4 units	(d) 5 units		()	b) 2 d) 8
20.	In a $\triangle ABC$, $\frac{AB}{AC} = \frac{BD}{DC}$, $\angle B = 70^{\circ}$ and $\angle C = 50^{\circ}$, then		29.	In a $\triangle ABC$, if $\angle A = 115^\circ$, \angle	$C = 20^{\circ}$ and D is a point on
	$\angle BAD = ?$			BC such that $AD \perp BC$ and length?	d BD = 7 cm, then AD is of
	(a) 60°	(b) 20°		-	b) 5 cm
	(c) 30°	(d) 50°			d) 10 cm
	(0) 00	(,			

	E, ANGLE AND TRIANG	E			QUANTITATIVE APTITUDE
30.		triangle $\angle ABC = 90^\circ$; BN is C, AB = 6 cm, AC = 10 cm. Then	40.	AB and AC extend	tor of $\angle B$ and $\angle C$ of $\triangle ABC$ (where led to E and F, respectively) meet at 100°, then the measure of $\angle BPC$ is:
	(a) 3:4	(b) 9:16		(a) 50°	(b) 80°
	(c) 3:16	(d) 1:4		(c) 40°	(d) 100°
31.		= 90° and AD is perpendicular to d BD = 4 cm, then the length of BC (b) 10 cm	41.	ABC is an equilate	ral triangle. P and Q are two points spectively such that PQ BC. If PQ
	(c) 9 cm	(d) 13 cm		25	4
32.	In $\triangle ABC$, $\angle B = 80^{\circ}$	and $\angle C = 60^\circ$. If AD and AE be internal bisector of $\angle A$ and			(b) $\frac{4}{\sqrt{3}}$ sq. cm
		SC, then the measure of $\angle DAE$ is:		(c) 4√3 sq. cm	(d) 16√3 sq. cm
	(a) 5° (c) 40°	(b) 10° (d) 60°	42.	the mid-points of	side AC of \triangle ABC. If P, Q, X, Y are AB, BC, AD and DC respectively,
33.	For a triangle, base	e is $6\sqrt{3}$ cm and two base angles		then the ratio of P	
		en, height of the triangle is:		(a) 1:2	(b) 1:1
	(a) 3√3 cm	(b) 4.5 cm		(c) 2:1	(d) 2:3
			43.		tre of a $\triangle ABC$ and D be a point on
	(c) 4√3 cm	(d) $2\sqrt{3}$ cm			BC, such that OD \perp BC. If \angle BOD =
34.	l is the incentre of a = 55°, then the valu	$\triangle ABC$. If $\angle ABC = 65^{\circ}$ and $\angle ACB$ is of $\angle BIC$ is:		15°, then ∠ABC is (a) 75°	(b) 45°
	(a) 130°	(b) 120°		(c) 150°	(d) 90°
35.	(c) 140° In a ΔABC, AB ² + .	(d) 110° AC ² = BC ² and BC = $\sqrt{2}$ AB, then	44.		the internal bisector of $\angle A$, meeting f BD = 5 cm, BC = 7.5 cm, then AB :
	∠ABC is:			(a) 2:1	(b) 1:2
	(a) 30°	(b) 45°		(c) 4:5	(d) 3:5
	(c) 60°	(d) 90°	45		and BE of \triangle ABC intersect at G at
36.	In \triangle PQR, points A, B and C are taken on PQ, PR and QR, respectively such that QC = AC and CR = CB. If \angle QPR = 40°, then \angle ACB is equal to:		45.		D = 9 cm and BE = 6 cm, then the
	(a) 140°	(b) 40°		(a) 10	(b) 6
	(c) 70°	(d) 100°		(c) 5	(d) 3
37.	In \triangle ABC, D and E are points on AB and AC, respectively such that DE BC and DE divides the \triangle ABC into two parts of equal areas. Then, ratio of AD and BD is:		46.	0	e three sides of a triangle are 6 cm, nen the length of the median to its
				(a) 8 cm	(b) 6 cm
	(a) 1:1	(b) 1 : √2 − 1		(c) 5 cm	(d) 4.8 cm
		(d) $1:\sqrt{2}+1$	47.	0 1	rallel to BC of \triangle ABC intersects AB
38.		a right angled triangle, where $\angle A$		•	P and Q, respectively. AP = QC, PB = 9 units, then the length of AP is:
		. If area of $\triangle ABC = 40 \text{ cm}^2$, area of		(a) 25 units	(b) 3 units
	$\Delta ACD = 10 \text{ cm}^2$ and $AC = 9 \text{ cm}$, then the length of BC:			(c) 6 units	(d) 6.5 units
	(a) 12 cm	(b) 18 cm			1
39.	(c) 4 cm (d) 6 cm AD is the median of a $\triangle ABC$ and O is the centroid		48.	In $\triangle ABC$, $\angle BAC = 90^{\circ}$ and $AB = \frac{1}{2}BC$. Then, the	
	such that $AO = 10$ cm. The length of OD (in cm) is:			measure of $\angle ACB$	
	(a) 4	(b) 5 (d) 8		(a) 60°	(b) 30°
	(c) 6	(d) 8		(c) 45°	(d) 15°

LIN	E, ANGLE AND TRIANGLE	QUANTITATIVE APTITUD
49.	O is the incentre of $\triangle ABC$ and $\angle BOC = \angle BAC$	in which $AB = 10$ cm, DE = 8 cm. Then, the ratio of the
	(a) 40° (b) 45°	areas of triangles ABC and DEF is:
	(c) 50° (d) 55°	(a) $4:5$ (b) $25:16$
		(c) 64 : 125 (d) 4 : 7
		-{ Foundation }
	Solutions	9. (b); ∠COA + ∠AOD = 180°
		3AOD + AOD = 180°
1.	(a); $\angle BAD = 180^{\circ} - (90^{\circ} + 30^{\circ}) = 60^{\circ}$	4AOD = 180°
	$\angle BAC = 180^{\circ} - (90^{\circ} + 20^{\circ}) = 70^{\circ}$	180°
	$\angle CAD = \angle BAC - \angle BAD = 70^{\circ} - 60^{\circ}$	° = 10° $AOD = \frac{180^{\circ}}{4} = 45^{\circ}$
2.	(a); ∠BEH = 180° – (60° + 50°) = 70°	10. (b); $\angle a + \angle b = 180^{\circ}$
	∠FHE = 180° – 70° = 110°	
3.	(c); $A \leftarrow P \rightarrow B$	11. (b); Since A, B and C are the angles of a triangle. $\angle A + \angle B + \angle C = 180^{\circ}$
	A b b	Now, $\angle A - \angle B = 15^\circ$, $\angle B - \angle C = 30^\circ$
	F	
	L	$\sum D = \sum C + 30$
	Le <u>C</u>	$\angle A = \angle B + 15 = \angle C + 45^{\circ}$
	Q	
	Draw EF parallel to AB.	$3\angle C = 105, \ \angle C = 35^{\circ}$
	$\angle EOP = \angle b$ $\angle EOQ = \angle c$	
4	$\Rightarrow a = 2\pi - (\angle b + \angle c) = 2\pi - b - c$	12. (c); $2 \angle A = 3 \angle B = 6 \angle C$
4.	(a); Let the angle be x. its complementary angle = $(90^{\circ} - x)$	$\angle B = \frac{2}{3} \angle A, \angle C = \frac{1}{3} \angle A$
	$x = \frac{2}{3}(90 - x)$	$\angle A + \angle B + \angle C = 180^{\circ}$
	x = 36°	$\angle A + \frac{2}{3}\angle A + \frac{1}{3}\angle A = 180^{\circ}$
5.	(b); Let the angle be x.	3 3
	According to the question:	$\frac{3\angle A + 2\angle A + \angle A}{3} = 180^{\circ}$
	1(1000)	3
	$x = \frac{1}{5} (180^{\circ} - x) \implies x = 30^{\circ}$	180° 180°
6.	(a); Let the number of sides be n.	$\angle A = \frac{180^{\circ}}{6} \times 3 = \frac{180^{\circ}}{2} = 90^{\circ}$
	According to the question:	
	$\frac{(n-2)}{n}180 = 144 \implies n = 10$	13. (a);
7.	(b); $3x + 105^\circ = 180^\circ$	
7.	$3x = 75^{\circ}$	
	$x = 25^{\circ}$	
	$2x + 90 + y = 180^{\circ}$	в д д С
	$2x + y = 90^{\circ}$	
	$y = 90^{\circ} - 50^{\circ}, y = 40^{\circ}$	$\angle A = \angle B + \angle C$
	$x + y = 25^{\circ} + 40^{\circ} = 65^{\circ}$	We get that
8.	(c); $\angle APO = 42^{\circ} \text{ and } \angle CQO = 38^{\circ}$	$\angle A + \angle B + \angle C = 180^{\circ}$
	$\angle POQ = \angle PON + \angle NOQ$	$\Rightarrow \angle A + \angle A = 180^{\circ}$
	$= \angle APO + \angle OQC = 42^{\circ} + 38^{\circ} = 80^{\circ}$	$\Rightarrow 2\angle A = 180^{\circ}, \ \angle A = 90^{\circ}$

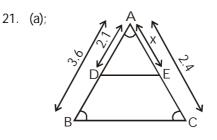

14. (a); $\angle ACB = 180^{\circ} - 30^{\circ} - 90^{\circ}$ $\angle ACB = 60^{\circ}$ $\angle ACB + \angle ACD = 180^{\circ}$ $\angle ACD = 180^{\circ} - 60^{\circ} = 120^{\circ}$ 15. (c); $y = 80^{\circ}$ (Vertically opposite angles)

- $x = 180^{\circ} 50^{\circ} 80^{\circ} = 180^{\circ} 130^{\circ} = 50^{\circ}$ 16. (a); $\angle A + \angle B + \angle C = 180^{\circ}$ $\angle A > 90^{\circ}$
 - ∠A > 90 ∠B + ∠C < 90°
 - Both are acute angles
- 17. (c);

In
$$\triangle BCD$$

 $\angle CBD = \angle BCD$
 $\angle BCD = 27^{\circ}$
 $\angle BDC = 180^{\circ} - (27^{\circ} - 27^{\circ})$
 $\angle BDC = 180^{\circ} - 54^{\circ} = 126^{\circ}$
 $\angle ACD = 180^{\circ} - (54^{\circ} + 54^{\circ}) = 72^{\circ}$

18. (c);


 $/\Lambda + /P + /C = 100^{\circ}$

$$\frac{1}{2} \angle B + \frac{1}{2} \angle C = 180^{\circ} - \angle BOC$$
$$\frac{1}{2} \angle B + \frac{1}{2} \angle C = 90^{\circ} - \frac{1}{2} \angle A$$
$$180^{\circ} - \angle BOC = 90^{\circ} - \frac{1}{2} \angle A$$
$$\angle BOC = 180^{\circ} - 90^{\circ} + \frac{1}{2} \angle A$$
$$\angle BOC = 90^{\circ} + \frac{1}{2} \angle A$$

19. (b); Let the angles be 2x, 3x and 4x. Then, 2x + 3x + 4x = 180, $9x = 180^{\circ}$, $x = 20^{\circ}$ Greatest angle, $4x = 4 \times 20^{\circ} = 80^{\circ}$

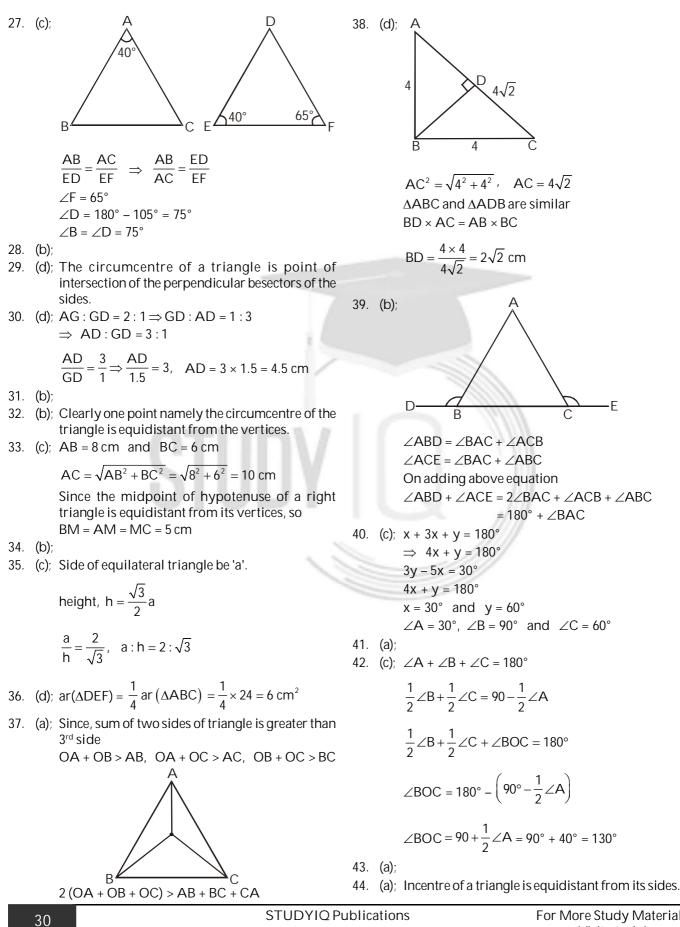
20. (b); $\frac{AB}{DE} = \frac{AC}{DF} = \frac{BC}{EF} = \frac{2}{4} = \frac{1}{2}$ $DE = 2AB = 6 \text{ cm}, \quad DF = 2AC = 2 \times 2.5 = 5 \text{ cm}$ EF = 4 cmPerimeter of $\Delta DEF = (DE + EF + DF) = 15 \text{ cm}$

QUANTITATIVE APTITUDE

$$\frac{AD}{AB} = \frac{AE}{AC} \Longrightarrow \frac{2.1}{3.6} = \frac{AE}{2.4}$$

$$x = \frac{2.1 \times 2.4}{3.6} = 1.4 \text{ cm}$$

22. (a); The line segments joining the mid point of the sides of a triangle form four triangles each of which is similar to the original triangle.


(d);
$$A$$

 50° 60° C E 70° 60° D

 $\angle A = \angle F$, $\angle B = \angle E$, $\angle C = \angle D$ Then $\triangle ABC \sim \triangle FED$ 24. (c); Let the other two sides are x and x + 5 $x^{2} + (x + 5)^{2} = 25^{2}$ $x^2 + x^2 + 25 + 10x = 625$ $2x^2 + 10x - 600 = 0$ $x^2 + 5x - 300 = 0$ $x^2 + 20x - 15x - 300 = 0$ x(x + 20) - 15(x + 20) = 0(x - 15)(x + 20) = 0x = 15 cm The other side, x + 5 = 15 + 5 = 20 cm 25. (a); $\angle B = \angle C$ (Isosceles triangle) ∠ACD = 130° $\angle ACB = 180^{\circ} - 130^{\circ} = 50^{\circ}$ $\angle ABC = 50^{\circ}$ $\angle A = 180^{\circ} - (50^{\circ} + 50^{\circ}) = 80^{\circ}$

26. (d); ΔDEF is congruent to each one of the triangles ΔAFE , ΔBFD and ΔCDE .

23.

QUANTITATIVE APTITUDE

60 m

25 m

 $AE^2 = 55^2 + 48^2$

than 7

46. (d);

QUANTITATIVE APTITUDE

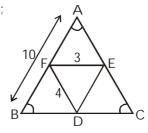
(d); Incentre of a triangle always lies inside the 45. triangle.

D

12 m

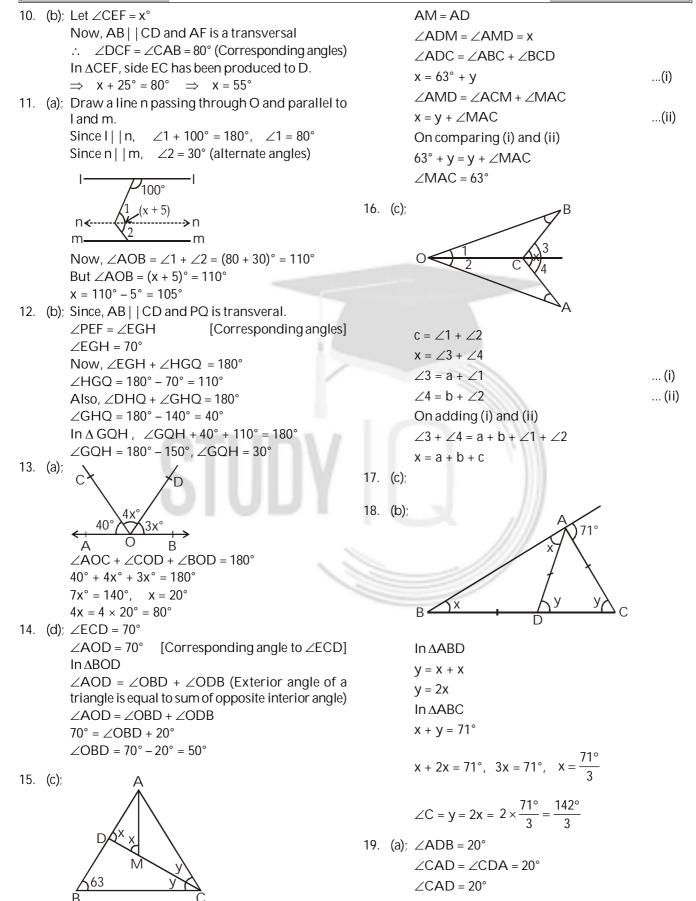
80 m

 $AE^{2} = (DC - AB)^{2} + (BC - DE)^{2}$

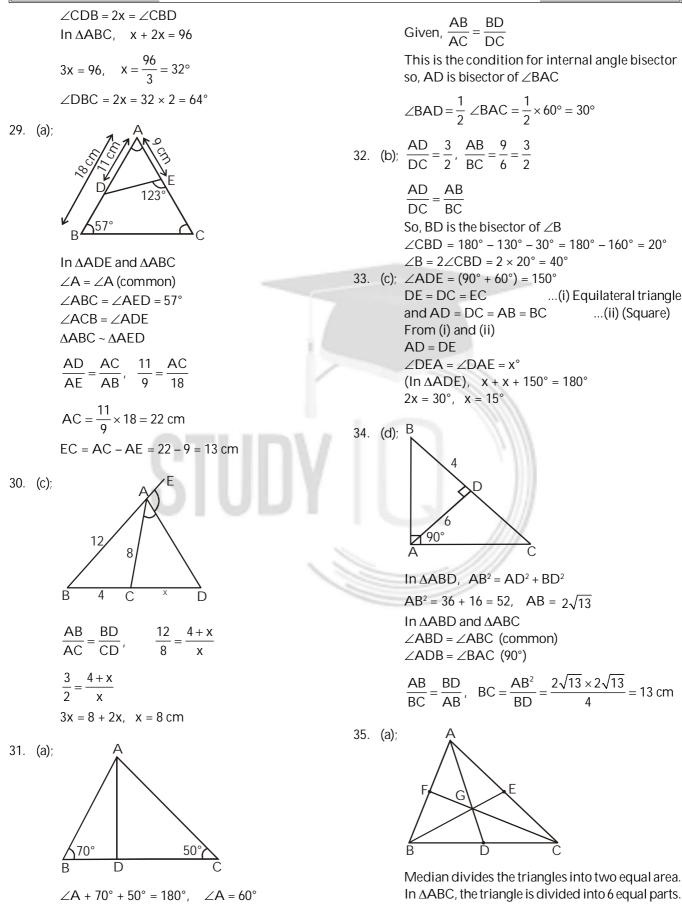

47. (b); Since third side will be greater than the difference

between other two sides, so BC must be greater

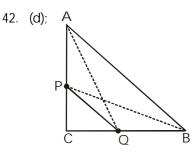
 $AE = \sqrt{55^2 + 48^2} = 73 \text{ m}$


- 48. (b); If O is circumcentre of $\triangle ABC$ than, $\angle BOC = 2 \angle A = 2 \times 50^{\circ} = 100^{\circ}$
- 49. (d); The four triangles made by joining the mid points of the sides of a given triangle are congruent if the given triangle is of any shape.

50. (d);



 $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{DF}, \quad DE = \frac{1}{2} \times 10 = 5 \text{ cm}$ $BC = 2 \times EF = 2 \times 3 = 6 \text{ cm}$ $AC = 2 \times DF = 2 \times 4 = 8 \text{ cm}$

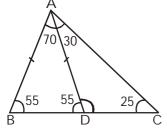

Moderate (d); $\angle ABC = 180^{\circ} - 2x$ Here, AB | | CD (given) 1. $\angle ACB = 180^{\circ} - 120^{\circ} = 60^{\circ}$ Construct LM | | AB $\angle BAC = x$ $\angle ABE + \angle LEB = 180^{\circ}$ $180 - 2x + 60 + x = 180^{\circ} \implies 240 - x = 180^{\circ}$ $\angle LEB = 180^{\circ} - y$ $x = 60^{\circ}$ $\angle LEC = \angle DCE$ 2. (b); AD | | BE $\angle LEC = x$ $\Rightarrow \angle ADC = \angle DCE = 85^{\circ}$ $\angle CEB = x - 180^{\circ} + y = x + y - 180^{\circ} = x + y - \pi$ $\angle ADB = 85^{\circ} - 30^{\circ} = 55^{\circ}$ \rightarrow 7. (c); If number of sides in regular polygon be n then $x = 180^{\circ} - 90^{\circ} - 55^{\circ} = 35^{\circ}$ $\left(\frac{2n-4}{n}\right) \times 90^\circ - \frac{360^\circ}{n} = 150^\circ$ (b); $\angle BTV = \angle DVS = 45^{\circ}$ 3. $\angle PTB = 55^{\circ}$ $\angle PTR = 180^{\circ} - 45^{\circ} - 55^{\circ} = 80^{\circ}$ $\frac{(2n-4)\times 3}{n} - \frac{12}{n} = 5$ $\angle UTV = \angle PTR = 80^{\circ}$ $\angle ATC = \angle PTB = 55^{\circ}$ 6n - 12 - 12 = 5n, n = 24 $\angle CUQ = 55^{\circ}$ 8. (b); By using formula, \angle CUQ + \angle RTP = 55° + 80° = 135° $1080^{\circ} = (2n - 4) \times 90^{\circ}$ (c); When $\frac{n(n-3)}{2} = 28$, no value of n is a whole 2n - 4 = 124. 2n = 16number n = 8 (d); and \angle MLR + \angle SRL = 180° 5. (d); Each interior angle of polygon = $\frac{n-2}{n} \times 180^{\circ}$ So, RS | |LM, PQ | |LM 9. Angle between PQ and LM is 180° 6. (d); $\frac{n-2}{n} \times 180^{\circ} = 135^{\circ} 4(n-2) = 3x$ 4x - 8 = 3xx = 8 Number of diagonals = $\frac{n(n-3)}{2} = \frac{8 \times 5}{2} = 20$ M For More Study Material STUDYIQ Publications 31

LINE, ANGLE AND TRIANGLE QUANTITATIVE APTITUDE $\angle ACD = 180^{\circ} - 40^{\circ} = 140^{\circ}$ $\angle ACB = 40^{\circ}$ 25. (a); F $\angle ACB = \angle ABC = 40^{\circ}$ 20. (d); Let the angle be x, $x + 10^{\circ}$ and $x + 20^{\circ}$ 108° $x + x + 10^{\circ} + x + 20^{\circ} = 180^{\circ}$ $3x + 30^{\circ} = 180^{\circ}$ $x = \frac{150^{\circ}}{3} = 50^{\circ}$ Х Largest angle, $x + 20^{\circ} = 50^{\circ} + 20^{\circ} = 70^{\circ}$ 21. (c); $\angle BAD = \angle BDA$ In ∆ACD $x + y = 108^{\circ}$ $4y = 180^{\circ} - 108^{\circ}$ y = 18° $x + y = 108^{\circ}$ D Ē $x = 108^{\circ} - 18^{\circ}$, $x = 90^{\circ}$ 26. (d); $s + t + 50^\circ = 180^\circ$ $\angle ABD = \angle ACB + \angle BAC$... (i) $s + t = 180^{\circ} - 50^{\circ}$ $\angle ACE = \angle BAC + \angle CAB$... (ii) $s + t = 130^{\circ}$ on adding (i) and (ii) s < 50° $\angle ABC + \angle ACE = 2 \angle BAC + \angle ACB + \angle CAB$ $t > 130^{\circ} - 50^{\circ}, t > 80^{\circ}$ = 180 + ∠BAC 27. (c); so some of exterior angles so formed is greater than $\angle A$ by two right angles 22. (d); 23. (d); BC = CD $\angle CBD = \angle CDB = x$ $x = z + \angle ABD$ 108° $x - z = \angle ABD$...(i) D $\angle ABC - \angle BAC = 30^{\circ}$ $\angle A + \angle B = 108^{\circ}$ $\angle ABD + x - z = 30^{\circ}$...(ii) On solving (i) and (ii) $\angle A + \frac{1}{2} \angle A = 108^{\circ}$ 2 ∠ABD = 30° $\angle ABD = 15^{\circ}$ $\frac{3\angle A}{2} = 108^{\circ}$, $\angle A = \frac{108^{\circ}}{3} \times 2 = 72^{\circ}$ 28. (c); 24. (c); Sum of two angle = 80° $x + y = 80^{\circ}$)96° Difference of two angle = 20° $x - y = 20^{\circ}$ $2x = 100^{\circ}, x = 50^{\circ}$ Ē $y = 80^{\circ} - 50^{\circ} = 30^{\circ}$ $\angle CAD = \angle ACD = x$ so, smallest angle is 30° $\angle CDB = \angle CAD + \angle DCA = 2\angle CAD$

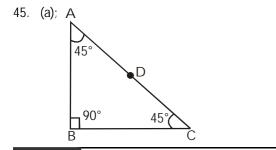
ar (ABDG) =
$$\frac{1}{6}$$
 ar (AABC)
ar (ABDG) = $\frac{1}{6}$ × 72 = 12 cm²
36. (b)
36. (c)
37. (c)
PC = $\frac{1}{2}$ · $\frac{2}{20}$ = $\frac{1}{2}$
PC = $\frac{1}{2}$ · $\frac{2}{20}$ = $\frac{1}{2}$
RO = 4 cm
PQ = 2 + 4 = 6 cm
BC = 2 PQ = 2 + 6 = 12 cm
39. (d) In AABD and ADD.
P and X are the midpoint of AB and ADD.
Therefore, PX | BD and PX = $\frac{1}{2}$ BD ...(0)
Similarly, In ΔBDC
Q and V are the midpoint of BC and CD
Q Y | BD and QY = $\frac{1}{2}$ BD ...(0)
Similarly, In ΔBDC
Q and V are the midpoint of BC and CD
Q Y | BD and QY = $\frac{1}{2}$ BD ...(0)
Similarly, In ΔBDC
Q and V are the midpoint of BC and CD
Q Y | BD and QY = $\frac{1}{2}$ BD ...(0)
From (1) and (0)
PX = $\frac{1}{2}$ BD - QY, PX = QY, $\frac{PX}{QY} = \frac{1}{1} = 1 + 1$
37. (c)
PQ | IBC
 $\angle APQ = \angle AQP = 60^{\circ}$
 $\angle APQ = - 2A = - 24$ cm
Perimeter of AABCD = $\frac{BC}{AB} = \frac{24}{32} = \frac{3}{4} = 3 + 4$
40. (a)
40. (a)
41. (a): $\frac{BP}{AP} = \frac{3}{1}$
 $\frac{BP + AP}{AP} = \frac{4}{1}$
Therefore, the ratio of $\frac{BC}{PQ} = \frac{4}{1}$
 $\frac{36}{PQ} = \frac{4}{1}$, PQ = 9 cm

In $\triangle ACQ$, $AC^2 + CQ^2 = AQ^2$

$$AC^{2} + \left(\frac{BC}{2}\right)^{2} = AQ^{2}$$
$$4AC^{2} + BC^{2} = 4AQ^{2}$$
$$In \Delta BCP, \quad BC^{2} + CP^{2} = BP^{2}$$


...(i)

$$BC^{2} + \left(\frac{AC}{2}\right)^{2} = BP^{2}$$


 $\begin{array}{l} 4BC^2 + AC^2 = 4BP^2 & \dots (ii) \\ On adding (i) and (ii) \\ 4AC^2 + BC^2 + 4BC^2 + AC^2 = 4AQ^2 + 4BP^2 \\ 5 (AC^2 + BC^2) = 4 (AQ^2 + BP^2) \\ 4 (AQ^2 + BP^2) = 5 AB^2 \end{array}$

43. (a); $a^2 + b^2 + c^2 = ab + bc + ca$ This equation is satisfy only when a = b = c $a^2 + b^2 + c^2 - ab - bc - ca = 0$ Multiply and divide by 2 $2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca = 0$ $(a - b)^2 + (b - c)^2 + (c - a)^2 = 0$ so, a = b = cTherefore it is an equilateral triangle.

44. **(b)**;

BC > CA > CD Since largest angle corresponds to largest side.

 $\angle A = \angle C, \quad AB = BC$ In $\triangle ABC$ $AB^{2} + BC^{2} = AC^{2}, \quad 2AB^{2} = AC^{2}$ $\triangle ABC \text{ and } \triangle ADB \text{ are similar}$ $\frac{AC}{BC} = \frac{BC}{BD}, \quad \frac{4\sqrt{2}}{4} = \frac{4}{BD}$ $BD = \frac{16}{4\sqrt{2}} = 2\sqrt{2}$ 46. (c); A $C = 16 + \frac{16}{4\sqrt{2}} = 2\sqrt{2}$ Centroid divides the triangle in the ratio of 2 : 1. AD = 9 $\frac{AG}{GD} = \frac{2}{1}, \quad AG = 6, \quad GD = 3,$ BE = 6

BE = 6 $\frac{BG}{GE} = \frac{2}{1} = BG = 4$, GE = 2 In $\triangle BGD$ BD² = BG² + GD² BD² = 4² + 3² = 5², BD = 5

47. (c); Circumcentre is the point which is equidistant from the vertices of triangle.

48. (d); length of median of equilateral triangle

 $= 3 \times in-radius$

 $= 3 \times 3 = 9 \text{ cm}$

49. (c); In∆PMR

$$PM^{2} + IMR^{2} = PR^{2}$$

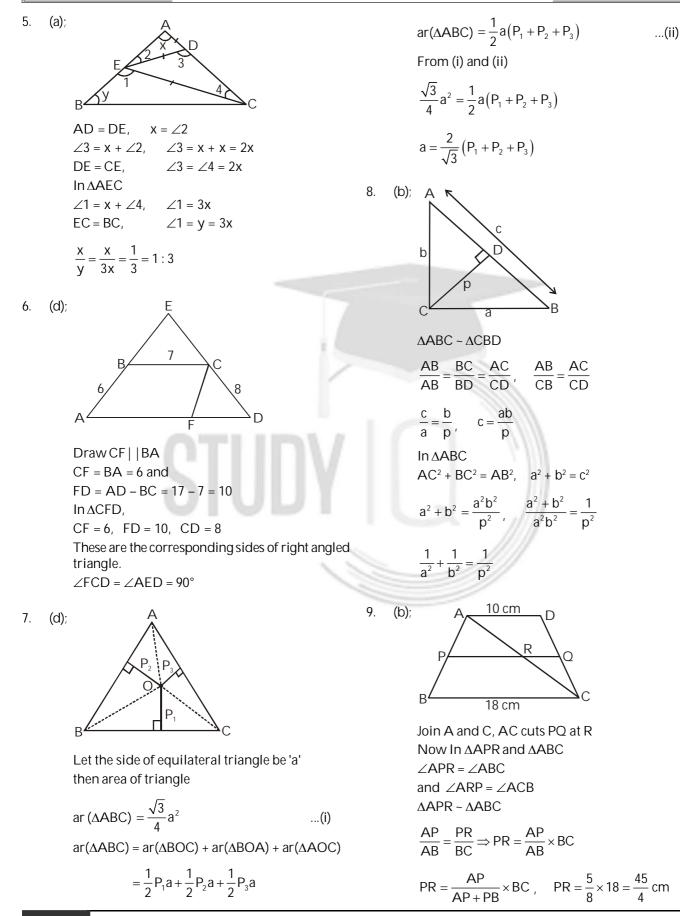
$$PR^{2} = 6^{2} + 8^{2} = 10^{2}, PR = 10$$

$$In \Delta PQR$$

$$PQ^{2} + PR^{2} = QR^{2}$$

$$PQ^{2} = QR^{2} - PR^{2}$$

$$PQ^{2} = 26^{2} - 10^{2} = 676 - 100$$

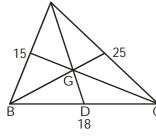

$$PQ = \sqrt{576} = 24 \text{ cm}$$

ar (
$$\Delta$$
PQR) = $\frac{1}{2} \times$ PQ × PR = $\frac{1}{2} \times 24 \times 10$

ar (ΔPQR) = 120

50. (b); Orthocentre is the point of intersection of perpendicular drawn from the vertices of a triangle.

	- Difficult	}
(b); A		CD = DE, $g + h = e$
(0), A		g = 3x - 2x = x
		$\mathbf{j} = \mathbf{x} + 2\mathbf{x} = 3\mathbf{x}$
F D		$\therefore DE = EF, i + f = j$
L'Anna D		f = 3x - 2x = x
		Now, In∆ADE
keer P		$\angle A + \angle D + \angle E = 180^{\circ}$
B C		$x + 3x + 3x = 180^{\circ}$
$\angle B = \angle C$, AB = AC		$7x = 180^{\circ}, x = \frac{180^{\circ}}{7}$
In∆BCD		
CD = BC	3. (b);	; AB CD
∠BDC = ∠CBD		$\angle ABC = \angle BCD = x^{\circ}$
$\angle BDC + \angle CBD + \angle BCD = 180^{\circ}$		InΔBCD
2∠BDC + 78° = 180°		$x^{\circ} + y^{\circ} + z^{\circ} = 180^{\circ}$
$2\angle BDC = 102^\circ$, $\angle BDC = 51^\circ$	1.1	$\frac{4}{3}y + \frac{8}{3}y + y = 180^{\circ}$
In∆BEC		$3^{y+3}^{y+y} = 100^{y+1}$
\angle BEC + \angle EBC + \angle ECB = 180°		4y + 8y + 3y
∠ECB = 180° – 78° – 78° = 24°		$\frac{4y+8y+3y}{3} = 180^{\circ}$
∠ECD = 78° – 24° = 54°		$5y = 180^{\circ}, y = 36^{\circ}$
BC = EC = CD		
In∆ECD		$x = \frac{4}{3}y = \frac{4}{3} \times 36 = 48^{\circ}$
\angle DEC + \angle DCE + \angle EDC = 180°		∠BAC = 180° – 48° – 36°
2∠DEC + 54° = 180°		$\angle BAC = 100 - 40 - 30$ $\angle BAC = 180^{\circ} - 84^{\circ} = 96^{\circ}$
1000 540 1040		ZDAC - 100 - 04 - 70
$\angle DEC = \frac{180^\circ - 54^\circ}{2} = \frac{126^\circ}{2} = 63^\circ$	4. (b);	; ///Ţ
$\angle EDC = \angle DEC = 63^{\circ}$		
$\angle EDC = \angle EDB + \angle BDC$		D C
$63^\circ = \angle EDB + 51^\circ$		4 1
∠EDB = 12°		
(c); D		$R \xrightarrow{A} B \xrightarrow{B} P$
×-//		AR = AB = BP (Given)
F / f		AR = AD
B		∠ARD = ∠ADR
\times \times \times		BP = BC
x x x y y		$\angle BPC = \angle BCP$
$A \xrightarrow{f} A \xrightarrow{f} $		∠DAB = 2∠ARD
		∠CBA = 2∠BPC
AB = BC, $d = x$		$\angle DAB + \angle CBA = 180^{\circ}$ (ABCD is a rhombus)
b = x + d, b = 2x		2(∠ARD + ∠BPC) = 180°
$BC=CD, \mathbf{i}=\mathbf{b}=2\mathbf{x}$		$\angle ARD + \angle BPC = 90^{\circ}$
EF = FG, a = h = 2x		InΔTRP
e = x + i = x + 2x = 3x		$\angle RTP + 90^\circ = 180^\circ$, $\angle RTP = 90^\circ$

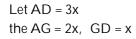

For More Study Material Visit: studyiq.com

12. (b); For maximum area all three sides must be equal. and $\frac{AP}{PB} = \frac{AR}{RC} = \frac{5}{3}$ Perimeter = 243a = 24, a = 8cmSimilarly, $\triangle RCQ \sim \triangle ACD$ Area = $\frac{\sqrt{3}}{4}a^2 = \frac{\sqrt{3}}{4} \times 8 \times 8 = 16\sqrt{3} \text{ cm}^2$ $\frac{RQ}{AD} = \frac{RC}{AC}$ 13. (c); Length of each side, $a = \frac{2}{\sqrt{3}} (P_1 + P_2 + P_3)$ $RQ = \frac{RC}{AR + RC} \times AD = \frac{3}{8} \times 10 = \frac{15}{4} \text{ cm}$ $a = \frac{2}{\sqrt{2}}(6+8+10) = \frac{2\times24}{\sqrt{2}}$, $a = \frac{48}{3}\sqrt{3} = 16\sqrt{3}$ $PQ = PR + RQ = \frac{45}{4} + \frac{15}{4} = \frac{60}{4} = 15 \text{ cm}$ 14. (d); Here XY | | AC 10. (a); In ∆ABC $\Delta BXY \sim \Delta BAC$ AB | | PQ $\triangle ABC \sim \triangle QPC$ $\frac{\operatorname{ar}(\Delta ABC)}{\operatorname{ar}(XBY)} = \frac{AB^2}{XB^2}, \quad \frac{2}{1} = \frac{AB^2}{XB^2}$ $\frac{AB}{PO} = \frac{AC}{OC}$ $\frac{AB}{XB} = \frac{\sqrt{2}}{1}$, $\frac{XB}{AB} = \frac{1}{\sqrt{2}}$ $PQ = \frac{AB}{AC} \times QC$...(i) $\frac{AX}{AB} = \frac{AB - XB}{AB} = \frac{\sqrt{2} - 1}{\sqrt{2}}$ ∴ PQ||CD $\Delta ACD \sim \Delta AQP$ $\frac{CD}{PQ} = \frac{AC}{AQ}$ 15. (a); $PQ = \frac{CD}{AC} \times AQ$ From (i) and (ii) $\frac{AB}{AC} \times QC = \frac{CD}{AC} \times AQ$ R Here DE | | BC $AB \times QC = CD \times AQ$ $12 \times (AC - AQ) = 18 \times AQ$ and $DE = \frac{1}{2}BC$ (mid point theoram) 2AC - 2AQ = 3AQ12 = 5AQ $ar(\Delta BDE) = \frac{1}{4} \times ar(\Delta ABC)$ $AQ = \frac{12}{5}$, $PQ = \frac{18}{4} \times \frac{12}{5} = \frac{36}{5}$ cm and $\triangle BDE = \triangle PED$ 11. (c); In $\triangle ABM$ and $\triangle BEC$ (Triangle between same parallel line and having same base have equal area) $\angle BAM = \angle BCE$ ∠BMA = ∠BEC (AM | | EC) 16. (c); $\Delta ABM \sim \Delta CBE$ $\frac{AB}{BC} = \frac{AM}{EC} \Rightarrow \frac{5}{10} = \frac{AM}{18} \Rightarrow AM = 9 \text{ cm}$ T 15 18 AM||DN $\Delta AMC \sim \Delta DNC$ B $\frac{DN}{AM} = \frac{DC}{AC} \Longrightarrow \frac{15}{9} = \frac{DC}{15}, DC = \frac{15 \times 15}{9} = 25 \text{ cm}$ Draw DF || ET

In $\triangle ADF$, E is the midpoint of AD T will be the mid-point of AF AT = TF(i) Now, in $\triangle BTC$ D is the mid-point of BC and DF | |ET | |BT F is the mid-point of TC TF = FC(ii) From (i) and (ii) AT = TF = FC

AC = 15 cm, AT = TF = FC =
$$\frac{AC}{3}$$
 = 5 cm
TC = TF + FC = 5 + 5 = 10 cm

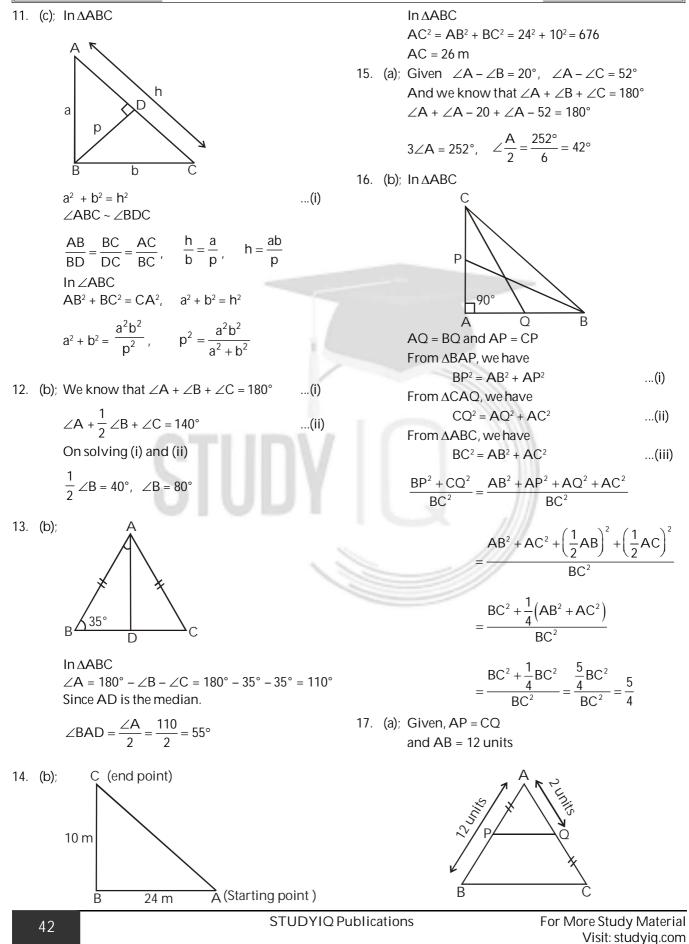
17. (d);


We know that $AB^2 + AC^2 = 2(AD^2 + BD^2)$ $15^2 + 25^2 = 2(AD^2 + 9^2)$ $225 + 625 = 2(AD^2 + 81)$ $\frac{850}{2} = AD^2 + 81$ $AD^2 + 81 = 425, AD^2 = 344$

$$AD = 2\sqrt{86}$$

$$GD = \frac{1}{3}AD = \frac{1}{3} \times 2\sqrt{86} = \frac{2}{3}\sqrt{86}$$

18. (c);

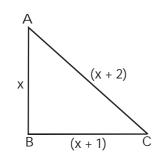


AG = BC = 2xD is the mid-point of BC then BD = DC = GD = xNow, In ∆BGD $\angle DBG = \angle DGB = a$ In $\triangle DGC$, $\angle GCD = \angle DGC = b$ In ∆BGC $a + a + b + b = 180^{\circ}$, $2(a + b) = 180^{\circ}$ $a + b = 90^\circ$, $\angle BGC = 90^\circ$ 19. (a); By decreasing 15° in each angle the ratio becomes 2:3:5. $2x + 3x + 5x = 180^{\circ} - 3 \times 15^{\circ}$ $10x = 135^{\circ}$ $x = \frac{135^{\circ}}{10} = \frac{27^{\circ}}{2}$, $5x = 5 \times \frac{27^{\circ}}{2} = \frac{135^{\circ}}{2}$ Greatest angle = $\frac{135^\circ}{2} + 15^\circ = \frac{165^\circ}{2}$ In radian the greatest angle $=\frac{165^{\circ}}{2}\times\frac{\pi}{180}=$ 11π 20. (c); A _DЬ90° 15° In **ABC** $\angle ABC = 180^{\circ} - 2 \times 15^{\circ} = 180^{\circ} - 30^{\circ}$ ∠ABC = 150° $\angle ABD = 180^{\circ} - 150^{\circ} = 30^{\circ}$ AB = 10 cm $\sin 30^\circ = \frac{AD}{AB}, \quad \frac{1}{2} = \frac{AD}{10}$ AD = 5 cmAB = BC (Given) In ∆ABC $ar(\Delta ABC) = \frac{1}{2} \times BC \times AD = \frac{1}{2} \times 10 \times 5 = 25 \text{ cm}^2$

1

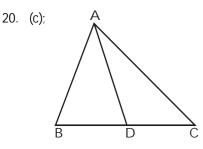
... (ii)

Previous Year (Memory Based)1. (a):
$$A$$
1. (a): A 1. (b): A 1. (c): A 1. (a): A 1. (b): A 1. (c): A 1. (c):


 $\frac{AP}{AB} = \frac{AQ}{AC}$

$$\frac{x}{12} = \frac{2}{x+2}, \quad x = 4$$
CO = 4 units

18. (a); $\frac{\text{Perimeter of } \Delta \text{ABC}}{\text{Perimeter of } \Delta \text{PQR}} = \frac{\text{AB}}{\text{PQ}}$


$$\frac{36}{24} = \frac{AB}{10}$$
, $AB = \frac{36 \times 10}{24} = 15$ cm

19. (a); In right angle triangle

Hypotenuse² = Base² + Perpendicular² Now, let sides of a right angle triangle are x units, (x + 1) units and (x + 2) units respectively. Then, $x^2 + (x + 1)^2 = (x + 2)^2$ $x^2 - 2x - 3 = 0$ Solving, x = + 3, -1

So, length of smallest side is 3 units.

Given,

$$\frac{AB}{AC} = \frac{BD}{DC} \quad (AD \text{ is angle bisector of } \angle BAC)$$

$$\angle BAD = \angle CAD = \frac{1}{2} \angle BAC$$
Now, In $\triangle ABC$

$$\angle ABC + \angle ACB + \angle BAC = 180^{\circ}$$
(angle sum property of a triangle)
$$70^{\circ} + 50^{\circ} + \angle BAC = 180^{\circ}$$

$$\angle BAC = 180^{\circ} - 120^{\circ} = 60^{\circ}$$

$$\angle BAD = 30^{\circ}$$

Let sides AB, BC and CA be denoted by a, b and c respectively and median AD, BE and CF be denoted by mb, mc and ma. we know that $3(a^2 + b^2 + c^2) = 4 (ma^2 + mb^2 + mc^2)$ On analysing a + b + c > ma + mb + mc \therefore Perimeter of $\triangle ABC$ is greater than

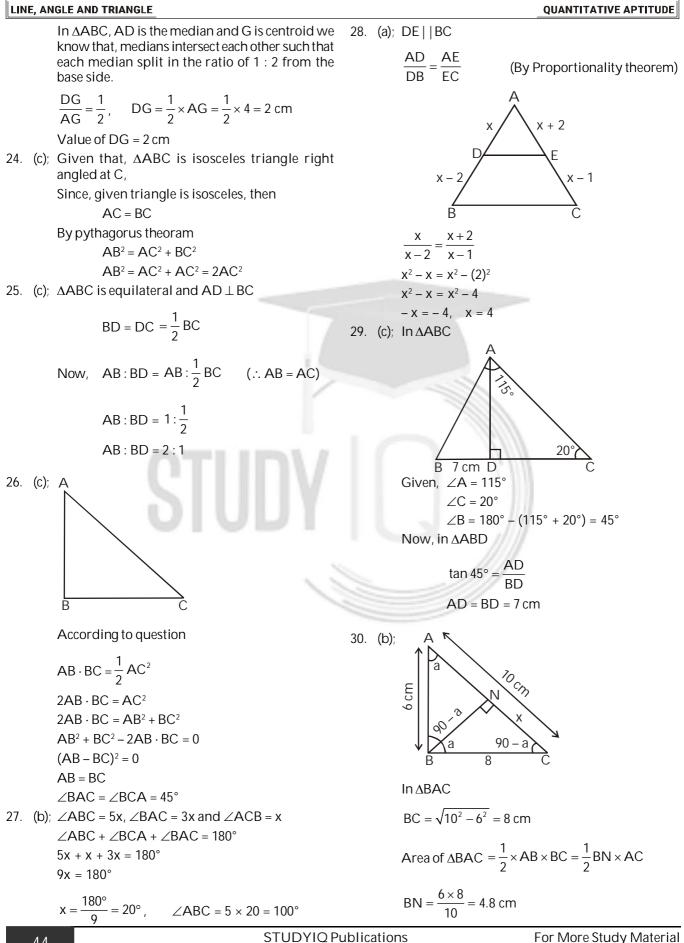
 $\left(\overline{AD} + \overline{BE} + \overline{CF}\right)$

22. (c); Let sides AB, BC and CA be denoted by a, b and c respectively.

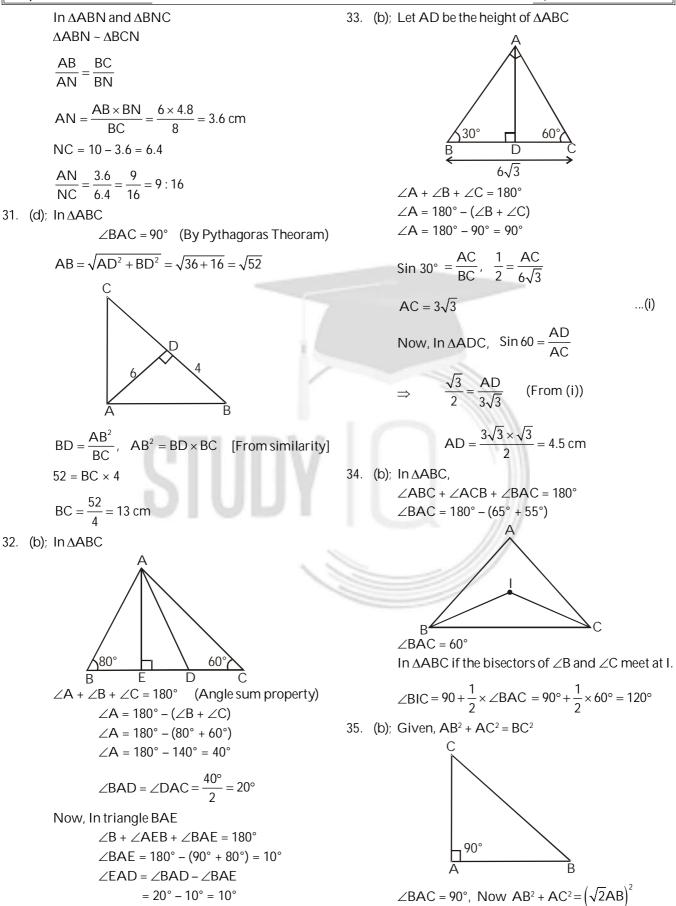
$$F = O > BC, AO + OC > AC$$

BO + CO > BC, AO + OC > ACand, AO + BO > AB2(AO + BO + CO) > AB + BC + CA

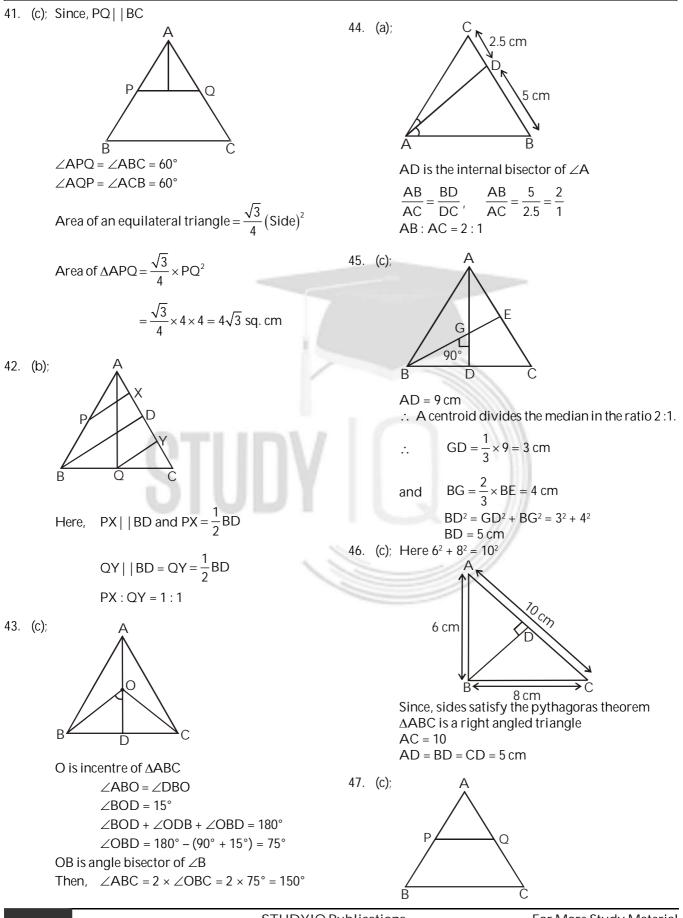
Since AO =
$$\frac{2}{3}$$
 AD

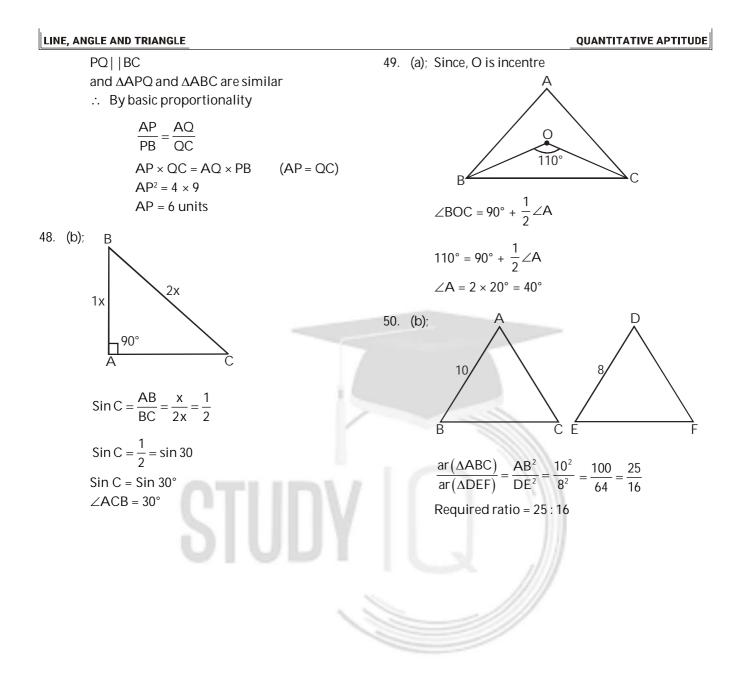

Similarly, CO =
$$\frac{2}{3}$$
 CF and BO = $\frac{2}{3}$ BE

So,
$$\frac{2}{3} \times 2$$
 (AD + BE + CF) > AB + BC + CA
4 (AD + BE + CF) > 3AB + BC + CA


$$\frac{AD + BE + CF}{AB + BC + CA} > \frac{3}{4}$$

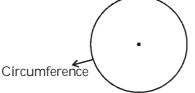
23. (a); G is the centroid i.e G is the point of intersection of medians as shown in the figure below.

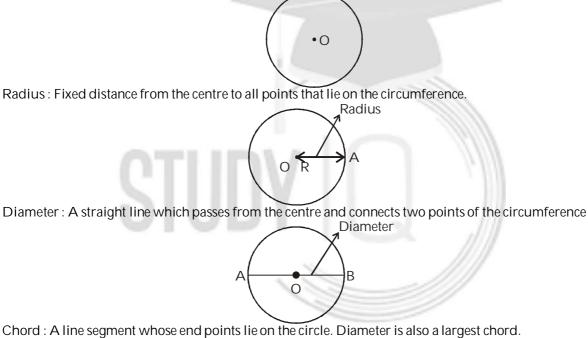


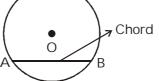

QUANTITATIVE APTITUDE

 $AB^2 + AC^2 = 2AB^2$ $\therefore AB = AC$ $\frac{AB}{AD} = \frac{\sqrt{2}}{1}$ $\angle ABC = \angle ACB$ (angle opposite to equal sides are equal) $\frac{BD}{AD} = \frac{AB - AD}{AD} = \frac{\sqrt{2} - 1}{1}, \quad \frac{BD}{AD} = \frac{\sqrt{2} - 1}{1}$ $\angle B + \angle C = 90^{\circ}$ $2\angle B = 90^{\circ}$, $\angle B = 45^{\circ}$ AD : BD = 1 : $\sqrt{2}$ – 1 36. (d); 38. (b); $\triangle ABC$ and $\triangle ACD$ $\angle CAB = \angle CDA = 90^{\circ}$ \Rightarrow $\angle C = \angle C$ (common) $\triangle ABC \sim \triangle ACD$ (by AA similarity) R D In $\triangle AQC$, AC = QC $\angle QAC = \angle CQA = a$ In \triangle BCR, CR = BC $\angle CBR = \angle CRB = b$ $\frac{\operatorname{ar}(\Delta ACD)}{\operatorname{ar}(\Delta ABC)} = \frac{AC^2}{BC^2}$ In ΔPQR $\angle a + \angle b + 40^{\circ} = 180^{\circ}$ $\angle a + \angle b = 140^{\circ}$ $\frac{10}{40} = \frac{9^2}{BC^2} \implies BC^2 = 4 \times 9^2$ Now, $\angle ACQ + \angle ACB + \angle BCR = 180^{\circ}$ \Rightarrow ∠ACQ = 180° - 2a But, $BC = \sqrt{4 \times 9^2} = 18 \text{ cm}$ and ∠BCR = 180° – 2b $\angle ACB = 180^{\circ} - (180^{\circ} - 2a) - (180^{\circ} - 2b)$ 39. (b); Point O is the centroid and we know that centroid divides the median in ratio 2:1. $= 2(a + b) - 180^{\circ} = 280^{\circ} - 180^{\circ}$ ∠ACB = 100° 37. (b); R $OD = \frac{AO}{2} = \frac{10}{2} = 5 \text{ cm}$ 40. (c); In $\triangle ABC$, side AB and AC are produced to E and R F, respectively and the external bisector ∠EBC Since, DE||BC and \angle FCB intersect at P. $\triangle ADE \sim \triangle ABC$ $\frac{\text{Area of quadrilateral (BCED)}}{\text{Area of (}\Delta\text{ADE)}} = \frac{1}{1}$ Area of quadrilateral (BCED) + Area of (\triangle ADE) Area of (ΔADE) Since, angles are external bisectors $=\frac{1+1}{1}$ $\angle BPC = 90 - \frac{1}{2} \angle A$ *.*.. $\frac{ar(\Delta ABC)}{ar(\Delta ADE)} = \frac{2}{1} = \frac{AB^2}{AD^2}$ $\angle BPC = 90 - \frac{1}{2} \times 100^{\circ}$, $\angle BPC = 90^{\circ} - 50^{\circ} = 40^{\circ}$

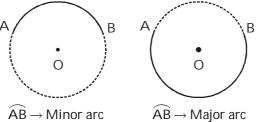
STUDYIQ Publications



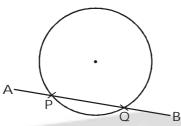

Circle


Circle : A circle is a set of points on a plane which lie at a fixed distance from a fixed point.

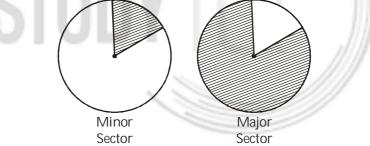
Circumference : The circumference of a circle is the distance around a circle which is equal to $2\pi r$. It is also called the perimeter of circle.

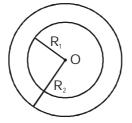


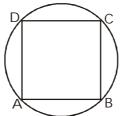
Centre : Fixed point is called the centre which is equidistant from all the points on the circumference. Here O is the center.


Arc : Any two points on the circle divides the circle into two parts, the smaller part is called as minor arc and the larger part is called as major arc.

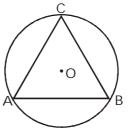
Tangent : A line segment which has one common point with the circumference of a circle i.e. it touches only at only one point is called as tangent of circle. AB \rightarrow Tangent to circle at R.

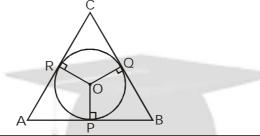

Secant : A line segment which intersects the circle in two distinct points, is called as secant. AB \rightarrow Secant.


Segment : A chord divides a circle into two regions. These two regions are called the segments of a circle. (a) major segment (b) minor segment


Sector : An area of circle enclosed by 2 radii and the circumference is called sector of circle.

Concentric circles : Two circles having the same centre at a plane are called the concentric circles


Cyclic Quadrilateral : A quadrilateral whose all the four vertices lie on the circle.


CIRCLE

QUANTITATIVE APTITUDE

Circum-circle: A circle which passes through all the three vertices of a triangle.

Incircle : A circle which touches all the three sides of a triangle i.e. all the three sides of a triangle are tangents to the circle is called an incircle

S. No.	Theorem	Diagram
1.	Equal Chords or Arc subtends equal angles at the centre $\widehat{PQ} = \widehat{AB}$ $\angle POQ = \angle AOB$	A P P T O
2.	The perpendicular from the centre of a circle to a chord bisects the chord OD \perp AB AB = 2AD= 2BD	
3.	Equal chords of circle are equidistant from the centre. AB = PQ OD = OR	O A D B
4.	The angle subtended by an arc at the centre of a circle is twice the angle subtended by the arc at any point on remaining part of the circle $\angle AOB = 2m \angle ACB$	

STUDYIQ Publications

51

CIRCLE