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PREFACE TO THE SECOND EDITION

I am pleased to present the Second Edition of the book. This edition is revised

keeping in mind the requirements of the students. In this edition, several solved

examples and questions have been incorporated to reinforce the students’

understanding of the subject matter.

I hope this edition would be more useful to the students as well as to the aspirants

of various competitive examinations such as Indian Engineering Services, Civil

Services, Forest Services, GATE, State Services, etc.

I am thankful to the management and the editorial team of S.Chand & Company

Pvt. Ltd., New Delhi for help and support in publication of this edition.

Any comments and suggestions for the improvement of the book will be gratefully

acknowledged.

Dr. Sadhu Singh

Disclaimer : While the author of this book has made every effort to avoid any mistakes or omissions and has used his skill,
expertise and knowledge to the best of his capacity to provide accurate and updated information, the author and S. Chand do not
give any representation or warranty with respect to the accuracy or completeness of the contents of this publication and are
selling this publication on the condition and understanding that they shall not be made liable in any manner whatsoever. S.Chand
and the author expressly disclaim all and any liability/responsibility to any person, whether a purchaser or reader of this publication
or not, in respect of anything and everything forming part of the contents of this publication. S. Chand shall not be responsible for
any errors, omissions or damages arising out of the use of the information contained in this publication.
Further, the appearance of the personal name, location, place and incidence, if any; in the illustrations used herein is purely
coincidental and work of imagination. Thus the same should in no manner be termed as defamatory to any individual.

(vii)





PREFACE TO THE FIRST EDITION

It is another attempt to place before the candidates, in the book form, the full

contents of the subject of Mechanical Engineering. It was a long cherished dream

of the author to bring out such a book as per the wishes of his late wife, Smt. Manjit

Kaur. She has been the driving force for the last about forty-one years for writing.

The book contains 28 chapters. The subject matter has been divided into five

major areas of Engineering Mathematics, Design Engineering, Production Engineering,

Industrial Engineering, and Thermal Engineering. Assertion and Reason, Short Answer

Type Questions and Glossary of Terms in Mechanical Engineering have been covered

in the last three chapters.

The book has been written as per the syllabi of Engineering Services, Civil Services,

Forest Services, GATE, State Services, and other Competitive Examinations. It is

hoped that the book shall be quite useful to the candidates preparing for these

examinations.

The moral support received from Mrs. Narinderpal Kaur (my daughter-in-law)

and grandchildren Kanupreet and Amitoj is praiseworthy.

The support and cooperation received from the management and the editorial

team of S. Chand & Company Pvt. Ltd., New Delhi is highly acknowledged.

Suggestions for the further improvement of the book are welcome and shall be

duly acknowledged.

Dr. Sadhu Singh
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1.1 LINEAR ALGEBRA

1.1.1 Matrices

A system of mn numbers arranged in a rectangular formation along m rows and n
columns and bounded by the brackets [ ] is called an m by n (m × n) matrix. Thus

A = [aij] = 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

m m mn

a a a
a a a

a a a

aij are the elements of the matrix.

Special Matrices

Row matrix—has a single row.
Column matrix—has a single column.
Square matrix—has same number of rows and columns.
Diagonal matrix—has all elements zero other than the diagonal elements (aij, i = j).
Unit matrix—is a diagonal matrix having all diagonal elements equal to unity. It is

also called identity matrix [I].
Null matrix—whose all elements are zeroes.
Symmetric matrix—is a square matrix such that aij = aji, i  j.
Skew-symmetric matrix—is a square matrix such that aij = –aji, i  j.
Upper triangular matrix—is a square matrix whose all elements below the leading

diagonal are zero.
Lower triangular matrix—is a square matrix whose all elements above the leading

diagonal are zero.
Hermitian matrix—A square matrix A = [aij] in which (i, j)th element is equal to the

conjugate complex of the (j, i)th element, i.e., aij = jia  for all i and j.

Skew-Hermitian matrix—A square matrix A = [aij] in which aij = jia  for all i and j.

Its diagonal elements must be pure imaginary numbers or zero.
Orthogonal matrices—A square matrix A is said to be an orthogonal matrix if AAT =

ATA = I.



4 HANDBOOK OF MECHANICAL ENGINEERING

Operations on Matrices

1. Addition of matrices.
Let A = [aij]m × n , B = [bij]m × n. Then

C = [cij]m × n = A + B = [aij + bij]m × n

A + B = B + A
2. Subtraction of matrices

D = [dij]m × n = A – B = [aij – bij)m × n

A – B = – (B – A)
3. Multiplication of a matrix by a scalar.

If A = [aij]m × n and k is a scalar, then
kA = [kaij]m × n

Also k(A + B) = kA + kB
4. Multiplication of matrices.

If A = [aij]l × m and B = [bjk]m × n , then

C =
1

[ ]
n

ik l n ij jk
j

c a b

The condition for multiplication is that number of columns in the first matrix
should be equal to the number of rows in the second matrix.

A(BC) = (AB)C
A(B + C) = AB + AC

AB = – BA
AI = A = IA

5. Power of a matrix. If A be a square matrix, then the product AA is defined as A2.
If A2 = A, then the matrix A is called idempotent.

Related Matrices

1. Transpose of a matrix—is the matrix obtained from any given matrix by
interchanging the rows and columns.
If A = [aij] then AT = [aji]

(AT)T = A
For a square matrix

A = AT

[AB]T = BT AT

2. Adjoint of a square matrix—is the transposed matrix of cofactors of the given
matrix. It is written as adj A.

3. Inverse of a matrix—If A be any matrix, then a matrix B if it exists, such that AB
= BA = I, is called the inverse of A. It is denoted by A–1.

A–1 =
adj A

A
(AB)–1 = B–1 A–1

(AT)–1 = (A–1)T

(A–1)k = (Ak)–1

AA–1 = I
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4. Rank of a matrix—A matrix is said to be of rank r when it has at least one non
zero minor of order r, and every minor of order higher than r vanishes.

5. Elementary transformation of a matrix.
The following operations on a matrix are called elementary transformations.
(i) The interchange of any two rows (columns).

(ii) The multiplication of any row (column) by a non-zero number.
(iii) The addition of a constant multiple of the elements of any row (column) to

the corresponding elements of any other row (column).
6. Equivalent matrix—Two matrices A and B are said to be equivalent if one can

be obtained from the other by a sequence of elementary transformations. Two
equivalent matrices have the same rank and order.

7. Elementary matrices—An elementary matrix is that, which is obtained from a
unit matrix, by subjecting it to any of the elementary transformations.

1.1.2 Solutions of Linear System of Equations

1. Non-homogeneous equations
[aij] {xj} = {bi}

or AX = B

where, [aij] = A = 

11 12 1

21 22 2

1 2

...

...
... ... ... ...

...

n

n

m m mn m n

a a a
a a a

a a a

 is the coefficient matrix

{xj} = X = 

1

2

1n n

x
x

x
�

 is the unknown column matrix

{bi} = B = 

1

2

1m m

b
b

b
�

 is the known column matrix.

(a) Cramer’s Rule
If aij 0, then

x1 =

1 12 1

2 22 2

2

n

n

m m mn

ij

b a a
b a a

b a a
a

�

�

� � � �

�

x2 =

11 1 1

21 2 2

1

n

n

m m mn

ij

a b a
a b a

a b a
a

�

�

� � � �

�

and so on.
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(b) Matrix method
AX = B, A–1AX = A–1B or IX = A–1B

or X = A–1B

{xj} = 1 [ ]ij i
ij

A b
a

where [Aij] are the cofactors of aij in the determinant aij .
2. Homogeneous equations

AX = 0
where, A = [aij]m × n, X = {xj}n × 1, O = {0}m × 1

Let r = rank of matrix A.
If r = n, then zero (trivial) solution will be the only solution
If r < n, there will be an infinity of solutions.

3. Consistency of Linear system of Non-homogeneous equations.
AX = B

where, A =

11 12 1

21 22 2

1 2

n

n

m m mn

a a a
a a a

a a a

�

�

� � � �

�

 is the coefficient matrix

Let K =

11 12 1 1

21 22 2 2

1 2

n

n

m m mn m

a a a b
a a a b

a a a b

�

�

� � � � �

�

 be the augmented matrix.

Rouche’s theorem for consistency : This theorem states that the system of
equations AX = B is consistent if and only if the coefficient matrix A and the
augmented matrix K are of the same rank, otherwise the system is inconsistent.
Procedure to test the consistency :
Let r = rank of matrix A

s = rank of augmented matrix K
(i) If r  s, the equations are inconsistent, i.e., there is no solution.

(ii) If r = s = n, the equations are consistent and there is a unique solution.
(iii) If r = s < n, the equations are consistent and there are infinite number of

solutions. Giving arbitrary values to n – r of the unknowns, we may express
the other a unknowns in terms of these.

4. Consistency of Linear System of Homogeneous Equations.
AX = 0

Let r = rank of the coefficient matrix A.
(i) If r = n, the equations AX = 0 have only a trivial (zero) solution.

(ii) If r < n, the equations AX = 0 have (n – r) linearly independent solutions.
(iii) When m < n, i.e., the number of equations is less than the number of variables,

the solution is always other than trivial solution. The number of solutions is
infinite.

(iv) When m = n, i.e., the number of equations is equal to the number of variables,
the necessary and sufficient condition for non-trivial solutions is that the
determinant of the coefficient matrix is zero. In this case, the equations are
said to be consistent.
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Characteristic Equation

If A is any square matrix of order n, we can form a matrix A – lI, where I is the nth

order unit matrix. The determinant of this matrix equation to zero is called the characteristic
equation of A. The roots of this equation are called the eigen-values of matrix A. Thus,

A – I =

11 12 1

21 22 2

1 2

n

n

n n nn

a a a

a a a

a a a

�

�

� � � �

�

 = 0

or (–1)n n + k1 
n – 1 + ... + kn = 0

where, k’s are expressible in terms of the elements aij.

1.1.3 Eigen Vectors

If  is a characteristic root or eigen values of A, then a non-zero vector X such that
AX = X is called the eigen vector of A corresponding to the characteristic root . Thus,

AX = X
or AX – IX = 0
or [A – I]X = 0
This matrix represents homogeneous linear equations which will have a non-trivial

solution only if the coefficient matrix is singular, i.e., if |A – I| = 0, which is the same
as the characteristic equation of matrix A.

(i) If X is a characteristic vector of matrix A corresponding to the characteristic value
, then CX is also a characteristic vector of A corresponding to the same

characteristic value , where C is any non-zero scalar.
(ii) Corresponding to n distinct eigen values, we get n independent eigen vectors.

But when two or more eigen values are equal, it may or may not be possible to
get linearly independent eigen vectors corresponding to the repeated roots.

Properties of Eigen Values

1. The sum of the eigen values of a matrix is the sum of the elements of the principal
diagonal.

2. The product of the eigen values of a matrix A is equal to its determinant.

3. If  is an eigen value of a matrix A, then 1  is the eigen value of A–1.

4. If  is an eigen value of an orthogonal matrix, then 1  is also its eigen value.

5. If 1, 2, ..., n are the eigen values of a matrix A, then Am has the eigen values

1 2, , ..., ,m m m
n  where m is a positive integer.

Cayley-Hamilton Theorem

Every square matrix satisfies its own characteristic equation, i.e., if the characteristic
equation for the nth order square matrix A is

A – I = (–1)n n + k1 
n – 1 + ... + kn = 0

then (–1)n An + k1 A
n – 1 + ... + kn = 0

Example 1.1 Find the inverse of the matrix 
1 3 3
1 4 3
1 3 4

.
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Solution. A–1 =
adj A

A

A = 1(16 – 9) – 3(4 – 3) + 3(3 – 4) = 1

Cofactor matrix is : 
7 1 1
3 1 0
3 0 1

adj A =
7 1 1 7 3 3
3 1 0 1 1 0
3 0 1 1 0 1

T

A–1 =
7 3 3 7 3 3

1 1 1 0 1 1 0
1

1 0 1 1 0 1

Example 1.2 Determine the rank of the matrix 

0 1 3 1
1 0 1 1
3 1 0 2
1 1 2 0

.

Solution. Operating R3 – R1, R4 – R1
0 1 3 1
1 0 1 1
3 0 3 3
1 0 1 1

Operating C3 – C1, C4 – C1
0 1 3 1
1 0 0 0
3 0 0 0
1 0 0 0

Operating R3 – 3R2, R4 – R2
0 1 3 1
1 0 0 0
0 0 0 0
0 0 0 0

Operating C3 + 3C2, C4 + C2
0 1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

4th order and 3rd order minor of A are zero. Only 2nd order 
0 1
1 0

 = –1  0 minor is
non-zero.

Hence rank of matrix is 2.
Example 1.3 Test for the consistency of the following set of equations and solve

1

2

3

5 3 7 x
3 26 2 x
7 2 10 x

=
4
9
5
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Solution. Operate 5R2 – 3R1

1

2

3

5 3 7
0 121 11
7 2 10

x
x
x

=
4

33
5

Operate 5R3 – 7R1

1

2

3

5 3 7
0 121 11
0 11 1

x
x
x

=
4

33
3

Operate R3 + R2/11

1

2

3

5 3 7
0 121 11
0 0 0

x
x
x

=
4

33
0

Operate R2/11

1

2

3

5 3 7
0 11 1
0 0 0

x
x
x

=
4
3
0

The rank of the coefficient matrix and augmented matrix is 2.
Hence, the equations are consistent.

5x1 + 3x2 + 7x3 = 4
11x2 – x3 = 3

x2 = 33
11 11

x

5x1 = 3
3

34 3 7
11 11

x
x

= 3
3

394 7
11 11

x
x

= 3
35 80
11 11

x

x1 = 3
7 16
11 11

x

where, x3 is a parameter.

x1 = 2 3
7 3, , 0
11 11

x x

Example 1.4 Find the eigen values and the eigen vectors of the matrix 
1 1 3
1 5 1
3 1 1

.

Solution. The characteristic equation is

A – I =
1 1 3

1 5 1
3 1 1

 = 0

(1 – ) [(5 – ) (1 – ) – 1] – 1[1 × (1 – ) – 3] × 3[1 – 3(5 – )] = 0
3 – 7 2 + 36 = 0

 = –2 satisfies this equation.
(  + 2) ( 2 – 9  + 18) = 0
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(  + 2) (  – 3) (  – 6) = 0
= –2, 3, 6

The eigen values of A are –2, 3, 6.

Eigen vectors are [A – I]X =
1

2

3

1 1 3
1 5 1
3 1 1

x
x
x

 = 0

Putting  = –2, we have
3x1 + x2 + 3x3 = 0

x1 + 7x2 + x3 = 0
3x1 + x2 + 3x3 = 0

The first and third equations being same, we have from the first two equations,

1
20
x

= 32
0 20

xx

or 1
1

x
= 32

0 1
xx

Hence, the eigen vector is (–1, 0, –1)
For  = 3

–2x1 + x2 + 3x3 = 0
x1 + 2x2 + x3 = 0

3x1 + x2 – 2x3 = 0

1
1
x

= 32
1 1

xx

The eigen vector is (1, –1, 1)
For  = 6

–5x1 + x2 + x3 = 0
x1 – x2 + x3 = 0

3x1 + x2 – 5x3 = 0

1
1
x

= 2 3
2 1
x x

The eigen vector is (1, 2, 1)
Hence, the three eigen vectors are : (–1, 0, 1), (1, –1, 1), (1, 2, 1).

1.2 DIFFERENTIATION

A function f(x) is said to be differentiable at x = a, if both

( ) ( )
Lt , 0

h

f a h f a
h

h
 and 

( ) ( )
Lt , 0

h

f a h f a
h

h
.

exist and have a common value (finite or infinite).
The common value is called the derivative of f(x) at the point x = a.
If y = f(x), then its first order and higher order derivatives are written as :

2
2

2( ), , , ( ), , ,
dy d y

f x Dy f x D y
dx dx

 and so on.
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Some standard results of differentiation are :
Dn (ax + b)m = m(m – 1) (m – 2) ... (m – n + 1) an (ax + b)m – n

1nD
ax b

= 1
( 1) !

( )

n n

n
n a

ax b

Dn log (ax + b) =
1( 1) ( 1)!

( )

n n

x
n a

ax b

Dn (amx) = mn (log a)n amx

Dn (emx) = mn emx

Dn sin (ax + b) = sin
2

n na ax b

Dn cos (ax + b) = cos
2

n na ax b

Dn [eax sin (bx + c)] = 2 2 12( ) sin tan
n ba b bx c n

a

Dn [eax cos (bx + c)] = 2 2 12( ) cos tan
n ba b bx c n

a
Dn (xn) = n!

Leibnitz’s Theorem

If u, v be two functions of x possessing derivatives of nth order, then
(uv)n = unv + nc1 un–1 v1 + nc2 un–2 v2 + .... + ncr un–r vr + ... + ncn uvn.

1.3 CALCULUS

1.3.1 Limit

Right hand limit. If x approaches ‘a’ from the right, i.e., x > a, the limit of f is called
the right hand limit of f(x), and is written as

Lt ( ) or ( )
x a

f x f x

Left hand limit. If x approaches ‘a’ from the left, i.e., x < a, the limit of f is called the
left hand limit of f(x), and is written as

Lt ( ) or ( )
x a

f x f x

(i) If f(a+) = f(a–), then limit of f as x  a exists.

(ii) 1 2Lt [ ( ) ( )]
x a

f x f x  = 1 2Lt ( ) Lt ( )
x a x a

f x f x

(iii) 1 2Lt [ ( ) · ( )]
x a

f x f x  = 1 2Lt ( ) · Lt ( )
x a x a

f x f x

(iv) 1

2

( )
Lt

( )x a

f x
f x

 = 
1

2

Lt ( )

Lt ( )
x a

x a

f x

f x
 provided 2Lt ( ) 0

x a
f x

Continuity. A function f(x) defined for x = a is said to be continuous at x = a, if
(i) the value of f(x) at x = a is a definite number

(ii) the limit of the function f(x) as x  a exists and is equal to the value of f(x) at
x  = a.
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Indeterminate Forms

1. Form 
0
0 . If f(a) = (a) = 0, then

( )
Lt

( )x a

f x
x

=
( )

Lt
( )x a

f x
x [L’ Hospital’s rule]

In general
( )

Lt
( )x a

f x
x

=
( ) ( )

Lt
( ) ( )

n n

n nx a

f a f x
a x

2. Form . If f (a) = (a) = , then

( )
Lt

( )x a

f x
x

=
( ) ( )

Lt Lt
( ) ( )

n

nx a x a

f x f x
x n

3. Forms reducible to 0
0

 form.

(a) Form 0 × . If 
0

Lt ( ) 0
x

f x  and Lt ( )
x

x , then

f(x). (x) =
( )

[1/ ( )]
f x

x
 to take the form 

0
0

or =
( )

[1/ ( )]
x
f x

 to take the form 

(b) Form  – . If Lt ( )
x a

f x   and Lt ( )
x a

x , then

f(x) – (x) = 1 1 1/
( ) ( ) ( ) ( )x f x f x x

(c) Form 0º, 1 , º. If y = ( )Lt [ ( )] x

x a
f x , then

loge y = Lt ( ) log ( )ex a
x f x  takes the form 0 × , which can be evaluated by the

method given in (a) above.
Example 1.5 Evaluate the following limits:

(a)
x

x 1

x x
Lt

x 1 log x
(b)

x 0

log x
Lt

cot x

(c)
x 0

1 1Lt
sin x x (d) tan x

x
2

Lt sin x( )

Solution. (a) 
1 1 0Lt

1 log 1 1 0 0

x

x

x x
x x

 form

Using L’ Hospital’s rule 
( ) 1

Lt
11 0

x

x

d x
dx

x
Let y = xx

log y = x log x

1 dy
y dx

= 1 1 logx x
x

 = 1 + log x
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dy
dx

= xx(1 + log x)

1

(1 log ) 1
Lt

11

x

x

x x

x

=
1 1 0
1 1 0

 form

1
2

1( ) · (1 log ) · 0
Lt 1

x x

x

d x x x
dx x

x

=
2

1
2

1(1 log ) · 1 1
Lt 2

1 1

x x

x

x x x
x

x

(b)
0

log
Lt

cotx

x
x

=  form

20

1

Lt
cosecx

x
x

=
2

0

sin 0Lt
0x

x
x

 form

0

2 sin cos
Lt

1x

x x = 0

(c)
0

1 1Lt
sinx x x =  –  form

0

sin
Lt

sinx

x x
x x

= 0
0

 form

=
0

1 cos 0Lt
cos sin 0x

x
x x x

 form

=
0

sin 0 0Lt
sin cos cos 0 1 1 2x

x
x x x x

 = 0

(d) tan

2

Lt (sin ) x

x
x = 1  form

Let y = tan

2

Lt (sin ) x

x
x

loge y =
2

Lt tan log sine
x

x x

=
2

log sin 0Lt
cot 0

e

x

x
x  form

=
2

2 2

1 cos
sin

Lt Lt sin cos 0
cosecx x

x
x

x x
x

y = e0 = 1

Rolle’s Theorem

If (i) f(x) is continuous in the closed interval [a, b],
(ii) f (x) exists for every value of x in the open interval (a, b), and

(iii) f(a) = f(b),
then there is at least one value of x in (a, b) such that f (c) = 0
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Lagrange’s Mean-value Theorem

(a) If (i) f (x) is continuous in the closed interval (a, b), and
(ii) f (x) exists in the open interval (a, b), then these is at least one value c of

x in (a, b), such that

( ) ( )f b f a
b a = f (c)

(b) If (i) f(x) is continuous in the closed interval [a, a + h], and
(ii) f (x) exists in the open interval (a, a + h), then there is at least one number

(0 <  < 1), such that
f (a + h) = f (a) + hf (a + h)

Taylor’s Theorem

If (i) f (x) and its first (n – 1) derivatives be continuous in [a, a + h], and
(ii) f n(x) exists for every value of x in (a, a + h), then there is at least one number

(0 <  < 1), such that

f (a + h) = f (a) + hf (a) + 
2

( ) ... ( )
2! !

n
nh hf a f a h

n

1.3.2 Series

Maclaurin’s Series

f(x) = 
2 3

(0) (0) (0) (0) ....
2 ! 3!
x xf xf f f

Well-known Series

sin =
3 5 7

...
3 ! 5! 7 !

cos =
2 4 6

1 ...
2 ! 4 ! 6 !

sinh =
3 5 7

...
3 ! 5! 7 !

cosh =
2 4 6

1 ...
2 ! 4 ! 6 !

tan =
3

52 ...
3 15

tan–1x =
3 5

...
3 5
x xx

ex =
2 3 4

1 ...
2 ! 3! 4 !
x x xx

log (1 + x) =
2 3 4

...
2 3 4
x x xx

log (1 – x) =
2 3 4

...
2 3 4
x x xx

(1 + x)n = 2 3( 1) ( 1)( 2)
1 ...

2! 3!
n n n n n

nx x x
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Taylor’s Series

f(x + h) = 
2 3

( ) ( ) ( ) ( ) ...
2 ! 3!
h hf x hf x f x f x

1.3.3 Partial Differentiation

Functions of two or more variables
Limits. The function f(x, y) is said to tend to the limit l as x  a and y  b if and only

if the limit l is independent of the path followed by the point (x, y) as x  a and y  b.

Lt ( , )
x a
y b

f x y = l

Continuity. A function f(x, y) is said to be continuous at the point (a, b) if

Lt ( , )
x a
y b

f x y  exists and = f(a, b)

If Lt ( , )
x a
y b

f x y = l and Lt ( , )
x a
y b

g x y  = m, then

(i) Lt [ ( , ) ( , )]
x a
y b

f x y g x y  = l ± m

(ii) Lt [ ( , ) · ( , )]
x a
y b

f x y g x y  = l · m

(iii) Lt [ ( , )/ ( , )]
x a
y b

f x y g x y  = l/m

Example 1.6 If f (x) = x(x – 1) (x – 2). Determine c lying between  a and b if a = 0 and b

= 1
2

, using mean value theorem.

Solution. f (c) =
( ) ( )f b f a

b a

f (a) = f (0) = 0

f (b) = 1 1 1 1 31 2
2 2 2 2 8

f

f (x) = 3x2 – 6x + 2
f (c) = 3c2 – 6c + 2

3c2 – 6c + 2 =
3 0 38

40
2

3c2 – 6c + 5
4

= 0

or 12c2 – 24c + 5 = 0

c =
24 576 240

24
 = 1 ± 0.764 = 1.764, 0.236

Example 1.7 Evaluate the following limit:

x 0 2 2
y 0

xyLt
x y
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Solution. 2 20 0
Lt Lt

y x

xy
x y

= 20 0

1Lt Lt
y y

y
yy

 Limit does not exist.

1.4 PARTIAL DERIVATIVES

Let z = f (x, y) be a function of two variables x and y. The derivative of z w.r.t. x,

treating y as constant, is called the partial derivative of z w.r.t. x. It is denoted by ,
fz

x x
fx(x, y), Dx(f).

Higher partial derivatives can be obtained by further differentiation.
2 f

x y
= f f

x y y x
 and so on.

Total Derivative
(i) If u = f(x, y), where x = (t) and y = (t), then

du
dt

= . .
dyu dx u

x dt y dt

(ii) If f(x, y) = c be an implicit relation between x and y, then

df
dx

= . 0,
f f dy
x y dx

 giving

dy
dx

=
/
/

f x
f y

(iii) Similarly, if u = f(x, y, z) where x, y, z are functions of t, then

du
dt

= . . .
dyu dx u u dz

x dt y dt z dt

(iv) If T = f(p,v), then

dT = .T Tdp dv
p v

(v) If u = f (x, y), where x = (s, t) and y = (s, t), then

u
s = . .

yu x u
x s y s

and u
t

= . .
yu x u

x t y t

Taylor’s Theorem for Functions of Two Variables

f (x, y) = f (a, b) + [(x – a) fx(a, b) + (y – b) fy(a, b)]

+ 
1
2 !  [(x – a)2 fxx(a, b) + 2(x – a)(y – b) fxy(a, b) + (y – b)2 fyy(a, b)] + ...

Total Differential

du = u udx dy
x y
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1.4.1 Maxima and Minima of Two Variables

A function f (x, y) is said to have a maximum or minimum at x = a, y = b, accordingly
as

f (a + h, b + k) < or > f (a, b)
For all positive or negative small values of h and k.
(i) The necessary conditions for f (x, y) to have a maximum or a minimum at (a, b)

are that
fx(a, b) = 0, fy(a, b) = 0

(ii) Sufficient condition for maxima and minima.
Let r = fxx(a, b), s = fxy(a, b), t = fyy(a, b)
(a) If (rt – s2) > 0, then f(x, y) has a maxima or a minima at (a, b) accordingly as

r < or > 0.
(b) If (rt – s2) < 0, then f(x, y) will have neither a maximum nor a minimum at

(a, b), i.e., it is a saddle point.
(c) If (rt – s2) = 0, further investigation is required to find whether there is a

maximum or minimum at (a, b) or not.
Example 1.8 Determine the maxima or minima of f(x, y) = x3y2 (1 – x – y)
Solution. fx = 3x2y2 – 4x3y2 – 3x2y3

fy = 2x3y – 2x4y – 3x3y2

r = fxx = 6xy2 – 12x2y2 – 6xy3 = 6xy2(1 – 2x – y)
s = fxy = 6x2y – 8x3y – 9x2y2 = x2y (6 – 8x – 9y)
t = fyy = 2x3 – 2x4 – 6x3y = 2x3(1 – x – 3y)

For fx = 0, fy = 0, we have

x2y2 (3 – 4x – 3y) = 0
x3y (2 – 2x – 3y) = 0

Solving these two equations, we get

1 1
(0, 0), ,

2 3

At 
1 1

,
2 3 , rt – s2 = 

21 1 1 1 1 1 1 1
6 1 2 2 1 1 (6 4 3)

2 9 2 3 8 2 4 3

= 1 1 1 1 1 1 1 0
12 3 2 144 72 144 144

Also r =
1 1 1 1

6 1 1 0
2 9 3 9

Hence, f(x, y) has a maximum at 
1 1

,
2 3

Maximum value, f(x, y) =
1 1 1 1 1

1
8 9 2 3 432

At (0, 0), rt – s2 = 0 and therefore, further investigation is required. For points along
the line y = x, f (x, y) = x5(1 – 2x), which is +ve for x = 0.1 and –ve for x = –0.1, i.e., in the
neighbourhood of (0, 0). Hence f (0, 0) is not an extreme value.
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1.5 INTEGRATION
1.5.1 Definite Integrals

( )
b

a
f x dx = [ ( )] ( ) ( )b

af x f b f a

where, f (x) is the integral of f (x).
Properties:

(i) ( )
b

a
f x dx = ( )

b

a
f t dt

(ii) ( )
b

a
f x dx = ( )

a

b
f x dx

(iii) ( )
b

a
f x dx = ( ) ( )

c b

a c
f x dx f x dx

(iv)
0

( )
a

f x dx =
0

( )
a

f a x dx

(v) ( )
a

a
f x dx =

0
2 ( )

a
f x dx , if f(x) is even function of x

= 0 if f(x) is odd function of x.

(vi)
2

0
( )

a
f x dx =

0
2 ( )

a
f x dx , if f (2a – x) = f (x)

= 0, if f (2a – x) = –f (x)

(vii) 1 2( ) ( )
b

a
f x f x dx = 1 2 1 2( ) ( ) ( ) ( )

b b bb
a a a a

f x f x dx f x dx f x dx

Improper Integral

The definite integral 
0

( )
a

f x dx  is called improper integral, if

(i) The range of integration is infinite and the integrand is bounded.
(ii) The range of integration is definite and the integrand is unbounded.

(iii) Neither the range of integration is finite nor integrand is bounded.

1.5.2 Multiple Integrals
Double Integral

The integral ( , )
A

f x y dx dy  is called the double integral of (x, y) over the region A.

I =
2 2 2 2

1 1 1 1

( , ) ( , )
x y y x

x y y x

f x y dy dx f x y dx dy

The integration is carried from inner to the outer variable.
Example 1.9 Find the area between the parabolas y2 = 4ax and x2 = 4ay.

Solution. y =
2

4
x

a
4

216
x

a
= 4ax
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x3 = 64a3

x = 4a

y =
216 4

4
a a
a

Therefore, the parabolas intersect at (4a, 4a)

Area =
2

4 2

0
4

a ax

x
a

dy dx

=
4 2

0

2
4

a
xax dx

a

=
43/2 3

0

2 .
(3/2) 12

a
x xa

a

= 2 2 232 16 16
3 3 3

a a a

1.5.3 Triple Integral

The integral ( , , )
V

f x y z  dx dy dz is called the triple integral over the volume V.

I =
2 2 2

1 1 1

( ) ( , )

( ) ( , )

( , , )
x y x z x y

x y x z x y

f x y z dz dy dx

1.6 INFINITE SERIES

If u1, u2, u3, ..., un, ... be an infinite sequence of real numbers, then 
1

i
i

u  is called an

infinite series. An infinite series is denoted by un and the sum of its first n terms is
denoted by Sn.

(i) If Sn  finite limit as n , the series un is said to be convergent.
(ii) If Sn   as n , the series un is said to be divergent.

(iii) If Sn does not tend to a unique limit as n , then the series un is said to be
oscillatory or non-convergent.

Example 1.10 Show that the series 1 + r + r2 + r3 + ...  (i) converges if |r| < 1,
(ii) diverges if r  1, and (iii) oscillates if r  –1.

Solution. Let Sn = 1 + r + r2 + .... + rn – 1

(i) When r  < 1, Lt 0n

n
r

Sn =
1 1
1 1 1

n nr r
r r r

Lt nn
S = 1

1 r
, which is a finite limit.

 The series is convergent.

(ii) When r > 1, Lt n

n
r
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Sn =
1 1
1 1 1

n nr r
r r r

Lt nn
s

 The series is divergent.
when r = 1, then Sn = n

Lt nn
s

 The series is divergent.
(iii) When r = –1, then the series becomes 1 – 1 + 1 – 1..., which is an oscillatory series.

When r < –1, let r = –  so that  > 1. Then rn = (–1)n n

Sn = 1 1 ( 1)
. Lt

1 1

n n n
n

n

r
r

 Lt nn
S  or +  accordingly as n is even or odd. Hence, the series

oscillates.

1.6.1 Series Tests

Geometric Series Test

The geometric series a + ar + ar2 + ... is
(i) Convergent if | r | < 1

(ii) Divergent if r  1
(iii) Oscillatory if r  –1

Hyperharmonic or p-series Test

The infinite series 
1 1 1 1

...
1 2 3p p p pn

 is

(i) Convergent if p > 1
(ii) Divergent if p  1

Gauss’s Test

If un is a series of positive terms, and if the ratio 
1

n

n

u
u

 is expressed in the form

1

n

n

u
u

= 2 31 ...
n n n

, then the series is

(i) Convergent if  > 1
(ii) Divergent if   1

De-Morgan and Bertrand’s Test

If un is a positive term series, and if

1
Lt 1 1 logn

n n

u
n n

u  = , then the series is

(i) Convergent for  > 1
(ii) Divergent for  < 1

(iii) The test fails for  = 1
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General Properties of Series

(i) The convergence or divergence of an infinite series remains unaffected by the
addition or removal of a finite number of its terms.

(ii) If a series in which all the terms are positive is convergent, the series remains
convergent even when some or all of its terms are negative.

(iii) The convergence or divergence of an infinite series remains unaffected by
multiplying each term by a finite number.

(iv) The necessary condition for convergence of a positive terms series is :

Lt nn
u = 0

If Lt nn
u   0, the series un diverges.

Comparison Tests

(i) If two positive term series un and vn be such that (a) vn converges,
(b) un  vn for all values of n, then un also converges.

(ii) If two positive term series un and vn be such that (a) vn diverges, (b) un  vn
for all values of n, then un also diverges.

(iii) If two positive term series un and vn be such that Lt n

n n

u
v

 = finite quantity

(  0), then un and vn converge or diverge together.

Integral Test

A positive term series f (1) + f (2) + ... + f (n) + ..., where f (n) decreases as n increases,

converges or diverges according as the integral 
1

( ) (1)f x dx f  is finite or infinite.

1.6.2 Comparison of Ratios

If un and vn be two positive term series, then un converges if (i) vn converges,
and (ii) from and after some particular term,

1n

n

u

u
< 1n

n

v

v
Similarly, un diverges, if (i) vn diverges, and (ii) from and after a particular term

1

1

nn

n n

vu
u v

D’Alembert’s Ratio Test

In a positive term series un, if

1Lt n

n n

u

u
= , then the series converges for  < 1 and diverges for > 1.

Ratio test fails when  = 1.

Further Tests for Convergence

In the positive term series un, if 
1

Lt n

n n

u
k

u
, then

(i) the series converges for k > 1,
(ii) diverges for k < 1, and
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(iii) the test fails for k = 1.
When the ratio test fails, we apply the following tests :

1. Raabe’s Test. In the positive term series un, if 
1

Lt 1n

n n

u
n k

u
, then the

series converges for k > 1, and diverges for k < 1, but the test fails for k = 1.

2. Logarithmic Test. In the positive term series un, if 
1

Lt log n

n n

u
n k

u
, then

the series converges for k > 1, and diverges for k < 1, but the test fails for k = 1.

Cauchy’s Root Test

In a positive series un, if 1/Lt ( ) ,n
n

n
u then the series converges for  < 1, and

diverges for  > 1.

Alternating Series

A series in which the terms are alternately positive or negative is called an alternating
series.

Leibnitz’s Rule

An alternating series u1 – u2 + u3 – u4 + ... converges, if (i) each term is numerically

less than its preceding term, and (ii) Lt 0nn
u .

If Lt 0nn
u , the given series is oscillatory.

Series of Positive or Negative Terms

(i) If the series of arbitrary terms u1 + u2 + u3 + ... + un + ... be such that the series
u1  + u2  + u3  + ... + un  + ... is convergent, then the series un is said to be

absolutely convergent.
(ii) If un  is divergent but un is convergent, then un is said to be conditionally

convergent.

Power Series

A series of the form a0 + a1x + a2x
2 + ... + anxn + ... where the a’s are independent of

x, is called a power series in x. Such a series may converge for some or all values of x.
In the power series, un = anxn

1Lt n

n n

u

u
=

1
1 1Lt Lt

n
n n

nn x nn

a x a
x

aa x

1Lt n

n n

a

a = l, then the series

(i) Converges when 1 ,x
l

 and

(ii) Diverges for other values.

Thus, the power series converges within the interval 1 1x
l l

 and diverges for
values of x outside this interval.
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1.6.3 Convergence of Exponential Series

The series 
2

1 ... ...
2 ! !

nx xx
n

 is convergent for all values of x.

Because 1Lt n

n n

u

u
=

1
Lt Lt 0

! ( 1)!

nn

n n

x x x
n n n

Convergence of Logarithmic Series

The series 
2 3

... ( 1) ...
2 3

n
nx x xx

n
 is convergent for –1 < x  1

Here, 1Lt n

n n

u

u
=

1 1( 1)
Lt .

1 ( 1)

n n

n nn

x n
n x

= 1Lt Lt 11 1n n

nx x x
n

n
Hence, the series converges for x  < 1 and diverges for x  > 1.
when x = 1, the series is convergent.
when x = –1, the series is divergent.
Hence, the series converges for –1 < x  1

Convergence of Binomial series

The series 2( 1) ( 1)...( 1)
1 ... ...

2 ! !
rn n n n n r

nx x x
r

 converges for
x  < 1.

Uniform Convergence

The series un(x) is said to be uniformly convergent in the interval (a, b), if for a given
 > 0, a number N can be found independent of x, such that for every x in the interval (a, b),

S(x) – Sn(x) <  for all n > N

Weierstrass’s M-Test

A series un(x) is uniformly convergent in an interval (a, b), if there exists a convergent
series Mn of positive constants such that un(x)   Mn for all values of x in (a, b).

1.6.4 Fourier Series

The Fourier series for the function f(x) in the interval  x   + 2  is given by

f(x) = 0

1 1

cos sin
2 n n

n n

a
a nx b nx

where, a0 =
2

1 ( )f x dx

an =
2

1 ( ) cosf x nx dx

bn =
2

1 ( ) sinf x nx dx
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The conditions on f (x) to be expanded as Fourier series are :
(i) f (x) is periodic, single-valued and finite.

(ii) f (x) has a finite number of discontinuities in any one period.
(iii) f (x) has at the most a finite number of maxima and minima.

Change of Interval

For the periodic function f (x) defined in ( , + 2c),

f (x) = 0

1 1

cos sin
2 n n

n n

a n x n x
a b

c c

where, a0 =
2

1 ( )
c

f x dx
c

an

2
1 ( ) cos

c
n x

f x dx
c c

bn

2
1 ( ) sin

c
n x

f x dx
c c

Even and Odd Functions

A function f (x) is said to be even if f (– x) = f (x).
A function f (x) is said to be odd if f (– x) = – f (x).
A periodic function f (x) defined in (– c, c) can be represented by the Fourier series.

f (x) = 0

1 1

cos sin
2 n n

n n

a n x n x
a b

c c
where,

a0 = 1 1 1( ) , ( ) cos , ( ) sin
c c c

n n

c c c

n x n x
f x dx a f x dx b f x dx

c c c c c

(i) when f (x) is an even function

a0 =
0

2 ( )
c

f x dx
c

an =
0

2 ( ) cos
c

n x
f x dx

c c

bn = 0
(ii) when f (x) is an odd function

a0 = 0
an = 0

bn =
0

2 ( ) sin
c

n x
f x dx

c c
Half-Range Series

(i) Sine series

f (x) =
1

sinn
n

n x
b dx

c
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where, bn =
0

2 ( ) sin
c

n x
f x dx

c c

(ii) Cosine series

f (x) = 0

1

cos
2 n

n

a n x
a

c

where, a0 =
0

2 ( )
c

f x dx
c

an =
0

2 ( ) cos
c

n x
f x dx

c c

1.7 VECTOR CALCULUS

Divergence of a Vector

The divergence of a continuously differentiable vector point function F is denoted by
div. F and is defined by the equation

div. F = F F FF i j k
x y z

where i, j, k are unit vectors.
If F = Fxi + Fyj + Fzk, then

 · F = ( )x y zi j k F i F j F k
x y z

=
yx z

FF F
x y z

f is gradient of the scalar point function f and is written as grad f.

grad f =
f f f

f i j k
x y z

The grad f is a vector normal to the surface f = constant and has a magnitude equal
to the rate of change of f along its normal.

Curl of Vector

The curl of a continuously differentiable vector point function F is defined by the
equation

curl F = F F FF i j k
x y z

If F = Fx i + Fy j + Fz k, then

Curl F = ( )x y zF i j k F i F j F k
x y z

= y yz x z x

x y z

i j k
F FF F F F

i j k
x y z y z z x x y

F F F
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Physical Interpretation

(i) Div V gives the rate at which fluid is originating at a point per unit volume. If
div V = 0 everywhere then such a point function is called a solenoid vector function.

(ii) The curl of any vector point function gives the measure of the angular velocity
at any point of the vector field. Any motion in which the curl of the velocity
vector is zero is said to be irrotational, otherwise rotational.

Some important operations :

div grad f =
2 2 2

2
2 2 2·
f f f

f f
x y z

curl grad f =  ×  f = 0
div curl F =  ·  × f = 0
curl curl F = grad div F – 2F =  × (  × F) =  (  · F) – 2F
grad div F = curl curl F + 2F = (  · F) =  × (  × F) + 2F

Integration of Vectors

If two vector functions F(t) and G(t) be such that
( )dG t

dt
= F(t), then

( )
b

a

F t dt = [ ( ) ] ( ) – ( )b
aG t C G b G a

Line Integral

Consider a continuous vector function F(R) which is defined at each point of curve
C in space. The tangential line integral of F(R) along C is written as

( )
c

F R dR  or ·
c

dRF dt
dt

 or ·
c

dRF dt
dt�� , when the path of integration is a closed

curve.

Surface Integral

Consider a continuous function F(R) and a surface S. The normal surface integral of
F(R) over S is denoted by

· or ·
s s

F ds F n ds  where n  is a unit outward normal to S.

Green’s Theorem in the Plane

If  (x, y), (x, y), y and x be continued in a region E of the xy-plane bounded by
a closed curve C, then

( )
c

dx dy = –
E

dx dy
x y

This theorem connects a line integral around a closed curve into a double integral.

Stoke’s Theorem

If S be an open surface bounded by a closed curve C and F = Fx i + Fy j + Fz k be any
continuously differentiable vector point function, then

·
c

F dR = �·
s

curl F n ds

where �n  = cos  i + cos  j + cos  k is a unit external normal at any point of S.
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Volume Integral

Consider a continuous vector function F(R) and volume V enclosing the region E. The

volume integral of F(R) over E is written as 
E

F dv .

If F(R) = Fx(x, y, z) i + Fy (x, y, z) j + Fz (x, y, z) k, so that dv = dx dy dz, then

E

F dv  = x y z

E E E

i F dx dy dz j F dx dy dz k F dx dy dz

Gauss Divergence Theorem

If F is a continuously differentiable vector function in the region E bounded by the
closed surface S, then

�.
S

F n ds =
E

div F dv

where �n  is the unit external normal vector

If F(R) = Fx (x, y, z) i + Fy (x, y, z) j + Fz (x, y, z) k, then

( )x y z

S

F dy dz F dz dx F dx dy  = yx z

E

FF F
dxdydz

x y z

Green’s Theorem

If  and  are scalar point functions possessing continuous derivatives of first and
second orders, then

2 2( )
E

dv =
S

ds
n n

where 
n

 denotes differentiation in the direction of the external normal to the bounding

surface S enclosing the region E.

Harmonic Function

A scalar point function  satisfying the Laplace’s equation 2  = 0 at  every point of
a region  E, is called a harmonic function in E.

Greens’ Reciprocal Theorem

If  and  be both harmonic functions in E, then

S

ds
n

=
S

ds
n

1.8 ORDINARY DIFFERENTIAL EQUATIONS

In an ordinary differential equation, the differential coefficients have reference to a
single independent variable.

Equations of First Order and First Degree.
1. Variables Separable

f (y) dy = (x) dx
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its solution is, ( )f y dy  = ( )x dx c

2. Homogeneous equations

dy
dx

= ( , )
( , )

f x y
x y

where, f (x, y) and (x, y) are homogeneous functions of the same degree.

To obtain the solution, (i) put y = vx, then 
dy dvv x
dx dx

(ii) Separate the variables v and x, and integrate.
3. Equations reducible to homogeneous form

dy
dx

= ax by c
a x b y c

(a) when 
a b
a b

Put x = X + h, y = Y + k, so that dx = dX, dy = dY

dY
dX

=
( )
( )

aX bY ah bk c
a X b Y a h b k c

choose h, k so that the above equation becomes homogeneous.
Put ah + bk + c = a h + b k + c  = 0, so that

h
bc b c

= 1h
ca c a ab ba

or h = ,
bc b c ca c a

k
ab ba ab ba

when ab  –  ba  0,

dY
dX

=
aX bY
a X b Y

,

which is homogeneous and can be solved by putting Y = vX

(b) when 
a
a  = 

b
b , i.e., ab  – ba  = 0

Let a
a

= b
b

 = 1
m

dy
dx

=
( )
ax by c

m ax by c

Put ax + by = t so that 
dy dta b
dx dx

or
dy
dx = 1 t cdt a

b dx mt c

or
dt
dx =

( )bt bc am b t ac bc
a

mt c mt c

Now put t = ax + by to get the solution
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Linear Equations

dy
Py

dx
= Q

where, P, Q are functions of x.

Integrating Factor (I.F.) = 
e

Pdx

The solution is  Y(I.F.) = . ( . .)Q I F dx c

Equations reducible to the Linear Form (Bernoulli’s equation)

dy
Py

dx
= nQy

Divide both sides by yn, so that

1 nn dy
y Py

dx
��

� = Q

Put y1 – n = z so that (1 ) n dy dzn y
dx dx

, to obtain

1
1

dz PZ
n dx

= Q

or (1 )dz P n z
dx = (1 )Q n

which can be solved.

Exact Differential Equations

M(x, y) dx + N(x, y) dy = 0
M
y

= N
x

Its solution is,

( .)

(terms of  not containing )
y const

Mdx N x dy  = c

Integrating Factor

xd
y

= 2 2or
xdy ydx ydx xdy

x y
d(xy) = xdy + ydx

2xd
y

= 2
2yx dx x dy

y

2

2
y

d
x

=
2 22 2

4
yx dy xy dx

=
22xy dx

x
�
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1tan xd
y

=
2 2

ydx xdy
x y

d[tan–1 (x/y)] = 2 2
xdy ydx

x y

2 21 log ( )
2

d x y =
2 2

xdx ydy
x y

1–d
xy

=
2 2

xdy ydx
x y

log xd
y

= ydx xdy
xy

log
y

d
x =

xdy ydx
xy

xed
y

=
2

x xye dx e dy
y

Mdx + Ndy = 0, M = yf1(xy),  N = xf2(xy), If = 1
Mx Ny

, Mx – Ny  0.

Mdx + Ndy = 0, if 1 M N
N y x

 is a function of x alone, then I.F. = 
( )f x dx

e

Mdx + Ndy = 0, if 1 N M
M x y

 is a function of x alone, then I.F. = 
( )f y dy

e

If the equation Mdx + Ndy = 0 is homogeneous then 1
Mx Ny

 is an I.F. provided

Mx + Ny  0.

Particular Integral (P.I.)

P.I. =
1

1

1
...n n

n

X
D k D k

(i) X = eax

1
( )

axe
f D

= 1
( )

axe
f a

 if f (a)  0

= 1
( )

axx e
f a

 if f (a) = 0

= 2 1
( )

axx e
f a

 if f (a) = 0

and so on.
(ii) X = sin (ax + b) or cos (ax + b)

sin
cos2

1 ( )
( )

ax b
f D

= sin
cos2

1 ( )
( )

ax b
f a

, if f (– a2)  0
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= sin
cos2

1 ( )
(– )

x ax b
f a

, if f (– a2)  0

= 2 sin
cos2

1 ( )
( )

x ax b
f a

, if f (– a2)  0

(iii) X = xm

1
( )

mx
f D

= [ f(D)]–1 xm

Expand [ f (D)]–1 in ascending powers of D as far as the term in mD and operate
on xm term by term.

(iv) X = eax V, V being a function of x.

1
( )

axe V
f D

= 1
( )

axe V
f D a

(v) X = xV

1 ( )
( )

xV
f D

= 2
( )1

( ) ( )

f D
x V

f D f D

(vi) X is any function of x.

1
( )f D

X

Resolve 1
( )f D

 into partial fractions and operate each partial fraction on X.

1 X
D a

= ax axe Xe dx

1.9 LINEAR DIFFERENTIAL EQUATIONS

1 2

1 21 2 ...
n nn

nn n n
d y d y d y

p p p y X
dx dx dx

where p1, p2, ..., pn and X are functions of x only.
Linear differential equations with constant coefficients are of the form

1 2

1 21 2 ...
n nn

nn n n
d y d y d y

k k k y X
dx dx dx

where, ki, i = 1 to n are constants.

Denoting d
dx

 = D, 
2

2
2

d D
dx

, etc., so that 
2

2
2,

dy d y
Dy D y

dx dx
, etc., we have

(Dn + k1D
n – 1 + ... + kn)y = X

Complementary Function (C.F.)

So solve the equation (Dn + k1D
n – 1 + ... + kn)y = 0

Its symbolic coefficient equated to zero, i.e.,
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Dn + k1D
n – 1 + ... + kn = 0

is called the auxiliary equation (A.E.)
Let m1, m2, ..., mn be its roots
(i) If all the roots be real and different, then

(D – m1)(D – m2) ... (D – mn)y = 0

Its solution is , y = 1 2
1 2 ... nm xm x m x

nc e c e c e

(ii) If two roots are equal (i.e., m1 = m2), then

y = 31
1 2 3( ) ... nm x m xm x

nc c e c e c e

If three roots are equal (i.e., m1 = m2 = m3), then

y = 1 42
1 2 3 4( ) ... nm xm x m x

nc x c x c e c e c e

(iii) If one pair of roots is imaginary, i.e., m1 =  + i , m2 =  – i , then

y = 3
1 2 3( cos sin ) ... nm x m xx

ne c x c x c e c e

where, C1 = c1 + c2, C2 = i(c1 – c2)
Complete Solution (C.S.) = C.F. + P.I.

Method of Variation of Parameters

This method is applicable to equations of the form
y + py  + qy = X

where, p, q and X are functions of X.

P.I. = 2 1
1 2

y X y X
y dx y dx

W W

where, y1 and y2 are the  solutions of y  + py  + qy = 0

and W = 1 2

1 2

y y

y y
 is called the Wronskian of y1, y2.

Method of undetermined coefficients

To find P.I. of f(D) y = X, we assume a trial solution containing unknown constants
which are determined by substitution in the given equation.

The trial solution to be assumed in each case, depends on the form of X.

1.10 PARTIAL DIFFERENTIAL EQUATIONS

Linear Equations of the First Order

Pp + Qq = R (Lagrange’s linear equation)
where P, Q and R are functions of x, y, z. When P, Q, R are independent of z, it is known
as linear equation.

To obtain the solution, (i) form the subsidiary equations dydx dz
P Q R

(ii) solve these simultaneous equations giving u = a and v = b as its solutions.
(iii) write the complete solution as (u, v) = 0 or u = f (v)
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Laplace Transforms

Let f (t) be a function of t defined for all positive values of t. Then the Laplace transforms
of f (t), denoted by L{ f (t)} is defined by

L{ f (t)} =
0

( )ste f t dt

provided that the integral exists. s is a parameter which may be a real or complex number.

L{ f (t)} being clearly a function of s is briefly written at f (s),

i.e., L{ f (t)} = f  (s)

Inverse Laplace transform of f  (s)

f (t) = L–1{ f (s)}

Transforms of Elementary Functions

L(1) = 1
s

(s > 0)

L(tn) =
1

!
n
n

s
, where n = 0, 1, 2...

L(eat) = 1
s a

(s > a)

L(sin at) =
2 2

a
s a

(s > 0)

L(cos at) =
2 2

s
s a

(s > 0)

L(sinh at) =
2 2

a
s a

(s > a )

L(cosh at) =
2 2

s
s a

(s > a )

Properties of Laplace Transforms

1. Linearity property. If a, b, c be any constants and f, g, h any functions of t, then
L[af(t) + bg(t) – ch(t)] = aL{f(t)} + bL{g(t)} – cL{h(t)}

2. First shifting property. If L{f(t)} = f (s) then

L{eatf (t)} = f (s – a)

Useful Results

L(eat) =
1

s a

L(eattn) =
1

!
n

n

s a

L(eatsin bt) =
2 2( )

b
s a b


