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Preface

The development of nation is directly proportional to the
requirement of engineers. India being a developing country,
absorbs huge number of engineers every year, and their
demand in coming days cannot be overlooked. There is a lot of
craze among the aspirants who like to crack GATE/IES and
PSUs through many competitive exams. An aspirant would like
to learn lot of things in short duration but in less volume, so
keeping above point of view ,| have come up with
Handbook Mechanical Engineering .This handbook is meant
for an exhaustive and precise collection of all subjects that
come under Mechanical Engineering. It encompasses the
topics of leading exams in engineering cadre i.e., GATE,IES and
PSUs.

The key features of this book are

 Each topicis summarized in an exhaustive manner in the form of key
points and notes.

e Everytopicistaken up separately along with key points and notes.
e Focused material in entirety to prevent ambiguity in concepts.

| am thankful to Arihant Publication (India) Limited for giving
me this opportunity to write such a book which covers almost
100% syllabus of GATE,IES and PSUs and thus enlightens the
path to your success.

I would also like to thank Er.Akash Shukla (Project Coordinator)
for giving me full support during this project. Valuable
suggestions are always welcome for furtherimprovement.

Gaurav Shukla
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Mechanics

Force System

When a member of forces simultaneously acting on the body, it is known
as force system. A force system is a collection of forces acting at specified
locations. Thus, the set of forces can be shown on any free body diagram
makes-up a force system.

Truss

It is a rigid structure composed of number of straight members pin jointed
to each other. It can sustain static or dynamic load without any relative
motion to each other.

Types of Truss

1. Plane Truss It is defined as a truss in which members are essentially
lies in a single plane.

2. Rigid Truss Rigid means there is no deformation take place due to
internal strain in members.

3. Simple Truss This type of trusses built a basic triangle by adding
different members are known as simple truss.

Classification of a Truss (based on joints)

Truss can be classified on the basis of joints (/) and members (m) in the
structure. It can be easily understood with the help of following hierarchical
approach.
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Truss
3
Perfect Truss Imperfect Truss
m=2j-3 (unstable truss) n = 2j—3
N
Redundant Truss Deficient Truss
m>=2j-3 m<=2j-3
m=6,j=4 m=4,j=4
6>2%x4-3 4<2%x4-3
6>5 4<5

Classification of truss

where m = number of members and j = number of joints

~KeY POINES

* When truss collapse under loading, then truss is known as unstable or
imperfect truss.

* When truss is not collapse under the loading, then truss is known perfect
truss.

Analysis of a Framed Structure (Section Method)

1. This method is used when the forces in the few members of a truss is
required to found out in a truss structure.

To find out force in AC, BC and BD

e First cut a section which passes through AC, BC and BD members.

e Find out reaction at point A and B

A ' C l F
E

B ' D
Framed structure using section method

* Find out forces Fy, Fog and Fpg in members CA, CBand DBrespectively by
taking moment about A and B.
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2. Analytical Method In this method, the free body diagram of each joint
is separately analysed to find magnitude of stresses in the truss
members.

Lami’s Theorem

If a body is in equilibrium under three concurrent forces, the each force is
proportional to the sine of the angle between other two.

P

Q R

Three concurrent forces P, Q and R
P Q R
sinB sina  siny

Friction Force

It is resistant force which acts in opposite direction 1R

at the surface in body which tend to move or its

move. f

Normal force R = mg R

If u mg > F, the body will not move. Y mg
umg = F the body will tend to move. Friction force on a body

umg < F the body will move.

Angle of Friction

It is defined as the angle between normal reaction and resultant reaction
when the body is in condition of just sliding.

m Resul_tant
tan¢ = Hmg reaction o Lr
A
m F
A9y (“R=mg) | F
mg Hmg <
o=tan'p Ymg

u = coefficient of friction Angle of friction due to

resultant reaction
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Angle of Repose (o)

It is defined as angle of inclined plane with R uR

horizontal at which body is in condition of just

sliding. wsin o N wcos o
o=0 o -

Angle of friction is equal to angle of repose. w

Angle of Repose (01

Plane Motion

When all parts of the body move in a parallel planes then a rigid body said
to perform plane motion.

~KBY POINES

+ The motion of rigid body is said to be translation, if every line in the body
remains parallel to its original position at all times.

* In translation motion, all the particles forming a rigid body move along
parallel paths.

+ If all particles forming a rigid body move along parallel straight line, it is
known as rectilinear translation.

+ If all particles forming a rigid body does not move along a parallel straight
line but they move along a curve path, then it is known as curvilinear
translation.

Straight Line Motion

It defines the three equations with the relationship between velocity,
acceleration, time and distance travelled by the body. In straight line
motion, acceleration is constant.

v=u+at

s:uz‘+iat2
2

v2 =u® +2as

where, u = initial velocity
v = final velocity
a = acceleration of body
t =time
s = distance travelled by body

Distance travelled in nth second

sn:u+21a(2n—1)
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Projectile Motion

Projectile  motion defines that motion in which velocity has two
components, one in horizontal direction and other one in vertical direction.
Horizontal component of velocity is constant during the flight of the body as
no acceleration in horizontal direction.

Let the block of mass is projected at angle 6 from horizontal direction

2 H 2 u
Maximumn height f ., = 25" 9
2g 1hmax
. 0
Time of flight T = 2450 R range
g

Projectile motion

2 .
Range R = u<sin20

where, u = initial velocity

-Key Paints

+ At maximum height vertical component of velocity becomes zero.

* When a rigid body move in circular paths centered on the same fixed axis,
then the particle located on axis of rotation have zero velocity and zero
acceleration.

+ Projectile motion describe the motion of a body, when the air resistance is
negligible.

Rotational Motion with Uniform Acceleration

Uniform acceleration occurs when the speed of an object changes at a
constant rate. The acceleration is the same
over time. So, the rotation motion with
uniform acceleration can be defined as the
motion of a body with the same acceleration
over time. Let the rod of block rotated about }/ ______________________ -
a point in horizontal plane with ® angular
velocity.

Rotational motion
, ao . , -
Angular velocity o = Tt (change in angular displacement per unit time)

d%

, dm
Angular acceleration oo = — = a=—F
at at

where 6 = angle between displacement.
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In case of angular velocity, the various equations with the relationships
between velocity, displacement and acceleration are as follows.

0 =t
a=0
(1):(1)0+0Lt

6=md+laﬁ
2
o = (1)% + 2010

where ,, = initial angular velocity

o = final angular velocity

oo = angular acceleration

0 = angular displacement
Angular displacement in nth second

Gn:mo+%a@n—0

Relation between Linear and Angular Quantities
There are following relations between linear and

L . . Y A
angular quantities in rotational motion. ; er

e =lel=1  TENA
e, and e; are radial and tangential unit vector.
Linear velocity v = ro e,

Linear acceleration (Net)

_..}X

a=—or e + d—v € Position of radial and
at tangential vectors

Tangential acceleration g, = (Cj/—\; (rate of change of speed)

2

. . %
Centripetal acceleration a, = wfr=-— (v v=rom)
r

Net acceleration a=.a’+a’

where a, = centripetal acceleration
a, = tangential acceleration
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Centre of Mass of Continuous Body
Centre of mass of continuous body can be defined as

J. xdm J- x dm
 Centre of mass about x, x¢y = fd =
m
_f yam f ydm
» Centre of mass about y, yo, = J.d =
m
j zdm f zdm
* Centre of mass about z, ¢, = Jd =
m

* CM of uniform rectangular, square or circular plate lies at its centre.
e CM of semicircular ring

e CM of hemispherical shell

. 2

(@)

e CM of solid hemisphere

. 8

)

Law of Conservation of Linear Momentum

The product of mass and velocity of a particle is defined as its linear
momentum (p).

p=mv

P =~2Km
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o
dt
where, K = kinetic energy of the particle

F = net external force applied to body
P = momentum

Rocket Propulsion

Let m, be the mass of the rocket at timet = 0, m its mass at any timet and
v its velocity at that moment. Initially, let us suppose that the velocity of the

rocket is u.
u u
At At
t=0 t=t
v=u m=m
m=mg v=v

exhaust velocity
=V,

Rocket propulsion

Thrust force on the rocket £ =v, (— CL—T)
am . o
where, - T = rate at which mass is ejecting

v, = relative velocity of ejecting mass (exhaust velocity)
Weight of the rocket W =mg

Net force on therocket  F =F(-w=v, (%) - mg

Net acceleration of the rocket

F
a=—
m
v _ v (=dm)__
dt m\{ dt

m
v=u-gt+v,In—-2
m

where, m, = mass of rocket at timet = 0
m = mass of rocket at time t
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Impulse

The product of constant force F and time t for which it acts is called the
impulse (J) of the force and this is equal to the change in linear momentum
which it produces.

Impulse J = Ft
= Ap=p; = p;
where, F = constant force
P = linear momentum
Instantaneous Impulse e.qg., bat and ball contact

J:J.F-o’t = Ap=pr - P

~KeY POINES

+ The relation between impulse and linear momentum can be understood by
the following equation.
Ft=m (v —u)
where, F =force, t =time, m = mass, v = initial velocity, u = final velocity
+ Rotation about a fixed point gives the three dimensional motion of a rigid
body attached at a fixed point.

Collision

A Collision is an isolated event in which two or more moving bodies exert
forces on each other for a relatively short time.

Collision between two bodies may be classified in two ways

e Head-on collision
e QOblique collision.

Head-on Collision

Let the two balls of masses m, and m, collide directly with each other with
velocities vy and v, in direction as shown in figure. After collision the
velocity become v{ and v; along the same line.

my my my my
Before collision After collision

my—em ms +em
V{: # V1+ g V2
my +m, my +m,
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, (m2—em2j (m1 +em1j
Vo= ————= |V + | ——— | vy
my + m, my + m,
where, my =mass of body 1
m, = mass of body 2
v = velocity of body 1
v, = velocity of body 2
v{ = velocity of body 1 after collision
v5 = velocity of body 2 after collision
where e = coefficient restitution
o= Separation speed
Approach speed
_vi-v5

e

¢ |n case of head-on elastic collision
e=1
e |n case of head-on inelastic collision

O<e<1
* In case of head-on perfectly inelastic collision
e=0
If e is coefficient of restitution between ball and ground, Ou=0

then after nth collision with the floor, the speed of ball will
remain e"v, and it will go upto a heighte?” h.

(0]
v, =e"vy=e" /2gh 7
hOZeZHh U0=2gh
Collision of a ball
with floor

Oblique Collision

In case of oblique collision linear momentum of
individual particle do change along the common
normal direction. No component of impulse act
along common tangent direction. So, linear
momentum or linear velocity remains unchanged
along tangential direction. Net momentum of both
the particle remain conserved before and after Oblique collision
collision in any direction.
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Moment of Inertia
Momentum of inertia can be defined as

11

r = distance of the body of mass, m from centre of axis.

| = /Z m.r?
| = J‘ r?dm
e Very thin circular loop (ring)
| = MR?
where, M = mass of the body

R = radius of the ring
| = moment of inertia

R12+R22j

* Uniform circular loop | = /\/I( 5

;
.
.
'/‘

Uniform circular loop

2

e Uniform solid cylinder / =

LA
Uniform solid cylinder

.
A

;
.
.
'l‘

Thin circular ring
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e Uniform solid sphere

A
Uniform solid sphere
2
I =< MR?
5

e Uniform thin rod

(AA’) moment of inertia about the centre and perpendicular axis to the rod

moment of inertia about the one corner point and perpendicular (BB’) axis
to the rod.

A

A

Uniform thin rod

2
=M 2 e
12 3
e Very thin spherical shell
/’;4!
A
Thin sperical shell
/=2 MR? A
3
e Thin circular sheet
I MR?
4

LA
Thin circular sheet
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e Thin rectangular sheet

2 2
.y a“+b
12

‘A
.

,
,

«~———a+——

“«—o—>

Al
Thin rectangular sheet

e Uniform right cone

Uniform right cone

=3 yR?
10

e Uniform cone as a disc

A part of uniform cone as a disc

Suppose the given section is 1’[h part of the disc, then mass of disc will
n

be nM.
Inertia of the disc,
1
/disc = E ( M) Rz
Inertia of the section,

1 1
Isection = ; /disc = E MR?
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Torque and Angular Acceleration of a Rigid Body

For a rigid body, net torque acting
T=lo
where, o = angular acceleration of rigid body
I = moment of inertia about axis of rotation
* Kinetic energy of a rigid body rotating about fixed axis
1

KE = — Io® (0= angular velocity)
e Angular moment of a particle about same point ] o
p=mv
Lorxp //
L=m(rxv) Angular moment

where L = angular displacement

e Angular moment of a rigid body rotating about a fixed axis. L=ln
A

o

B
Angular moment of a rigid body

e Angular moment of a rigid body in combined rotation and translation
L=Low +M(ry < vg)

o

(0]
Combined rotation and translation in a rigid body

» Conservation of angular momentum
dL
T=—
at

dL
—=rxF+vxp
at
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* Kinetic energy of rigid body in combined translational and rotational
motion

1 2 1 2
K=—mv + — ey @
2 CM 2 CM

Uniform Pure Rolling

Pure rolling means no relative motion or no slipping at point of contact
between two bodies.

Uniform Pure Rolling

If Vp = Vq = no slipping
v =Ro

if v, > Vg = forward slipping
v > Rw

if Vp < Vq = backward slipping
v <Rw

——§ = 21R—>|

Pure Rolling

No slipping s =27nR
Forward slipping s > 2nR
Backward slipping s <2nR

Accelerated Pure Rolling

A pure rolling is equivalent to pure translation and pure rotation. It follows a
uniform rolling and accelerated pure rolling can be defined as

F+f=Ma
(F-f-R=lou
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> f
Accelerated pure rolling

F = force acting on a body, f = friction on that body

Angular Impulse

The angular impulse of a torque in a given time interval is defined as
t
f 21t
t

t
1
where, L, and L, are the angular momentum at time t, andt, respectively.

~KBY POINES

+ A force, whose line of action does not pass through centre of mass, works as
force to produce translational acceleration.

+ Different types of collisions are examined, whether they possess kinetic
energy or not.

+ The radial component of the force, which goes through the axis of rotation,
has no contribution to torque.
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Engineering Mechanics

The branch of physical science that deals with the state of rest or the state
of motion is termed as Mechanics. Starting from the analysis of rigid
bodies gravitational force and simple applied forces, the mechanics has
grown to the analysis of robotics, air crafts etc. is known is Engineering
Mechanics.

Stress

When a material in subjected to an external force, a resisting force is set up
within the component. The internal resistance force per unit area acting on
a material is called the stress at a point.It is a scalar quantity having unit.

_ Force
Area

Stress

Strain

It is the deformation produced in the material due to simple stress. It
usually represents the displacement between particles in the body relative
to a reference length.
Tension strain (e;) = AL—L
_ Changein length
Initial length
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Stress-Strain Relationship

The stress-strain diagram is shown in the figure. In brittle materials there is
no appreciable change in rate of strain. There is no yield point and no
necking takes place.

F F

E B

Loading A £ Loading E 1

2 ' 2 i
o o > /1
7 V4 ) S/
g

S5/

< — < —¢& Cc D

Elastic Plastic Elastic recovery
Strain (¢) —- Residual strain
Strain () —>
(a) (b)

Graph between stress-strain

In figure (a), the specimen is loaded only upto point A, is gradually
removed the curve follows the same path AO and strain completely
disappears. Such a behaviour is known as the elastic behaviour.

In figure (b), the specimen is loaded upto point B beyond the elastic limit £.
When the specimen is gradually loaded the curve follows path BC,
resulting in a residual strain OC or permanent strain.

Properties of Materials

Some properties of materials which judge the strength of materials are given
below

Elasticity

Elasticity is the property by virtue of which a material is deformed under the
load and is enabled to return to its original dimension when the load is
removed.

Plasticity

Plasticity is the converse of elasticity. A material in plastic state is
permanently deformed by the application of load and it has no tendency to
recover. The characteristic of the material by which it undergoes inelastic
strains beyond those at elastic limit is known as plasticity.
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Ductility
Ductility is the characteristic which permits a material to be drawn out
longitudinally to a reduced section, under the action of a tensile force (large
deformation).

Brittleness

Brittleness implies lack of ductility. A material is
said to be brittle when it cannot be drawn out by
tension to smaller section.

Stress —

Strain (¢) —

Malleabili ty Stress-strain relation
Malleability is a property of a material which permits the material to be
extended in all directions without rapture. A malleable material possess a
high degree of plasticity, but not necessarily great strength.

Toughness
Toughness is the property of a material which enable it to absorb energy
without fracture.

Hardness

Hardness is the ability of a material to resist indentation or surface
abrasion. Brinell hardness test is used to check hardness.

P
”ZD(D— D? - d?)

Brinell Hardness Number (BHN) =

where, P = Standard load, D = Diameter of steel ball
d = Diameter of the indent.

Strength

The strength of a material enables it to resist fracture under load.

Engineering Stress-Strain Curve

The stress-strain diagram is shown in figure. The curve start from origin.

Showing thereby that there is no initial stress of strain in the specimen.

The stress-strain curve diagram for a ductile material like mild steel is shown

in figure below

* Upto point A, Hooke’s Law is obeyed and stress is proportional to strain.
Point A is called limit of proportionality.
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m“ True curve _
S \ -7
0 Upper yield -
point -7 «— Ultimate strength
|
D L F Fractrure
\ E ! G
Ser---/B [ I L !
Sot-~/a \ | Lowelr yield pomtI !
Elastic limit ! !
Limit of proportinality | l
I I I I
I I I I R
o & 1.5% €u gu
Strain

Stress-strain diagram for mild steel

* Point B is called the elastic limit point.

* At point B the cross-sectional area of the material starts decreasing and
the stress decreases to a lower value to point D, called the lower yield
point.

* The apparent stress decreases but the actual or true stress goes on
increasing until the specimen breaks at point C, called the point of
fracture.

e From point £ ownward, the strain hardening phenomena becomes
predominant and the strength of the material increases thereby requiring
more stress for deformation, until point F is reached. Point F is called the
ultimate point.

Hooke’s Law (Linear elasticity)
Hooke's Law stated that within elastic limit, the linear relationship between
simple stress and strain for a bar is expressed by equations.

ocx<¢g 0 =FE¢
P_gAl
A [

where, £ =Young's modulus of elasticity

P = Applied load across a
cross-sectional area D . p
A /= Change in length <—1—<A—l>

[ = Original length.

Elastic deformation
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Elongation of Bodies

Elongation of a body is defined as the transformation of a body from a
reference configuration to a current configuration. A configuration is a set
containing the positions of all particles of the body. The following cases will
be considered

Bars of Varying Sections of Different Materials
It can be shown below

P14— A1E1 A2E2 A3E3 AnEn —>P2

<l <—lp— <—I3—> ~—l—
Diagram for different materials
The total deformation for such a bar is given by
:P111_|_P212 ”__l_Pnln
AE, A E, A E,

Uniformly Tapering Circular Bar
Let us consider a uniformly
tapering circular bar subjected to
an axial force P. The bar of length
[ has diameter d, at one end and
d, at other end.

dy-d;

ax=dq + X

Tapering bars

4P1

ChangeinlengthA /= ———
n Ed,d,

Elongation of Bar of Uniform Section due to Self

Weight
Small deformation of small cross section length dx s
_Wa

“"AE 12
where, w, = Weight of portion below the section. L %
Total change in length IX

A= W_L Y .
2AF Elongation of bar

where, w = Total weight of bar.
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Elongation of Bar of Uniform

Tapering Section £
Total change in length ¥
f,
pg L2 L X

Al="—

oE TT
X

Y

Compounded Bars
Consider a solid box enclosed in the

hollow tube and subjected to a 2 Tube
compression force P through rigid .l 1 Rod -------- P
collars as shown in the figure. P
2 Tube
Let P, and P, are force applied on rod
and tube respectively. - L ~
Total force P=P +F Compound bars
Change in length for rod = change in length for tube
A I-] = A 12
P 1L1 _ P2 L2
AE, A E

Stress in Bolts and Nuts
Stress in bolts and nuts are shown as in the figure.
Let stress in steel bolt is o across the y Washer

cross-sectional area A, and stress in |

copper tube is o, across cross-sectional

area A.. Bolt Bolt
0. A =0 A

where, o, =Stressin copper L EEEEETEUEEE?“””L

Nut

o, = Stressin steel _
Stress in bolt and nut

Since the final length of bolt and tube is

same.
Total extension of bolt + Total compression of tube = Moment of nut
GESL + GECL = moment of nut (Pitch of thread x total turn)

S C
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Temperature Stresses in Uniform Bars
Consider a bar of length L subjected to uniform temperature At increase.

A B .. A B
/ ‘ , - ‘ ----- ’ - I - N
L A = L 47
Bar free to expand Bar constrained

Increase in length of bar when bar free to expand
Al=¢gl=0AtL
& = thermal strain = a0 At
where, o = coefficient of the thermal expansion.
If the bar is constrained, net thermal stress

GT:A—IE:LocAtE = o, =Ea At
L L

Suppose in one of supports yields by an amount a. The total amount of
expansion checked will be (A [ — a).

E
o;=(Al-a)— 7
¢ = )T
E <—>
o, =(LaAt—-a)— L
L .
Expansion in rod
- Key Points
+ The stress will be compressive when the change in temperature is
positive.

+ The stress will be tensile when the change in temperature is negative.

Temperature Stresses in Composite Bar

Suppose composite bar made of two materials with different coefficient of
thermal expansion assume oty < L p.

Tensile force in 1= tensile force in 2

P=FR="FR
Final extension of 1= final extension of 2
Al =AL =Al
From geometry, Al =All +AlY

Al = Al +Aly
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Al = Free expansion of 1 due to temperature rise

Al; = Free expansion of 2 due to temperature rise

A I’ = Expansion of 1 due to temperature stress (tensile)

A [ = Compression of 2 due to temperature stress (compression)
AL+ A=Al — Al
A+ Al = AL — Af

AEy AE Hj_» Final portion
o poAOz-a
et >
AcEs A E Al ”Al1
(0 AL+ aAE) LA Al2
Al= AF. + A E Expansion in composite bar
151 2 =2
Complementry Shear Stress
A shear stress in a given direction B C |- e —
cannot exist without a balancing
shear stress of equal intensityina T T
direction at right angles to it.
A D A — D
Complementary shear stress
. . B C
A state of simple shear produces pure tensile and .
compressive stresses across planes inclined at 45° to p
those of pure shear and intensities of these direct XP
stresses are each equal to the intensity of the pure P P
shear stress. Linear strain of the diagonal is equal to | -~ .
half the shear strain (¢). A— > D

6= Compressive stress

2
Poisson’s Ratio
When an axial force is applied along the longitudinal axis of a bar, the
length of a bar will increase but at the same time its lateral dimension
(width) will be decreased so, it is called as Poisson’ ratio.

_Lateral strain

- Longitudinal strain

Value of Poisson’s ratio is same in tension and compression.
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Volumetric Strain

It is defined as the ratio of change in volume to the initial volume.
Mathematically,

Volumetric strain, e, = Change in volume = ﬂ

[nitial volume %

Volumetric Strain Due to Single Direct Stress

The ratio of change in volume to original volume is called volumetric
strain.

ev=e1+62+63 A ™
ﬂ:£+@+f_t P<—m :tt
% L b t
e1 :E =< L >
E Volumetric strain
P
Co=—_-WE3=—U 5
Volumetric strain, e = AV—V ey = g (1-2uw)

For the circular bar of diameterd, V = %o’zL

fv_rfL 2idAL__ _P
Vv L d L T E
Ad _ __HE
d 2 E
E m

Volumetric Strain due to Three Mutually
Perpendicular Stress System
When a body is subjected to identical pressure in E TP?’
three mutually perpendicular direction, then the |
body undergoes uniform changes in three © D| ——P;
directions without undergoing distortion of shape. ﬁ’
2
P u P+ P
E E

A B
Three stress system

e-]:
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P P +P
e,=2-p3 "1
- -

P, P +P
=2 -—p-1 -2
- -
ev=ev+82+83
or-1-a0[ )

or ey = (1 _ %) (@) ( "= %)

Shear Modulus or Modulus of Rigidity

Modulus of rigidity g _ Shearstress _ ©

shear strain ¢

e At principal planes, shear stress is always zero.
e Planes of maximum shear stress also contains normal stress.

Relationship between E, G, K and u

' Modulus of rigidity c=—* |
| 201+ :
. Bulk modulus k=_E f= 9KG :
| 3(1-2w 3K+ G ,
| _3K-2G :
| 6K + 2G ;

Analysis of Stress and Strain

We will derive some mathematical expressions for plains stresses and will
study their graphical significance in 2 D and 3 D.

Stress on Inclined Section PQ due to Uniaxial
Stress

Consider a rectangular cross-section and we have to calcutate the stress
on an inclined section as shown in figure.

Normal stress G, =0GCos’0
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A P B op
1 G
: /{9 0
G- ——>G
g
Stress on an inclined section
Tangential stress o, =-— g sin20
Resultant stress o, =Pcos6

Stress Induced by State Simple Shear

Induced stress is divided into two components which are given as

Normal stress, o, =tsin26
Tangential stress, o; = Tcos 20

T

Y

A

c;Asec 6

T 0 - - o, Aseco

Y Y

A

B<—TC

Stress simple shear

27

Stress Induced by Axial Stress and Simple Shear

Normal stress

P O

G, =06,C08°0 +G,sin’0 + TsiN20 woP
6,+6, ©,-0C .
or o,=911%2, 0170> E
2 2 E
. o1 ;
oS 20 + Tsin 20 o
Tangential stress <«
Gi+0,) . x v
o, =— (%) sin20 + tcos 26 z o2

Induced stress body diagram
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Principal Stresses and Principal Planes

The plane carrying the maximum normal
stress is called the major principal plane and
normal stress is called major principal
stress. The plane carrying the minimum
normal stress is known as minor principal ©1
stress.

G1

Major principal stress (c7),

Y G2

2
o,+0 0,—0O inci
o) = 1 ; 2 4 \/( 1 2) + 72 Principal stress and planes

2
. o G,+0 G,-0C
Minor principal stress (65), 65 =—1——2 — \/( 1 2) +7°

2 2
27
tan20, =
64—02 R
T

6}+05=0,+0, P
When 20p,=0 01— 02
= ci=04 and 65=0 2

! ! 2 2 2 0p triangle

Across maximum normal stresses acting in plane shear stresses are zero.

Computation of principal Stress from Principal Strain
The three stresses normal to shear principal planes are called principal
stress, while a plane at which shear strain is zero is called principal strain.
For two dimensional stress system, 65 =0

Ei (g1 +ueyp) E(ney +¢)

O1=——F—, 0Oy =
1 1—“2 2 1—“2

Maximum Shear Stress

The maximum shear stress or maximum principal stress is equal of one half
the difference between the largest and smallest principal stresses and acts
on the plane that bisects the angle between the directions of the largest
and smallest principal stress, i.e., the plane of the maximum shear stress is
oriented 45° from the principal stress planes.

_ 2
T/:\/(G‘] 02) +T2
2
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v =01702
2 R
6{—0 1 ’
tan20 =—- 1 ——2=— A
21: tan2ep G1—02
20, =20, 90° 0, =0, + 45° 2
26, triangle

Principal Strain
For two dimensional strain system,

e, +e e, —e ¢2
£ 5= 12 2 4 12 2+(§)

where, e, = Strain in x-direction

e, = Strain in y-direction
¢ = Shearing strain relative to OX and OY. ~ o/2

(e1-€2)/2
tan20,, = o o, ¢12€ 1 2_
1 P 20p, triangle
2
tan20p, = 5 q)e
1762

Maximum Shear Strain
The maximum shear strain also contains normal strain which is given as

-
2 2 2

45° Strain Rosette or Rectangular Strain Rosette

Rectangular strains Rosette are inclined 45° to each other.

| ea=%(8]+ 82)+%(81—82) cos 20 Y|e,

| 1 1 .

| e, = 5 (g + &) — 5 (g, — €,) sin 20 C ep

: 459

! eC:l(s]+ 82)—1(81—82) co0s 20 B

| — . _€teé, 1 X
| Principal strains g, = 5ty " e,

| 5 5 45° strain Rosette

. = \/(ea —ep)” + (e, — €

E tan 2qpe = M
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Mohr’s Circle

Handbook Mechanical Engineering

Graphically, variation of normal stress and shear stress are studied with the
help of Mohr’s circle. A two dimensional Mohr’s circle can be constructed,
if the normal streses 6, and o,.

Normal stress o, =

G1+02+G1

~ 92 405 26
2

Shear stress 1= — % sin20

e

Different stress diagram

G2

A

o1t oo
2

Y
Y

01~ 02
2

Mohr’s circle for plane stress and strain

General State of Stress at an Element

The following procedure is used to draw a Mohr’s circle and to find the
magnitude and direction of maximum stresses from it.

Mohr’s circle approach as state of stress

g

— Tyx

-«

‘ny l
Oy

Txy

Ox

A

T(-ve) (Gya - Txy) P(cay, Tmax)
B
o) A X
N\ B C M o (+)
<«— Gav
A

T (+Ve) ' (GX, TXy)

Mohr’s circle for plane stressed and

plane strain



Strength of Materials 31

Observations from Mohr’s Circle
The followings are the observations of Mohr’s circle as
e At Point M on Circle o, is maximum and shear stress is zero.
Maximum principal stress = coordinate of M
e At Point N on Circle o, is minimum and shear stress tis zero.
. Minimum principal stress = coordinate of N

e At Point P on Circle tis maximum.
. Maximum shear stress = ordinate of P (i.e., radius of circle)
Also, normal stress on plane of maximum shear stress

, , o, +0,
=abscissaof P|ie., 6,=0,, = Y
where, o, = Average stress

* Mohr’s circle becomes zero at a point if radius of circle has the following
consideration.

2
, , O, =0, 5
Radius of circle = || ——~ | + 1%

* Ifo, =0, then radius of Mohr's circle is zero and t,, = 0

Centroid and Moment of Inertia of Different Sections

Plane Areas Properties
y y Rectangle A=b-d;x=b/2;y =d/2
Flx o= Lbd i1, =L db’;1, =0
Jd & X 12 12
G A 2 12
¢ ¥ /;:1bd3,I/:1 ba;lx,,:bd
s X' 3 3 y 4
< b
TriangIeA=1bd;7<=(b+C);yzg
2 3 3
T3 bd > 2
y Ingbd,lyzg(b — bc + ¢)
T > bd?
X—> l, = —(b-20
‘l’ | X NS
Y | , 1 3., _bd 5> 2
| «——p—] X Ix—Ebd //y'—ﬁ(?)b - 3bc + ¢)
bd?

=== 03b-20);
04
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Plane Areas Properties
Y TrapezoidA:d(a+b);)7=g 2a+h
2 3la+b
<
) d d’ (@’ +4ab+ b)), d’Ba+ b
d IX: ;Ixzi
b
y CrdeA="d?;7=95=0
4 2
G X /X=1d4=/y,lxy—o,/’=5£d4
y 64 64
—d—> X
. nr’ _  4r
Half circle A= —;y = —
2 i
2 _ 4 4
G X /X:M:moggr“;/y:l;/xy:o;
% / 727 8
—r—i—r—1 /’:ﬁ
Y8
2
uarter circle A:l;izfz—r
Q 4 y 3n
(9n2—64) r 4, , nrt
I, =1, =————=005488r"; [ =[], = —
o 144 n 716
Y Vertex Parabolic semi-segment y = f(x) = h (1 - x*/b?);
X 2 _ 3,2
= y=f(x) A==bd;x==by==d
E X, £ 3 8 y 5
16 3 2 3 1T 20
= X l,=—=»bd”; I, ==—db>; I, =— bd
l G |y 05 y Y12
——b— X
Y Vertex Semi segment of nth degree y = f(x) = h (1 - x"/b"),
$é /yzf(x) n>0 A=bd n ),(:b(n+1).)7: dn
gl ’ n+1) 2+2"7 2n+1
l G 1y X 2bd’n’ L __dbn

5 ¥  +0@+ 06+ 30 +3)
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Plane Areas Properties

y' y=f (x) Parabolic spandrel y = f(x) = d (x*/b?)

<_7_{j T A=(b-d)/3;X =3b/4;y =3d/10
xd I:bid3~1:£~l :bzd2

G Ty l 217 5 Y2

<~ b——> X

_  Vertex

Spandrel of nth degree y = f(x) = d (x"/b"),n > 0

y y=f (x)
9 v 3 F 4l bd bt ) o dbed
LeE—x—> d n+1' n+2 "7 220+
o X
> = 3 3 2 2
A v oA b

[¢——ph———> X 3Bn+1) (n+ 3) 4(n+1)

Shear Force and Bending
Moment Diagram

A Shear Force Diagram (SFD) indicates how a force applied perpendicular
to the axis (i.e., parallel to cross-section) of a beam is transmitted along the
length of that beam. A Bending Moment Diagram (BMD) will show how the
applied loads to a beam create a moment variation along the length of the
beam.

Statically Determinate Beam

A beam is said to be statically determinate if all its reaction components
can be calculated by applying three conditions of static equilibrium /.e.,

>V=02XH=0 and XM=0

Statically Indeterminate Beam

When the number of unknown reacton iP1 lpz
components exceeds the static conditions of Aﬁ\/
equilibrium, the beam is said to be statically
indeterminate.

Y
B

\

Indeterminate beam

Shear Force
Shear force has a tendency to slide the surface, it acts parallel to surface.
ZFer =0
V-gax—-(V+adV)=0
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%=—q = deV=—qudX

B
Vg =Vy=-[ qox

only for distributed load not for point load.

Bending Moment

Any moment produced by forces acting on the beam must be balance by
an equal opposite moment produced by internal forces acting in beam at
the section. This moment is called bending moment.
>M=0
ax
—M—qu(?)—(v +dV)dx+M+dm =0

M
M_v = My-M,y=[Vox
dx B A _[

only for distributed and concentrated load not for couple.

Bending Moments and Shear Stress
Distribution

Bending stress and shear stress distribution are classified in the following
groups

Bending Moment in Beam

When beam is subjected to a bending moment or bent there are induced
longitudinal or bending stress in cross-section.

M M
7 ‘rAH—dx—»; T 7 < Gp>
YT JT \P: :Q/ %s <
B D

Bending stress in beam

| = Moment of inertia about neutral axis.
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At the neutral axis, there is no stress of any kind. At one side of the neutral
axis, there are compressive stresses, whereas on the other side there are

tensile stresses.

Modulus of Section

Section modulus is a geometric property for a given cross-section used in
the design of beams or flexural members.

/ M o
7 =— _ = —
Ymax Iy
M =6 ax / = M=0,, X2
max
3
Rectangular section [ = %
2
Modulus of section zZ= ba”
c
Circular section [=T gt
64
. TT 3
Modulus of section z=—d
32

Shearing Stress
Shearing stress on a layer JK of beam at distance y from neutral axis.

_ VA M/ \M
= ] B2 LS Vo
y y
where, T ---------------------- T ----- ---
V = Shearing force
— VQ
Ay = First moment of area t = B pro— —

Shearing stress on a beam

Shear Stress in Rectangular Beam
Suppose, we have to determine the shear stress at the longitudinal layer
having y distance from neutral axis.

- )/1)

a=b(1_y, (y1+
o

N>
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b(h?
Q=—|—- Y12 T T
2 4 h/2‘_l ____________ _K_ >
y
V(h* 20— i Ton
1= N T
21| 4 hi2
3V i
T =—— <—b—>
max 2 A
Rectangular beam
Tmax = 15 Tav

Circular Beam

. o . ar . .
Centre of gravity of semi-circle lies at i distance from centre or base line.
s
As it is symmetrical above neutral axis, hence at neutral axis shear stress

will be maximum.

=V (r2 - )/2)
3/

_ w4 2r _
QZ““?(&):? K T «
b=2r d d Toa

er U l
R N1 R
' @) 3A Circular beam
4
For 1,4 substitutingy =0
nd*
T 64
4V 4

Tmax_S_A_grav

Shears Stress in Hollow Circular Cross-Section
In hollow circular cross-section, if we have to calculate t at neutral axis by
the formula

T

max_g 4

2 2
A+t
ry —r
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Shear Stress in Triangular Section

In a triangular cross-section, if we have to calculate t at neutral axis, then in
formula
4 2
rza(hx—x ) = T :Era\,

Shear Stress in I-section

v |[B(D?-d?) b(d®
T=—| ————— 2+ | —-y
Ib 8 2| 4
VIB, » . bd?
T = |2 (D2 -d?)+ 2
I —
A
S |
J K
D| d _____________i ______________
v b ae
v R

I-Section diagram

Deflection of Beam

Deflection is defined as the vertical displacement of a point on a loaded
beam. There are many methods to find out the slope and deflection at a
section in a loaded beam.

Double Integration Method

This is most suitable when concentrated or udl over entire length is acting
on the beam.

2
El d—g’ =M
ax
: , ay
Integrating one time El = =- _[ M
ax

Integrating again Ely=- J'J. M
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where, M = Bending moment
I = Moment of inertia of the beam section
y = Deflection of the beam
E = Modulus of elasticity of beam material.

Torsion of Shaft and Combined Stresses

If T, be the intensity of shear stress, on any layer at a distance r from the
centre of shaft, then
Tf

r

Go
I

!
J

i

Torsion in shaft and combined stresses

Rate of twist o o_T
[ [ GJ
. Tl
Total angle of twist 0=—
GJ
where, T =Torque, J = Polar moment of inertia

G = Modulus of rigidity, 6 = Angle of twist
L = Length of shatft, GJ = Torsional rigidity

G—ZJ — Torsional stiffness; G_IJ — Torsional flexibility
EA — Axial stiffness; é — Axial flexibility
o nd* 16T
e For solid circular shaft, J= a2 Trax = g
« For hollow circular shatt, J= 312 (dy —df
* Power transmitted by shaft, P = 2T KW

~ 60000
where, N = Rotation per minute.
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Compound Shaft

39

An improved type of compound coupling for connecting in Series and

parallel are given below

1. Series connection Series connection of compound shaft as shown in
figure. Due to series connection the torque on shaft 1 will be equal to

shaft 2 and the total angular

deformation will be equal to the

/X
sum of deformation of 1st shaft and T
ondshaft. g HYAN N [ [
N

0=0,+0,

I= 7—1 = 7—2 Series connection

where,
6, = Angular deformation of 1st shaft
0, = Angular deformation of 2nd shaft

2. Parallel connection Parallel connection of compound shaft as shown
in figure. Due to parallel connection of compound shaft the total torque

will be equal to the sum of torque of shaft 1 and
torque of shaft 2 and the deflection will be same
in both the shafts.

61262
T=T+T,

Effect of Pure Bending on Shaft

Parallel connection

The effect of pure bending on shaft can be defined by the relation

32 M
c= 3
nD

where, ¢ = Principal stress
D = Diameter of shaft
M = Bending moment

Effect of Pure Torsion on Shaft
It can be calculated by the formula, which are
given below

N v Ay

167 -

where, t = Torsion
D = Diameter of shaft

Pure torsion on shaft
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Combined effect of bending and torsion

Principal stress = % M+ M? +T?]
n

M

Maximum shear stress = —7:53 JM? + T2 _______ka____<_>>€'I_
Y

Equivalent bending moment /

1 PR . .
Meq = > M + IM2 + T ] Bending and torsion effect

Equivalent torque Toq = /7% + M?
Thin Shell

If the thickness of the wall of a shell is less than %‘[h of %‘[h of its diameter,
it is known as a thin shell.

Stresses in Thin Cylindrical Shell
(@) Circumferential stress (hoop stress)

GC e ﬂ i GC = ﬂ
2t in
where, p = Intensity of internal pressure

d = Diameter of the shell

t = Thickness of shell

n = Efficiency of joint
(b) Longitudinal stress o, = pd = 0,= pq

4t 4t n

Change in Dimension of a Thin Cylindrical Shell due to an
Internal Pressure

Change in diameter 8 = g,d = 22 (1 - i) xd

2tE 2m

g4 = Circumferential strain €, = % %1 4 1o u

E  mE m

Change in length flzszlzﬂ 11 x [

2LE\2 m
o . ol ©
€, = Longitudinal strain €, =— - —<
2 g 2T E T

Change in volume OV =(2¢ey+¢,)V
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Thin Spherical Shell
1. Stresses in shell material,

N Stresses on
2. Change in diameter §d = ¢ xd, spherical shell

where (__j
E

mE
:ﬂ(‘l_i)xd
4te m

Change in volume SV:V-Se:V-ﬂ(hl)
4AtE m

Lake’s Theory

Lake’s theory is based on the following assumptions

Assumptions
1. Homogeneous material.

2. Plane section of cylinder, perpendicular to longitudinal axis remains
under plane and pressure.
Hoop stress at any section

Radial pressure o=—-a

* Subjected to Internal Pressure (p)

2 2
| Ar=5 o p[_j

i

2pr?
2.Atf=f0, GrO :%
Iy =1

* Subjected to External Pressure (p)

-2 pr?
1. Atr=r,0, = Plo
/ Tj 2 2
Iy =1
2, 2
I +1;
2. Atr=n, 0, =-p| 5—>5
Iy =1

Note Radial and hoop stresses vary hyperbolically.



Columns and Struts

A structural member subjected to an axial compressive force is called
strut. As per definition strut may be horizontal, inclined or even vertical.
Vertical strut is called a column.

Euler’s Column Theory

This theory has the following assumptions

* Perfectly straight column and axial load apply.

* Uniform cross-section of the column throughout its length.

* Perfectly elastic, homogeneous and isotropic material.

e Length of columnis large as compared to its cross-sectional dimensions.
* The shortening of column due to direct compression is neglected.

e The failure of column occurs due to buckling alone.

Euler’s Buckling (or crippling load)

The maximum load at which the column tends to have lateral displacement
or tends to buckle is known as buckling or crippling load. Load columns
can be analysed with the Euler’ column formulas can be given as

2_2
n-m<El
Pe = 7 (n=12,3,...)
or 5 _ mlEl
e =
Ei

where, E = Modulus of elasticity
[ = Length of column
I = Moment of inertia of column section.
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Euler’s Buckling for Different Structures

43

For both end hinged

n=1,

legr =1
_ m%
E_ZT

For one end fixed and other free

2
ls =21
_
SYE
One end fixed
For both end fixed P
n =2,
/
lei = 7
_An’El
Pe = £

Both end fixed

For one end fixed and other hinged

n=+2
i
eff — \/i
2m’El
Pe 2

P

B

One end fixed and other hinged




