

Authentic SHORTCUTS, TIPS, TRICKS & TECHNIQUES in MATHEMATICS for JEE MAIN, ADVANCED & KVPY

Er. Vaibhav Singh

Strategic Book for Class 11/ 12 & Engineering Exams

Corporate Office

DISHA PUBLICATION 45, 2nd Floor, Maharishi Dayanand Marg, Corner Market, Malviya Nagar, New Delhi - 110017 Tel : 49842349 / 49842350

No part of this publication may be reproduced in any form without prior permission of the publisher. The author and the publisher do not take any legal responsibility for any errors or misrepresentations that might have crept in. We have tried and made our best efforts to provide accurate up-to-date information in this book.

All Right Reserved

Typeset by Disha DTP Team

FOREWORD

The competitive exams like JEE test an aspirant's conceptual knowledge & how fast he/ she solve the problems with accuracy. So it becomes necessary that the students should know the short-cut methods in addition to the traditional methods of analysis. Keeping this in mind DISHA Publication brings a unique & innovative book **Authentic SHORTCUTS, TIPS, TRICKS & TECHNIQUES in MATHEMATICS** for JEE Main, Advanced & KVPY to enable aspirants for advanced abilities to Solve KVPY, JEE Main & Advanced level Questions well within the stipulated time.

An earnest effort has been made to bring the book *Authentic* SHORTCUTS, TIPS, TRICKS & TECHNIQUES in MATHEMATICS. We have really worked hard researching for the best possible Tips, Tricks, Techniques and Shortcut Solutions which students must know and can utilize in the examination hall.

- Shortcuts to help you in providing a different perspective to a concept/ problem thus strengthening your conceptual understanding.
- Tips provide you the Most Important Points to remember that aids in Conceptual Understanding & Problem Solving.
- Tricks empower you with magical tools that help you develop unique approaches to solve a problem.
- Shortcut Solutions provides alternate faster methods that save you a lot of time during examination.

The book encompasses 26 Chapters, which start with Review of Key Notes and Formulae, followed by Shortcuts, Tips, Tricks and Techniques which are further followed by Illustrations demonstrating Shortcut Solutions. The book in all contains:

- 1. 250+ Chapter-wise Shortcuts, Tips & Tricks to solve JEE Level Problems.
- 2. 400+ Illustrations with Shortcut Solutions of JEE Level Questions including JEE Past Years Questions.
- 3. 25+ International Techniques to crack JEE Advanced Level Questions.
- 4. 500+ Chapter-wise JEE Level Questions Exercise with Accurate & Shortest Possible Solutions.
- 5. Chapter-wise 350+ Important Key Notes Formulae.

This book provides you with hundreds of short-cut methods for the most conceptual and relevant problems. This book can also be used as a REVISION BOOK for various competitive exams. I hope that the book will fulfill the needs of the students for which it has been designed. We have made our best efforts to keep the book error-free but some errors might have crept in by mistake. We request our readers to highlight these errors and their fruitful suggestions so that we can keep on improving this book.

Author: Er. Vaibhav Singh

No Matter where You Prepare from, keep this book as your companion. It would definitely improve your score by 25-30%.

Contents

	Unit-I: Calculus	
1.	Functions	1–32
2.	Inverse Trigonometric Functions	33–50
3.	Limits	51–70
4.	Continuity	71–76
5.	Differentiability	77-84
6.	Methods of Differentiation	85–100
7.	Application of Derivatives	101–122
8.	Indefinite Integration	123–144
9.	Definite Integration	145–158
10.	Application of Integrals	159–172
11.	Differential Equation	173–188
	Unit-II: Algebra	
12	Complex Numbers	189–206
13	Ouadratic Equations	207-218
14	Matrices and Determinants	219-236
15	Permutations and Combinations	237–248
16	Binomial Theorem	249–262
17	Sequences and Series	263–280
18	Probability	281–296
	Unit-III: Trigonometry	
19	Trigonometric Ratios	297-310
20	Trigonometric Equations	311-318
21	Solution of Triangles	319-326
	Unit-IV: Coordinate Geometry	010 010
	onit ivi coordinate sconetry	
22	Straight Lines	327–340
23	Circles	341–348
24	Conic Sections	349–380
25	Vector Algebra	381–402
26	Three Dimensional Geometry	403–436

UNIT-I : CALCULUS

Definition: If A and B are two non-empty sets, then the rule that, for each and

Review of Key Notes and Formulae

Domain: All elements of set *A* $D_f = \{1, 2, 3\}$ **Co-domain:** All elements of Set B $Co-D_f = \{1, 4, 9, 16\}$ **Range:** Elements of set B which are involved in mapping. $R_f = \{1, 4, 9\}$

Different Types of Functions

2.

1. Polynomial function: Function in the form of:

 $f(x) = a_0 x^n + a_1 x^{n-1} + \dots + a_n$; $a_0 \neq 0$; Degree = nwhere, n, n-1, n-2 are non-negative integers. Domain of f(x) = R**Rational function:** Functions in form of

$$f(x) = \frac{p(x)}{q(x)}; q(x) \neq 0$$

where, P(x) and q(x) are polynomial in x. Domain of $f(x) = R - \{x : q(x) = 0\}$

	Function	Graph	Domain & Range	
3.	Constant function:	У	$Dom : x \in R$	
	$y = f(x) = c \forall x \in R,$ where c is a constant	y = c, c > 0	Range : $y = \{c\}$	
		$\langle 0 \rangle X$		
		•	<u> </u>	

2	Authentic Short	cuts-Tips & Tricks in	Mathematics
4.	Modulus function: y = f(x) = x	$y = -x, \qquad y = x, \\ x < 0 \qquad \qquad x \ge 0$	Dom: $x \in R$ Range: $y \in [0, \infty]$
5.	Exponential function: $y = f(x) = a^x$, where $a > 0, a \neq 1$	$y = a^{x}$	Dom: $x \in R$ Range: $y \in (0, \infty)$
6.	Logarithmic function: $y = f(x) = \log_a x$ where $a > 0, a \neq 1$	y y y y y y y y y y y y y y y y y y y	Dom: $x \in (0, \infty)$ Range: $y \in R$
7.	Signum function: y = f(x) = Sgn(x) $\Rightarrow f(x) = \begin{cases} \frac{ x }{x}, & \text{if } x \neq 0\\ 0, & \text{if } x = 0 \end{cases}$	$\begin{array}{c} & & y \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & &$	Dom: $x \in R$ Range: $y \in \{-1, 0, 1\}$
8.	Greatest integer function: y = f(x) = [x] \downarrow x greatest integer if x is integer less than x	-2 -1	Dom: $x \in R$ Range = $\{z\}$
9.	Fractional part function: $y = f(x) = \{x\}$ $\{x\} = x - [x]$		Dom: $x \in R$ Range: $y \in [0, 1)$
10.	Trigonometric function:		
	Functions	Domain	

Equal or Identical Functions:

Two functions f(x) and g(x) are said to be identical if.

- (i) Domain of f(x) = Domain of g(x)
- (ii) Co-domain of f(x) = Co-domain of g(x)
- (iii) f(x) = g(x) for every x belonging to their domain.

Classification of Functions:

1. **One-one function:** The mapping $f: A \to B$

(Injective Function) is one-one function if different elements in A have different images in B.

$$\begin{array}{c} x_1, x_2 \in A \\ x_1 \neq x_2 \implies f(x_1) \neq f(x_2) \end{array}$$

2. Many-one function: The mapping $f: A \to B$ is many-one two or more than two different elements in A have the same image in B.

$$\begin{array}{c} x_1, x_2 \in A \\ x_1 \neq x_2 \implies f(x_1) = f(x_2) \end{array}$$

3. Onto (surjective) function: A function is said to be onto if

Range = Co-domain

Into function: A function is said to be into if Range \neq Co-domain 4.

Composition of Function:

4

If $f: A \to B$ and $g: B \to C$ are two functions, then composite function of f and g are $go'f: A \to C$ will be defined as $g(f(x)) = gof(x) \ \forall x \in A$

Even and Odd Functions

(i) If $f(x) + f(-x) = 0 \forall x \in \text{Domain of } f(x)$

 \Rightarrow Odd function \Rightarrow Symmetric about origin

(ii) If $f(x) = f(-x) \forall x \in \text{Domain of } f(x)$

 \Rightarrow Even function \Rightarrow Symmetric about *y*-axis

★Note f(x) = 0 is even as well as odd function.

Homogeneous Function:

Functions consists of variables both x & y such that f(x, y) is homogeneous if:

$$f(tx, ty) = t^{n} f(x, y)$$

$$\downarrow$$
Homogeneous of degree 'n'

Periodic Function:

*

A function is periodic if its each value is repeated after a definite interval. So a function is periodic if there exists a positive real number 'T' such that

$$f(x + T) = f(x) \forall x \in D_f$$

$$rightarrow Period = nT; n \in I$$

$$\therefore \qquad f(x + nt) = f(x) ; n \in I$$

★ Note: Constant function has no fundamental period.

Inverse of a Function:

If $f: A \to B$ is a one-one and onto fn. both then we can define the inverse of the function as $g: B \to A$, such that $f(x) y \Rightarrow g(y) = x$

Inverse of f(x).

Properties of Invertible Function:

- (i) Inverse of bijective function is unique and bijective.
- (ii) $(f^{-1})^{-1} = f$
- (iii) $(gof)^{-1} = f^{-1}og^{-1}$
- (iv) Inverse of a function is a mirror image about y = x line.

Illustration 1

Find the polynomial function which satisfies the condition $f(x) + \left(\frac{1}{x}\right)$ =f(x). $\left(\frac{1}{x}\right)$ of degree 3 and is always increasing function.) Short-cut solution : $f(x) = 1 \pm x^3$ Using T-1 (:: degree is 3)Now, for function is always 1 sing $f(x) = 1 + x^{3} \text{ or } f(x) = 1 - x^{3}$ $f'(x) = 3x^{2} > 0 \& f'(x) = -3x^{2} < 0$ $\uparrow sing \implies \uparrow sing fn$ So. Differentiate, \Rightarrow Hence, we conclude that the required function is $f(x) = 1 + x^3$ **TIPS AND TRICKS: (** TIPS If y = f(x) = [x] is a greatest integer function then, $[x] + [-x] = \begin{cases} 0 \; ; \; x \in I \\ -1 \; ; \; x \notin I \end{cases}$

Authentic Shortcuts-Tips & Tricks in Mathematics Illustration 2 Find the value of $\int_{a}^{3\pi} [2\cos x] dx$, where [] is the greatest integer function. Short-cut solution : Using T-2 $\int_{a}^{3\pi} [2\cos x] dx$, where [] is greatest integer function. $I = \int_{a}^{3\pi} [2\cos x] \, dx$ Let ... (1) Apply, King Property : $\int_{a}^{b} f(x) dx = \int_{a}^{b} f(a+b-x) dx$ $I = \int_0^{3\pi} \left[-2\cos x\right] dx$... (2) \Rightarrow Now, add (1) and (2) $\Rightarrow 2I = \int_0^{3\pi} [2\cos x] + [-2\cos x] dx$ Since 2 cos x is not always '0' or Integer $2I = \int_0^{3\pi} (-1) dx$ \Rightarrow $\therefore I = \frac{-3\pi}{2}$ TIPS AND TRICKS: (If $y = f(x) = \{x\}$ is a fractional part function. then, $\{x\} + \{-x\} = \begin{cases} 0 \ ; & x \in I \\ 1 \ ; & x \notin I \end{cases}$ TIPS AND TRICKS: (T-4) ${}^{n}C_{r}$ and ${}^{r}C_{n}$, simultaneously possible only when n = r**Illustration 3** Let $f(x) = {}^{x+1}C_{2x-8}, g(x) = {}^{2x-8}C_{x+1}$ if $h(x) = f(x) \cdot g(x)$. Then find domain and range of h(x). Short-cut solution : Using T-4 x + 1 = 2x - 8 $\Rightarrow x = 9$ Hence domain is $x \in \{9\}$ and $R_f = 1$.

TIPS AND TRICKS: (T-7)

Identification of function using graph:

If it is possible to draw lines parallel to *y*-axis which cuts the curve more than one point then the given relation is not a function and when the line cuts the curve at only one point than it is a function.

Illustration 8

TIPS

Check whether it is a function or not $y^2 = 4 ax$

Vertical line cuts the graph more than one time then it is not a function.

Illustration 9

Check whether $x^2 + y^2 = a^2$ is a function or not Short-cut solution : Using T-7 yx

 \Rightarrow It is not a function.

Illustration 10

Check whether $y = \sqrt{x}$ is a function or not.

Functions

TIPS AND TRICKS: (T-8(i))

Graphical approach to check one-one or many-one function

Construct the graph and draw lines parallel to *x*-axis, if it cuts the graph one time then it is a function and if it cuts more than one time then it is a many-one function.

Illustration 11

TIPS

Check whether $y = x^2$ is a one-one or many-one function.

It is a many-one function.

Illustration 12

Check whether one-one or many-one function. (i) $f(x) = x^3$ (ii) $f(x) = x^2$ Short-cut solution : Using T-8(ii) (i) $f(x) = x^3 \Rightarrow f'(x) = 3x^2 > 0 \Rightarrow \text{ one-one function}$ (ii) $f(x) = x^2 \Rightarrow f'(x) = 2x \checkmark x > 0 \Rightarrow \uparrow \text{ses} \\ x < 0 \Rightarrow \downarrow \text{ses} \end{cases}$ Many- one function * Note: (1) All trigonometric functions are many-one function. (2) All inverse trigonometric function are one-one function.

Illustration 13

10

Check for one-one or many-one function for $f(x) = \log_e x$

It is one-one function.

Illustration 14

Check whether the following functions f(x) are either one-one or many-one function.

- (i) $f(x) = e^x$
- (ii) $f(x) = \sin x$ (iii) f(x) = |x|(iv) $f(x) = \tan x, x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

Short-cut solution :

Illustration 15

Check whether one-one or many-one function for

$$f(x) = f: R \to R$$

$$f(x) = x^3 + x^2 + 7x + \sin x$$

Short-cut solution :

Using T-8(ii)

Differentiate $f'(x) = 3x^2 + 2x + 7 + \cos x$ = $(x^2 + 2x + 1) + (2x^2 + 6) + \cos x$ $f'(x) = (x + 1)^2 + (2x^2 + 6) + \cos x$ $\ge 0 \qquad \ge 6 \qquad (-1, 1)$ $\Rightarrow \qquad f'(x) > 0 \Rightarrow \text{ one-one function}$

Illustration 16

Check whether one-one or many-one function for

 $f(x) = x^3 + 6x^2 + 11x$

Short-cut solution :

Using T-8(ii)

Differentiate $f'(x) = 3x^2 + 12x + 11$

This is a parabola open upwards Now, we find discriminant.

$$f'(n) > 0$$

$$f'(n) < 0$$

D = 144 - 132 $D \ge 0 \quad (two distinct)$

D > 0 (two distinct roots)

So this implies f'(x) > 0 and f'(x) < 0 both.

 \Rightarrow Many-one function.

TIPS AND TRICKS: (T-9)

Short trick to check whether onto or into function for polynomial functions. For $x \in R$ Put, $x \to \infty$ If $\Rightarrow f(x) \to \infty$

Put, $x \to -\infty$ If $\Rightarrow f(x) \to -\infty$ Hence, onto function.

Illustration 17

 \Rightarrow

TIPS

Check whether onto or into function.

(i) $f(x) = x^3$ (ii) $f(x) = x^2$

(ii)
$$f(x) = x$$

Short-cut solution :

Using T-9

- (i) Since f(x) is odd function.
 - $\Rightarrow \begin{array}{l} x \rightarrow +\infty, \quad f(x) \rightarrow +\infty \\ x \rightarrow -\infty, \quad f(x) \rightarrow -\infty \end{array} \Rightarrow \text{One- one function and onto function.}$
- (ii) $f(x) = a_0 x^{2n} + a_1 x^{2n-2} + \dots$

Put, $x \to +\infty$, $f(x) \to \infty$ $x \to -\infty$, $f(x) \to \infty$ \Rightarrow Many-one function and into function.

Illustration 18

Check whether the given function is bijective or not $f(x) = x^3 + 5x + 1$

[AIEEE 2009]

Short-cut solution :

Using T-8(ii)

On differentiating $\rightarrow f(x) = 3x^2 + 5 > 0s$ \Rightarrow one-one function.

13

Using T-9

TIPS

 $\begin{array}{c} x \to +\infty, \quad f(x) \to \infty \\ x \to -\infty, \quad f(x) \to -\infty \end{array}$ \Rightarrow Onto function

Hence, above function is bijective.

TIPS AND TRICKS: (T-10)

If set A contains 'm' elements and another set B contains 'n' elements, then the
(i) Total number of functions = (n)^m For f : A → B
(ii) Number of one-one function is ⁿP_m for n ≥ m and 0 (zero) for n < m
(iii) Number of many-one function = Total number of functions – One-one function

- (iv) Number of onto functions are
 - (a) If $n < m \Rightarrow n^m {}^nC_1(n-1)^m + {}^nC_2(n-2)^m {}^nC_3(n-3)^m + \dots$
 - (b) If $n = m \implies n!$
- (c) If $n > m \implies 0$ (v) Number of into function are
 - (a) If $n \le m \implies$ Total number of functions Onto functions
 - (b) If $n > m \implies (n)^m$ [Total Onto]
- (vi) Number of constant functions = n.

(vii) If *A* and *B* are two sets having n-elements and '2' elements respectively. Then number of onto functions from *A* to *B* is $2^n - 2$ if $n \ge 2$ and '0' if n > 2

Illustration 19

If $A = \{1, 5, 9, 7, 14, 22\}$ and $B = \{2, 3, 5, 6\}$, then number of:

- (a) Total functions
- (b) One-one functions
- (c) Many-one functions
- (d) Onto function
- (e) Into functions
- (f) Constant functions

Short-cut solution :

(a)

Since, m = 6 and n = 4

- Using T-10(i) \Rightarrow $(n)^m = (4)^6 = 4096$
- (b) Using T-10(ii) \Rightarrow Since $n < m \Rightarrow$ One-one function = 0
- (c) Using T-10(iii) \Rightarrow Many-one function = Total (One-one functions)

=4096 - 0 = 4096

TIPS AND TRICKS: (T-14)

Let f(x) and g(x) be the two functions which are periodic then period of h(x) = f(x) + g(x) is LCM of T_1 and T_2 as one its periods. where, T_1 , T_2 are period of f(x) and g(x) respectively. *****Note: LCM of irrational number = $\frac{\text{LCM of numerator}}{\text{HCF of denominator}}$

Illustration 26

TIPS

Find period of $f(x) = \cos(\sin x) + \cos(\cos x)$

Short-cut solution :

Using T-14 Since, period of $\cos(\sin x)$ is π and priod of $\cos(\cos x)$ is π Hence the priod of $f(x) = \text{LCM}(\pi, \pi) = \pi$.

Illustration 27

Find period of $f(x) = -\sin \frac{2x}{7} + \cos \frac{3x}{5}$. Short-cut solution : Using T-13 Since period of $-\frac{\sin 2x}{7}$ is 7π and period of $\frac{\cos 2x}{5}$ is $\frac{10\pi}{3}$ Using T-14

Hence, the period of $f(x) = \text{LCM}\left(7\pi, \frac{10\pi}{3}\right)$

$$\Rightarrow \frac{\text{LCM of } N'}{\text{HCF of } D^r} = \frac{\text{LCM } (7\pi, 10\pi)}{\text{HCF } (1,3)} = \frac{70\pi}{1}$$

TIPS AND TRICKS: (T-15)

Let y = f(x) is a function and it satisfies the relation f(n + a) + f(n + b) = constant then period of this junction is 2|b-a|.

Illustration 28

If f(x) + f(x + 5) = 12, the period of f(x) is:

Illustration 31

Find number of solution of $x \cdot ln x = 1$

Using SC-1 ::
$$ln x = \frac{1}{x}$$
; $x > 0$ and $x \neq 0$

Now, we draw graph for y = ln x and $y = \frac{1}{x}$; x > 0

Number of intersection = 1 = Number of solutions **Illustration 32**

Find number of solutions of $\sin x = \frac{x}{10}$. Short-cut solution :

Using SC-1 Now, we will draw graphs for $y = \sin x$ and $y = \frac{x}{10}$ \therefore $\sin x \in [-1, 1]$ $\Rightarrow -1 \le \frac{x}{10} \le 1 \Rightarrow -10 \le x \le 10$ y $y = \frac{x}{10}$ $y = \sin x$

We have to sketch the curve when $x \in [-10, 10]$ Hence, number of intersection = 7 = Number of solutions.

Illustration 33

18

Find the number of solutions of $e^{2x} = x^2$.

Short-cut solution :

Number of intersection in $x \in [0, 2\pi] = 2$ = Number of solutions

SHORTCUTS: (SC-2)

In order to find domain and range of function, the shortest way is to draw graph. Graphs are also useful for one-one, many-one, onto and into.

Domain = Existence of graph along x - axis

Range = Existence of graph along y-axis

Illustration 35

Find the domain and range also check function is one-one or not in its

domain.
$$f(x) = \frac{x^2 - 5x + 4}{x^2 + 2x - 3}$$

Using SC-2
$$f(x) = \frac{x^2 - 5x + 4}{x^2 + 2x - 3} = \frac{(x - 4)(x - 1)}{(x + 3)(x - 1)}; \quad x \neq 1, -3$$

First of all we will check monotonicity.

Differentiating f(x) w.r.t. x, we get

$$\Rightarrow \qquad f'(x) = \frac{d}{dx} \left(\frac{x-4}{x+3} \right) = \frac{(x+3) - (x-4)}{(x+3)^2} = \frac{7}{(x+3)^2}$$

 \Rightarrow $f'(x) > 0 \Rightarrow$ Increasing function

Illustration 38

If $f: R \rightarrow R$, $f(x) = x^3 + (a+2)x^2 + 3ax + 5$ is invertible mapping. Find 'a'.

Short-cut solution :

Using SC-3Invertible \Rightarrow One-one + OntoHence $f'(x) \ge 0$ or $f'(x) \le 0$ \Rightarrow $f'(x) = 3x^2 + 2x (a + 2) + 3a \ge 0$ or $\le 0 \forall n \in R$

SHORTCUTS: (SC-4)

Inverse of a function is a mirror image about y = x line. So copy the graph along other side of y = x line.

Illustration 39

22

If $f(x) = \begin{cases} x & ; x < 1 \\ x^2 & ; 1 \le x \le 4. \end{cases}$ Then find $f^{-1}(x)$ $8\sqrt{x}; x > 4$

Short-cut solution :

Using SC-4 Draw Graph

SHORTCUTS: (SC-5)

Even functions are symmetric about *y*-axis odd functions are symmetric about origin.

(ii) Odd Function

Draw graph of f(x) using shortcut \Rightarrow Symmetry about origin

Hence,
$$f(x) = \begin{cases} -x-2 \ ; & x \in (-\infty, -1) \\ -x^2 & ; & x \in (-1, 0) \end{cases}$$

TECHNIQUE

If f^{-1} be the inverse of bijective function f(x) then $f(f^{-1}(x)) = x$. Apply the formula of f on $f^{-1}(x)$ and use of the identity $f(f^{-1}(x)) = x$ to solve for $f^{-1}(x)$

Illustration 41

Find the inverse of the function $f(x) = \log_a \left(x + \sqrt{x^2 + 1} \right); a > 1$

Short-cut solution :
Using Tech.

$$f(f^{-1}(x)) = x$$

 $\Rightarrow \log_a \left(f^{-1}(x) + \sqrt{(f^{-1}(x))^2 + 1} \right) = x$
 $\Rightarrow f^{-1}(x) + \sqrt{(f^{-1}(x))^2 + 1} = a^x$...(i)
and $-f^{-1}(x) + \sqrt{(f^{-1}(x))^2 + 1} = a^{-x}$...(ii)
From (i) and (ii), $f^{-1}(x) = \left(\frac{a^x - a^{-x}}{2}\right)$

24

Functions

25

Concept Booster Exercise

				(1)
1.	Find a polynomi	ial of degree '5' which s	atisfies the relation	$\inf f(x) + f\left(\frac{1}{x}\right)$
	$=f(x) \cdot f\left(\frac{1}{x}\right)$ wl	hich is always decreasing	function.	
2.	Find a polynomi	al which satisfies $f(x) + f(x)$	$f\left(\frac{1}{x}\right) = f(x) \cdot f\left(\frac{1}{x}\right)$	$\left(\frac{1}{x}\right) \forall x \in R - \{0\}$
	and the condition	n $f(3) = -26$, then deter	rmine $f'(1)$.	
3.	Find: $I = \int_0^{3\pi} \{2$	$2\cos x$ dx; where {} is fr	actional part funct	ion.
4.	The range of the	function $f(x) = {}^{7-x}P_{x-3}$ i	S	[AIEEE 2004]
	(a) $\{1, 2, 3\}$	(b) $\{1, 2, 3, 4, 5, 6\}$	(c) $\{1, 2, 3, 4\}$	(d) $\{1,2,3,4,5\}$
5.	If $f: R \to S$, defi	ned by $f(x) = \sin x - \sqrt{3}$	$\cos x + 1$, is onto,	then the interval
	of ' <i>S</i> ' is:			[AIEEE 2004]
	(a) [0, 3]	(b) [-1, 1]	(c) [0, 1]	(d) [-1, 3]
6.	The range of the	function $f(x) = \frac{2+x}{2-x}$, x	$c \neq 2$ is	[AIEEE 2002]
	(a) <i>R</i>	(b) $R - \{-1\}$ 2 - x	(c) $R - \{1\}$	(d) $R - \{2\}$
7.	The range of $f($	$f(x) = \frac{3x-1}{2x+1}; x \neq \frac{-1}{2}$		
	(a) $R - \left\{\frac{2}{3}\right\}$	(b) $R - \left\{\frac{3}{2}\right\}$	(c) <i>R</i>	(d) $R - \left\{\frac{2}{5}\right\}$
8.	The range of the	function $f(x) = \cos\left(\frac{1}{2}s\right)$	$\operatorname{in} x$	
	(a) [cos 2, 1]	(-	(b) $\left[\cos\frac{1}{2}, 1\right]$	
	(c) [-1, 1]		(d) None of thes	se
9.	The range of the	function $f(x) = \cos(5 \sin \theta)$	n <i>x</i>)	
	(a) [cos 5, 1]	(b) [-1, 1]	(c) $\left[\cos\frac{1}{5},1\right]$	(d) [-1, 1)
10.	Which of the fol	lowing is/are the function	ns	[AIEEE 2002]
11.	(a) $y^2 = 4x$ The function f :	(b) $x^2 = 8y$ $R \rightarrow R$ defined by $f(x) =$	(c) $x^2 + y^2 = 4$ sin x is:	(d) $\left[\cos\frac{1}{5}, 1\right]$
	(a) Into	(b) Onto	(c) One-one	(d) Many-one

2	6 Authentic Shortcuts-Tips &	Tricks in Mathematics
12.	The period of the function $f(x) = if f(x + x)$	f(x+20) = 50
	(a) 30 (b) 40	(c) 60 (d) 20
13.	The period of $f(x) = \cos \frac{\pi}{4} x + \sin \frac{\pi x}{3}$.	
	(a) 24 (b) 12	(c) 36 (d) 6
14.	The function $f: R \to R$ defined by $f(x) =$	$x^2 - 3x + 2$
	(a) Onto (b) Into	(c) Many-one (d) One-one
15.	Given $X = \{1, 2, 3, 4\}$, find all one-one, ont	to mappings, $f: X \rightarrow X$ such that,
16.	Let $E = \{1, 2, 3, 4\}$ and $F = \{1, 2\}$. The to <i>F</i> is	e number of onto functions from <i>E</i> [AIEEE 2002]
	(a) 14 (b) 16	(c) 12 (d) 8
17.	Suppose $f(x) = (x + 1)^2$ for $x \ge -1$, If $g(x)$ reflection of the graph of $f(x)$ with respect) is the function whose graph is the et to the line $y = x$, then $g(x)$ equals [AIEEE 2002]
	(a) $-\sqrt{x} - 1, x \ge 0$	(b) $\frac{1}{(x+1)^2}, x \ge -1$
	(c) $\sqrt{x+1}, n \ge -1$	(d) $\sqrt{x} - 1, x \ge 0$
18.	Let $f: R \to R$ be defined by $f(x) = 2x + s$	$\sin x$; $x \in R$. Then f is [AIEEE 2002]
	(a) one to one and onto	(b) one to one but not onto
	(c) onto but not one-one	(d) neither one-to one nor onto
19.	The function $f: [0, 3] \rightarrow [1, 29]$, defined	d by $f(x) = 2x^3 - 15x^2 + 36x + 1$ is
		[AIEEE 2012]
	(a) one-one and onto	(b) onto but not one-one
	(c) one-one but not onto	(d) neither one-one nor onto
20.	The inverse function of $f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}$	$x \in (-1, 1)$ is [JEE M 2020]
	(a) $\frac{1}{4}\log_e\left(\frac{1+x}{1-x}\right)$	(b) $\frac{1}{4}\log_e\left(\frac{1-x}{1+x}\right)$
	(c) $\frac{1}{4} \left(\log_8^e \right) \log_e \left(\frac{1+x}{1-x} \right)$	(d) $\frac{1}{4} (\log_8^e) \log_e \left(\frac{1-x}{1+x} \right)$

Solutions

1. (1- x^5) Using T-1 $f(x) = 1 \pm x^5$ Since function is always decreasing is So, f'(x) < 0 $\Rightarrow f(x) = 1 + x^5$ or $f(x) = 1 - x^5$ $f'(x) = 5x^4 > 0$ or $f'(x) = -5x^4 < 0$ \Rightarrow increasing function \Rightarrow decreasing function Hence, $f(x) = 1 - x^5$ is our required answer. (-3) Using T-1 $f(x) = 1 \pm x^n$ 2. ·.· f(3) = -26 $f(3) = 1 + 3^n$ $f(3) = 1 - 3^n$ $-26 = 1 + 3^n$ $-26 = 1 - 3^n$ $-27 = 3^{n}$ \Rightarrow 3ⁿ = 27 \Rightarrow n=3Not possible Hence, the required function is $f(x) = 1 - x^3 \implies f'(x) = -3x^2$ $\left(\frac{3\pi}{2}\right) \stackrel{\Rightarrow}{\underset{I=\int_{0}^{3\pi} \{-2\cos x\}}{\Rightarrow} dx} f'(1) = -3$ 3. ... (1) Apply king property $\Rightarrow I = \int_0^{3\pi} \{2 \cos x\} dx$... (2) Add eqns. (1) and (2) $\Rightarrow 2I = \int_0^{3\pi} (\{2 \cos x\} + \{-2 \cos x\}) dx$ $\Rightarrow 2I = \int_0^{3\pi} (1) \, dx \quad \Rightarrow \quad I = \frac{3\pi}{2}$ (a) We know that $x - 3 \ge 0 \implies x \ge 3$ 4. And $7 - x \ge x - 3 \implies 2x \le 10 \implies x \le 5$ Hence, x = 3, 4, 5Now At $x=3 \Rightarrow y={}^4P_0=1$ At $x=4 \Rightarrow y={}^3P_1=3$ At $x=5 \Rightarrow y={}^2P_2=2$ Hence, range = $\{1, 2, 3\}$.

Authentic Shortcuts-Tips & Tricks in Mathematics 30 (d) Using T-15 a = 10, b = 2012. \Rightarrow Period = 2 |20 - 10| = 20.13. (a) $f(x) = \frac{\sin \frac{\pi x}{4}}{\underbrace{\int_{1}^{4} \int_{1}^{1} \frac{\pi x}{T_{2}}}}, \text{ Since period of } \sin x = 2\pi$ $\boxed{\text{Using T-13}} \quad T_1 = \frac{2\pi}{\frac{\pi}{4}} \quad \text{and} \quad T_2 = \frac{2\pi}{\frac{\pi}{3}}$ Using T-14 Period = LCM (T_1, T_2) = LCM (8, 6) = 24. 14. (b, c) Using T-8 $f(x) = x^2 - 3x + 2 \implies$ Parabola open upwards $\rightarrow x \Rightarrow$ Many-one function Using T-9 $\begin{array}{ccc} x \to \infty & \Rightarrow & f(x) \to \infty \\ x \to -\infty & \Rightarrow & f(x) \to \infty \end{array} \right\} \Rightarrow \text{ Into function}$ $f:X\to X$ **15.** (24) Using T-10(ii) m = 4 and n = 4 ${}^{n}P_{m} = {}^{4}P_{4} = \frac{4!}{0!}$ 2 3 n = m \Rightarrow No. of one-one functions = 24 Using T-10(iv) Since, n = m = 4 \Rightarrow No. of onto functions = n! = 4! = 24. $f:E\to F$ Using T-10(iv) m = 4 and n = 216. (a) Since, n < mSince, n < m $\Rightarrow n^m - {}^nC_1 (n-1)^m + {}^nC_2 (n-2)^m - {}^nC_3 (n-3)^m + \dots$ $= 2^4 - {}^2C_1 (1)^4 + {}^2C_2 \times 0$ 2 3 = 16 - 2 = 14.17. (d) Using SC-3 Since, g(x) is reflection about y = x line of f(x) \Rightarrow g (x) is inverse of f (x) Hence, $y = (x+1)^2 \implies x+1 = \sqrt{y} \implies x = -1 + \sqrt{y}$ $\Rightarrow f^{-1}(x) = -1 + \sqrt{x} : x \ge 0.$

Functions 31 Using T-8(ii) 18. (a) Differentiate f(x) $f'(x) = 2 + \underbrace{\cos x}_{[-1,1]} \implies f'(x) > 0 \implies$ one-one function Using T-9 $f(x) = 2x + \sin x$ [-1,1] $\begin{array}{l} x \to \infty \quad \Rightarrow \quad f(x) \to \infty \\ x \to -\infty \quad \Rightarrow \quad f(x) \to -\infty \end{array} \right\} \Rightarrow \text{ Onto function }.$ **19.** (d) Using T-8(ii) Differentiate f(x) $f'(x) = 6x^2 - 30x + 36$ = 6 (x² - 5x + 6) For, $x \in [0, 2] \Rightarrow f'(x) > 0$ For, $x \in [2,3] \Rightarrow f'(x) < 0$ Hence, many-one function. **20.** (c) $\frac{y}{1} = f(x) = \frac{8^{2x} - 8^{-2x}}{8^{2x} + 8^{-2x}}; x \in (-1, 1)$ Apply componendo and dividendo $\Rightarrow \frac{y+1}{y-1} = \frac{2.8^{2x}}{-2.8^{-2x}} = -8^{4x}$ Take \log_8 to both sides $\Rightarrow 4x = \log_8\left(\frac{y+1}{1-y}\right) \Rightarrow f^{-1}(x) = \frac{1}{4}\log_8\left(\frac{y+1}{1-y}\right) \quad \{\text{Change base}\}$ $\Rightarrow f^{-1}(x) = \frac{1}{4} \frac{\log_e\left(\frac{x+1}{1-x}\right)}{\log_e 2}$ 21. (a, b, c) For even/odd function $\Rightarrow f(-x) = [\log(\sec x - \tan x)]^3$ $= \left(\log \left[\frac{\sec^2 x - \tan^2 x}{\sec x + \tan x} \right] \right)^3 = \left[\log \left(\frac{1}{\sec x + \tan x} \right) \right]^3$ $= - [\log(\sec x + \tan x)]^3$ $f(-x) = -f(x) \implies \text{Odd function}$ For one-one function Using T-8(ii) $f'(x) = 3[\log(\sec x + \tan x)]^2 \times \frac{1 \cdot \sec x(\sec x + \tan x)}{(\sec x + \tan x)}$

	$\Rightarrow f'(x) = 3[\log(\sec x + \tan x)]^3 \underbrace{\sec x}_{>0 \text{ for } \left(\frac{-\pi}{2}, \frac{\pi}{2}\right)}$
(c)	Since, range = codomain $\in R$. Hence, onto function. Put $x = -7$ $\Rightarrow f(-7) = -(a \cdot 7^7 + b \cdot 7^3 + c \cdot 7) - 5 \Rightarrow (a \cdot 7^7 + b \cdot 7^3 + c \cdot 7) = -12$
	Now, put $x = 7$ $f(7) = \underbrace{a \cdot 7^7 + b \cdot 7^3 + c \cdot 7}_{-5} = -12 - 5 = -17.$
(c)	Using T-13 Since period of $\cos x$ is 2π
	\Rightarrow Period of $f(x)$ is $\frac{2\pi}{3}$.
<i>x</i> ∈	$\left(\frac{1}{2}, \frac{\pi}{4}\right)$
(1)	$\cos x - \frac{1}{\sqrt{2}} \ge 0$ (2) $\frac{3}{2}x - x^2 - \frac{1}{2} > 0$
$\left(x - \frac{1}{2}\right)$	$(x-1) < 0$ $x \in \left(+\frac{1}{2}, 1\right)$
	A ^y
	Common part
	$\frac{1}{\sqrt{2}}$
	$\frac{1}{2} \frac{\pi}{4} \frac{\pi}{1} \frac{\pi}{2}$
	$y = \cos x$

Hence, the common part is the graph will give the domain of f(x)So the domain is $x \in \left(\frac{1}{2}, \frac{\pi}{4}\right]$.

25. (a)

32

22.

23.

24.

Using T-8(ii) $f'(x) = \frac{(1+x)-x}{(1+x)^2} > 0$ Hence f(x) is one-one function Since, in the co-domain $\rightarrow [0, \infty)$; '0' is included But in domain $x \neq 0 \Rightarrow f(x) \neq 0$

Hence, Range \neq Co-domain \Rightarrow Not onto

Inverse Trigonometric Functions

Review of Key Notes and Formulae

1. **Inverse Trigonometric Function:** As we know that trigonometric functions are not one-one and onto i.e. their natural domain and range, so their inverse do not exist but if we restrict their domain and range, then their inverse may exist.

	Function	Graph	Domain	Range
(i)	$y = \sin^{-1} x$	$(0, \pi/2)$ (-1, 0) (1, 0) (1, 0) $-\pi/2$	$x \in [-1, 1]$	$y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(ii)	$y = \cos^{-1} x$	(-1, 0) (1, 0) γ π π (1, 0)	$x \in [-1, 1]$	$x \in [0, \pi]$
(iii)	$y = \tan^{-1} x$	$\begin{array}{c} & y \\ \pi/2 \\ \hline \\ 0 \\ \hline \\ -\pi/2 \end{array}$	$x \in R$	$y \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

2. Graphs of Inverse Trigonometric Functions

D.

35

(v)
$$\operatorname{cosec}^{-1}(\operatorname{cosec} x) = x ; x \in \left\lfloor -\frac{\pi}{2}, \frac{\pi}{2} \right\rfloor - \{0\}$$

(vi)
$$\sec^{-1}(\sec x) = x$$
; $x \in [0, \pi] - \left\{\frac{\pi}{2}\right\}$
Very Important Note:

If 'x' is not given according to above domain then make it between the above domain by using " $\pm n\pi$ "

Ex:

$$\sin^{-1}\left(\sin\frac{2\pi}{3}\right) = \sin^{-1}\left(\sin\left(\pi - \frac{\pi}{3}\right)\right)$$
$$= \sin^{-1}\left(\sin\frac{\pi}{3}\right)$$
$$= \frac{\pi}{3}.$$

Property-3

(i) $\sin^{-1}(-x) = -\sin^{-1}x$ $\forall x \in [-1, 1]$ (ii) $\cos^{-1}(-x) = \pi - \cos^{-1}x$ $\forall x \in [-1, 1]$ (iii) $\tan^{-1}(-x) = -\tan^{-1}x$ $\forall x \in R$ (iv) $\cot^{-1}(-x) = \pi - \cot^{-1}x$ $\forall x \in R$ (v) $\csc^{-1}(-x) = \pi - \sec^{-1}x$ $\forall x \in (-\infty, -1] \cup [1, \infty)$ (vi) $\sec^{-1}(-x) = \pi - \sec^{-1}x$ $\forall x \in (-\infty, -1] \cup [1, \infty)$ **Property-4** (i) $\sin^{-1}x + \cos^{-1}x = \frac{\pi}{2}$; $x \in [-1, 1]$ (ii) $\tan^{-1}x + \cot^{-1}x = \frac{\pi}{2}$; $x \in R$ (iii) $\sec^{-1}x + \csc^{-1}x = \frac{\pi}{2}$; $x \in (-\infty, -1] \cup [1, \infty)$ **Property-5** (i) $\sin^{-1}x = \csc^{-1}(\frac{1}{x})$; $x \in [-1, 1] - \{0\}$ (ii) $\cos^{-1}x = \sec^{-1}(\frac{1}{x})$; $x \in [-1, 1] - \{0\}$ (iii) $\tan^{-1}x = \begin{cases} \cot^{-1}\frac{1}{x} ; x > 0 \\ -\pi + \cot^{-1}\frac{1}{x} ; x < 0 \end{cases}$

Property-6

36

(i)
$$\tan^{-1} x + \tan^{-1} y = \begin{cases} -\pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right); & x < 0, y < 0, xy > 1 \\ \tan^{-1} \left(\frac{x+y}{1-xy} \right) & ; & xy < 1 \\ \pi + \tan^{-1} \left(\frac{x+y}{1-xy} \right) & ; & x > 0, y > 0, xy > 1 \end{cases}$$

(ii) $\tan^{-1} x - \tan^{-1} y = \begin{cases} -\pi + \tan^{-1} \left(\frac{x-y}{1+xy} \right); & x < 0, y < 0, xy < -1 \\ \tan^{-1} \left(\frac{x-y}{1+xy} \right); & xy > -1 \\ \pi + \tan^{-1} \left(\frac{x-y}{1+xy} \right); & x > 0, y < 0 \text{ and } xy > -1 \end{cases}$

Property-7

$$\sin^{-1} x \pm \sin^{-1} y = \begin{cases} \sin^{-1} \left[x\sqrt{1-y^2} \pm \sqrt{1-x^2} \right]; x, y \ge 0 \text{ and } x^2 + y^2 \le 1 \\ \pi - \sin^{-1} \left[x\sqrt{1-y^2} \pm y\sqrt{1-x^2} \right]; x, y \ge 0 \text{ and } x^2 + y^2 > 1 \end{cases}$$

Property-7.1

$$\cos^{-1} x \pm \cos^{-1} y = \begin{cases} \cos^{-1} \left[xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2} \right]; x, y > 0 \text{ and } x^2 + y^2 \le 1 \\ \pi - \cos^{-1} \left[xy \mp \sqrt{1 - x^2} \sqrt{1 - y^2} \right]; x, y > 0 \text{ and } x^2 + y^2 > 1 \end{cases}$$

Property-8: Simplified Trigonometric Functions

(i)
$$\sin^{-1}\frac{2x}{1+x^2} = \begin{cases} -\pi - 2\tan^{-1}x; \ x < -1\\ 2\tan^{-1}x; \ -1 \le x \le 1\\ \pi - 2\tan^{-1}x; \ x > 1 \end{cases}$$

(ii) $\tan^{-1}\left(\frac{2x}{1-x^2}\right) = \begin{cases} \pi + 2\tan^{-1}x; \ x < -1\\ 2\tan^{-1}x; \ -1 < x < 1\\ -\pi + 2\tan^{-1}x; \ x > 1 \end{cases}$
(iii) $\cos^{-1}\left(\frac{1-x^2}{1+x^2}\right) = \begin{cases} -2\tan^{-1}x; \ x \le 0\\ 2\tan^{-1}x; \ x \ge 0 \end{cases}$

(iv)
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left(\frac{x + y + z - xyz}{1 - (xy + yz + zx)} \right);$$

if $x > 0, y > 0, z > 0$ and $(xy + yz + zx) < 1$

37

* Note: (i)
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{\pi}{2}$$
, then $xy + yz + zx = 1$

(ii)
$$\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$$
, then $xy + yz + zx = xyz$

Important Points to Remember

(i)
$$\tan^{-1}\left(\frac{x}{\sqrt{a^2 - x^2}}\right) = \sin^{-1}\frac{x}{a}$$

(ii) $\tan^{-1}\left(\frac{\sqrt{1 + x^2} + \sqrt{1 - x^2}}{\sqrt{1 + x^2} - \sqrt{1 - x^2}}\right) = \frac{\pi}{4} + \frac{1}{2}\cos^{-1}x^2$
(iii) $\tan^{-1}\left(\frac{3a^2x - x^3}{a(a^2 - 3x^2)}\right) = 3\tan^{-1}\frac{x}{a}$

(iv)
$$\tan^{-1} x_1 + \tan^{-1} x_2 + \dots + \tan^{-1} x_n = \tan^{-1} \left[\frac{S_1 - S_3 + S_5 \dots}{1 - S_2 + S_4 - S_6 + \dots} \right]$$

where, S_k denotes the sum of the product of $x_1, x_2, ..., x_n$ taken 'K' at a time.

★Note:
$$\tan^{-1}(\sqrt{2} + 1) = \frac{3\pi}{8}$$

 $\tan^{-1}(2 - \sqrt{3}) = \frac{\pi}{12}$

TIPS AND TRICKS: (T-1)

" '0' (zero) or '1' and you are done".

This is a substitution method such that we can substitute the values of x and y be '0' or '1' or vice-versa. This works in maximum cases. In case of any failure check for the other values of the variables (x, y, etc) like 1, 2, 3, ... etc.

★★Note: Always back check in this type.

Illustration 1

TIPS

If x > 0, y > 0 and x > y, then find $\tan^{-1}\left(\frac{x}{y}\right) + \tan^{-1}\left(\frac{x+y}{x-y}\right)$. [AIEEE 2005]

(a)
$$\frac{\pi}{4}$$
 (b) $-\frac{\pi}{4}$ (c) $\frac{3\pi}{4}$ (d) $\frac{\pi}{2}$

Short-cut solution :

Using T-1 Put
$$x = 1$$
, $y = 1$
 $\Rightarrow \tan^{-1}1 + \tan^{-1}(\infty) = \frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}$ Ans. (a)

Illustration 2

38

If
$$\cos^{-1} x - \cos^{-1} \frac{y}{2} = \alpha$$
, then $4x^2 - 4xy \cos \alpha + y^2 =$
(a) $-4 \sin^2 \alpha$ (b) $4 \sin^2 \alpha$ (c) 4 (d) $2 \sin 2\alpha$
Short-cut solution :

Using T-1 Put
$$x = y = 1 \implies \alpha = -\frac{\pi}{3}$$

Now, put ' α ' in the required eqn.

$$\Rightarrow 4x^2 - 4xy \cos\left(-\frac{\pi}{3}\right) + y^2 \qquad (\because x = y = 1)$$
$$\Rightarrow 4 - 4 \times \frac{1}{2} + 1 = 3$$

Now, check option A, B, C, D for $\alpha = -\frac{\pi}{3}$

$$\Rightarrow 4 \times \sin^2 \alpha = 4 \times \sin^2 \left(-\frac{\pi}{3} \right) = 3$$
 Ans (b)

Illustration 3

$$\tan^{-1}\left(\frac{a_{1}x-y}{a_{1}y+x}\right) + \tan^{-1}\left(\frac{a_{2}-a_{1}}{1+a_{1}a_{2}}\right) + \tan^{-1}\left(\frac{a_{3}-a_{2}}{1+a_{2}a_{3}}\right) + \dots + \dots \tan^{-1}\left(\frac{a_{n}-a_{n+1}}{1+a_{n}a_{n-1}}\right) + \tan^{-1}\left(\frac{1}{a_{n}}\right).$$

Using T-1 Put
$$a_1 = a_2 = a_3 = \dots = a_n = 0$$

$$\Rightarrow -\tan^{-1}\left(\frac{y}{x}\right) + 0 + \dots + 0 + \underbrace{\tan^{-1}(\infty)}_{\pi/2}$$

$$= \frac{\pi}{2} - \tan^{-1}\frac{y}{x} = \cot^{-1}\left(\frac{y}{x}\right).$$

Illustration 4 If x > 0, y > 0, then $\tan^{-1}\left(\frac{x}{y}\right) - \tan^{-1}\left(\frac{x-y}{x+y}\right) =$ (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{4}$ (c) $\frac{\pi}{3}$ (d) $\frac{\pi}{4}$ or $-\frac{3\pi}{4}$ **Short-cut solution :** Using T-1 Put x = y = 1 $\Rightarrow \tan^{-1}(1) - \tan^{-1}(0) = \frac{\pi}{4}$. Ans. (b) **Illustration 5** If $0 \le x \le \frac{1}{2}$, then value of $\tan\left(\sin^{-1}\left(\frac{x}{\sqrt{2}} + \frac{\sqrt{1-x^2}}{\sqrt{2}}\right) - \sin^{-1}x\right)$ is (a) 0 (b) -1 (c) 1 (d) $\frac{\pi}{4}$

Inverse Trigonometric Functions

39

Short-cut solution :

Using T-1 Since
$$0 \le x \le \frac{1}{2}$$
, put $x = 0$
 $\Rightarrow \tan\left(\sin^{-1}\frac{1}{\sqrt{2}}\right) = \tan\frac{\pi}{4} = 1$. Ans. (c)

Illustration 6

If
$$x^2 + y^2 + z^2 = k^2$$
, then value of
 $\tan^{-1}\left(\frac{xy}{zk}\right) + \tan^{-1}\left(\frac{xz}{yk}\right) + \tan^{-1}\left(\frac{zy}{xk}\right)$ is equals to
(a) $\frac{\pi}{2}$ (b) π (c) $\frac{3\pi}{2}$ (d) 0

Short-cut solution :

Using T-1 Put
$$x = y = z = 1$$

 $\Rightarrow K^2 = 3 \Rightarrow K = \sqrt{3}$
Hence, $\tan^{-1}\left(\frac{1\cdot 1}{1\cdot\sqrt{3}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) + \tan^{-1}\left(\frac{1}{\sqrt{3}}\right) = \frac{\pi}{2}$.

Authentic Shortcuts-Tips & Tricks in Mathematics 40 **Illustration 7** The value of $\tan\left\{\frac{\pi}{4} + \frac{1}{2}\cos^{-1}\left(\frac{x}{v}\right)\right\} + \tan^{-1}\left\{\frac{\pi}{4} - \frac{1}{2}\cos^{-1}\left(\frac{x}{v}\right)\right\}$ is equal to (b) $\frac{y}{x}$ (c) $\frac{2x}{y}$ (d) $\frac{2y}{x}$ (a) $\frac{x}{v}$ Short-cut solution : Using T-1 Put x = 1 and y = 2 $\Rightarrow \tan\left\{\frac{\pi}{4} + \frac{1}{2} \times \frac{\pi}{3}\right\} + \tan\left\{\frac{\pi}{4} - \frac{\pi}{3} \times \frac{1}{2}\right\} = \tan\left\{\frac{5\pi}{12}\right\} + \tan\left\{\frac{\pi}{12}\right\}$ $= \tan 75^\circ + \tan 15^\circ = 2 + \sqrt{3} + 2 - \sqrt{3} = 4$ Now, check for x = 1 and y = 2 in options (a), (b), (c), (d). $\Rightarrow \frac{2y}{x} = 4.$ Ans. (d) TIPS! AND 'RICKS: (T-2)

Short trick to solve series produces in inverse trigonometric functions. In this we can take value of 'n' be 1, 2 or 3, etc. to minimize the steps. And after that check the option for those value of 'n' which has taken.

Illustration 8

The value of $\tan^{-1}\left(\frac{x}{1+2x^2}\right) + \tan^{-1}\left(\frac{x}{1+6x^2}\right) + \tan^{-1}\left(\frac{x}{1+12x^2}\right) + \dots + n \text{ terms}$ (a) $\tan^{-1}(n+1)x - \tan^{-1}x$ (b) $\tan^{-1}(n+1)x + \tan^{-1}x$ (c) $\tan^{-1}(n-1) - \tan^{-1}x$ (d) $\tan^{-1}(n-1)x - \tan^{-1}x$ **Short-cut solution :** $\boxed{\text{Using T-2}} \text{ Put } n = 1$ $\Rightarrow \tan^{-1}\left(\frac{x}{1+2x\times x}\right) = \tan^{-1}\left(\frac{2x-x}{1+2x\times x}\right)$ As we know that $\tan^{-1}\left(\frac{A-B}{1+AB}\right) = \tan^{-1}A - \tan^{-1}B$ $\Rightarrow \tan^{-1}2x - \tan^{-1}x$ Now, check for n = 1 in options (a), (b), (c), (d). Ans. (a) Inverse Trigonometric Functions

s **41**

= 0

Illustration 11

42

If
$$\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$$
 then,
(a) $x^{100} + y^{100} + z^{100} - \frac{9}{x^{101} + y^{101} + z^{101}}$

(b)
$$x^{22} + y^{42} + z^{62} - x^{220} - y^{420} - z^{620} = 0$$

(c) $x^{50} + y^{25} + z^5 = 0$
 $x^{2008} + y^{2008} + z^{2008}$

(d)
$$\frac{x + y + z}{(xyz)^{2009}} = 0$$

Using T-3 Put
$$\sin^{-1} x = \sin^{-1} y = \sin^{-1} z = \frac{\pi}{2}$$

 $\Rightarrow x = y = z = 1$

Now, check options (a), (b), (c), (d) for x = y = z = 1

Ans. (a, b)

Illustration 12

Solve
$$\cos^{-1} x \sqrt{3} + \cos^{-1} x = \frac{\pi}{2}$$
, then $x =$
(a) $-\frac{1}{2}$ (b) $\frac{1}{2}$ (c) 0 (d) 1

Short-cut solution :

Using T-1

Check options (a), (b), (c), (d).

Put
$$x = \frac{1}{2} \implies \cos^{-1}\frac{\sqrt{3}}{2} + \cos^{-1}\frac{1}{2} = \frac{\pi}{6} + \frac{\pi}{3} = \frac{\pi}{2}$$
 Ans. (b)

Illustration 13

If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{3\pi}{4}$ then the value of xy + yz + zx is, (a) 3 (b) 2 (c) -3 (d) -2

Short-cut solution :

Using T-3 Put x = y = z = 1 $\Rightarrow \tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \frac{3\pi}{4}$ Then, xy + yz + zx = 3Ans. (a) **Inverse Trigonometric Functions**

43

Illustration 14

$$\tan^{-1}\left(\frac{\sqrt{1-\sin x} + \sqrt{1+\sin x}}{\sqrt{1-\sin x} - \sqrt{1+\sin x}}\right); \frac{\pi}{2} \le x < \pi \text{ is equal to}$$
(a) $\frac{x}{2} - \frac{\pi}{2}$ (b) $\frac{\pi}{2} - \frac{x}{2}$ (c) $\pi - x$ (d) $2\pi - x$
Short-cut solution :

$$\boxed{\text{Using T-1}} \quad \text{Put } x = \frac{\pi}{2}$$

$$\Rightarrow \quad \tan^{-1}\left(\frac{0+\sqrt{2}}{0-\sqrt{2}}\right) = -\tan^{-1}1 = \frac{-\pi}{4}$$
Now, check options (a), (b), (c), (d)

$$\Rightarrow \left(\frac{x}{2} - \frac{\pi}{2} = \frac{-\pi}{4}\right).$$
Ans. (a)
Illustration 15

$$\left[\frac{1}{y^2}\left(\frac{\cos(\tan^{-1}y) + y\sin(\tan^{-1}y)}{\cot(\sin^{-1}y) + \tan(\sin^{-1}y)}\right)^2 + y^4\right]^{\frac{1}{2}} \text{ is equal to:} \quad [\text{JEE M 2013}]$$
(a) 1 (b) 0 (c) $\frac{1}{2}$ (d) $\sqrt{2}$
Short-cut solution :

$$\left[\frac{\text{Using T-1}}{y} \text{ Put } y = 1\right]$$

$$\Rightarrow \quad [0^2 + 1] = 1$$
Ans. (a)
SHORTCUTS: (SC-1)
In order to solve inequilities in inverse trigonometric functions use graphs to minimizing the steps.

Illustration 16

The values of 'x' for which $\sin^{-1} x > \cos^{-1} x \forall x \in (-1, 1)$.

Short-cut solution :

Using SC-1

We will draw graphs of both functions $y = \sin^{-1} x$ and $y = \cos^{-1} x$

We will choose that part in the graph which is greater $(\sin^{-1} x > \cos^{-1} x)$

Hence, it is clear from the graph $\Rightarrow x \in \left[\frac{1}{\sqrt{2}}, 1\right]$

TECHNIQUE

If the input of inverse trigonometric identity are infinite series and different then change the inputs in simple form using G.P. and then equate.

Illustration 17

44

If
$$\sin^{-1}\left(x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots\right) + \cos^{-1}\left(x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \dots\right) = \frac{\pi}{2}$$
,

for $0 < |\mathbf{x}| < \sqrt{2}$ then find the value of *x*.

for
$$0 < |\mathbf{x}| < \sqrt{2}$$
 then
Short-cut solution :

Using Tech. ::
$$x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots = \frac{x}{1 + \frac{x}{2}} = \frac{2x}{2 + x}$$

And $x^2 - \frac{x^4}{2} + \frac{x^6}{4} - \dots = \frac{x^2}{1 + \frac{x^2}{2}} = \frac{2x^2}{2 + x^2}$
 $\therefore \sin^{-1}\left(\frac{2x}{2 + x}\right) + \cos^{-1}\left(\frac{2x^2}{2 + x^2}\right) = \frac{\pi}{2}$ and this is true when
 $\frac{2x}{2 + x} = \frac{2x^2}{2 + x^2} \Rightarrow 2x + x^3 = 2x^2 + x^3$
 $\Rightarrow 2x^2 - 2x = 0 \Rightarrow x(x - 1) = 0 \Rightarrow x = 0 \text{ or } x = 1$
 $\Rightarrow x = 1$ (x cannot be 0 as $0 < |x| < \sqrt{2}$)

45

Concept Booster Exercise

- 1. If $\cos \tan^{-1} \sin \cot^{-1} x = P$; then find 'P'
- (a) $\sqrt{\frac{x^2+1}{x^2+2}}$ (b) $\sqrt{\frac{x^2 - 1}{x^2 + 2}}$ (c) $\sqrt{\frac{x^2+1}{x^2-2}}$ (d) $\sqrt{\frac{x^2+3}{x^2-1}}$ 2. $2 \tan^{-1} x = \cos^{-1} \left(\frac{1-a^2}{1+a^2} \right) - \cos^{-1} \left(\frac{1-b^2}{1+b^2} \right); \ (a > 0, \ b > 0)$ (a) $\frac{a+b}{1-ab}$ (b) $\frac{a+b}{1-ab}$ (c) $\frac{a-b}{1+ab}$ (d) $\frac{a-b}{1-ab}$

(a)
$$\frac{1}{1+ab}$$
 (b) $\frac{1}{1-ab}$ (c) $\frac{1}{1+ab}$ (d) $\frac{1}{1}$

3. If
$$u = \cot^{-1} \sqrt{\cos 2\theta} - \tan^{-1} \sqrt{\cos 2\theta}$$
, then

(a)
$$1 + \sin u = \tan \theta$$

(b) $1 + \sin u = \tan^2 \theta$
(c) $1 - \sin u = \tan^2 \theta$
(d) $\sin u = \tan^2 \theta$

(c)
$$1 - \sin u = \tan^2 \theta$$
 (d) $\sin u = \tan^2$

4.
$$\tan(\tan^{-1} x + \tan^{-1} y + \tan^{-1} z)$$
 is equal to:

(a)
$$1 + \cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$$

- (b) $1 \cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$
- (c) $\cot(\cot^{-1}x + \cot^{-1}y + \cot^{-1}z)$
- (d) $\tan(1 + \tan^{-1}x + \tan^{-1}y + \tan^{-1}z)$

5. The value of $\sqrt{1+x^2} [\{x \cos(\cot^{-1} x) + \sin(\cot^{-1} x)\}^2 - 1]^{1/2}$ is equal to [AIEEE 2008]

(a)
$$\frac{x}{\sqrt{1+x^2}}$$
 (b) x (c) $x\sqrt{1+x^2}$ (d) $\frac{\sqrt{1+x^2}}{1+x^2}$

6. Let
$$\tan^{-1} y = \tan^{-1} x + \tan^{-1} \left(\frac{2x}{1 - x^2} \right)$$
 where $|x| < \frac{1}{\sqrt{3}}$. Then the value of y is:
[JEE M 2015]

(a) $\frac{3x-x^3}{1+3x^2}$ (b) $\frac{3x+x^3}{1+3x^2}$ (c) $\frac{3x-x^3}{1-3x^2}$ (d) $\frac{3x+x^3}{1-3x^2}$

7. Find value of $\sin^{-1} \cos (\sin^{-1} x) + \cos^{-1} \sin (\cos^{-1} x)$

46

- (a) $\frac{\pi}{2}$ (b) $\frac{\pi}{3}$ (c) $\frac{\pi}{6}$ (d) $\frac{\pi}{12}$
- 8. If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, then $\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx}$ is equal to
 - (a) xyz (b) $\frac{1}{xyz}$ (c) 1 (d) 0

9.
$$\tan\left[\tan^{-1}\left(\frac{2}{1+1\cdot 2}\right) + \tan^{-1}\left(\frac{2}{1+2\cdot 3}\right) + \dots + \tan^{-1}\left(\frac{2}{1+n(n+1)}\right)\right]$$

(a) $\frac{3}{2}$ (b) $\frac{2}{3}$ (c) $-\frac{3}{2}$ (d) $-\frac{2}{3}$

10. If p, q, r are positive real numbers and

$$\theta = \tan^{-1}\left(\sqrt{\frac{p(p+q+r)}{qr}}\right) + \tan^{-1}\left(\sqrt{\frac{q(p+q+r)}{pr}}\right) + \tan^{-1}\left(\sqrt{\frac{r(p+q+r)}{pq}}\right),$$

then $\tan \theta$ is equal to

(a) 1 (b) 0 (c)
$$\frac{p+q+r}{pqr}$$
 (d) $\frac{pqr}{p+q+r}$

11. If $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, then x + y + z =

(a)
$$xy + yz + zx$$
 (b) xyz (c) $\frac{1}{xyz}$ (d) $-xyz$

12. Let $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \pi$ then

$$x\sqrt{1-x^{2}} + y\sqrt{1-y^{2}} + z\sqrt{1-z^{2}} =$$

(a) xyz (b) $\frac{1}{2}xyz$ (c) $2xyz$ (d) $\frac{xyz}{3}$

Numerical Value Problems

- **13.** If $\cos^{-1} x + \cos^{-1} y = 2\pi$, and $\sin^{-1} x + \sin^{-1} y = P$, then find value of 4 + [P]; where [x] is greatest integer function.
- **14.** Find number of solutions of $\cos^{-1} x = \tan^{-1} x \ \forall x \in [-1, 1].$
- **15.** Find number of solutions of $\sin^{-1} x = 1 x \forall x \in [-1, 1]$.
- 16. The values of 'x' satisfying the inequality $\cos^{-1} x > \sin^{-1} x \forall x \in [-1, 1]$ is [-1, P], then find the value of [P]; where [] is greatest integer function.

Inverse Trigonometric Functions

17. The value of 'x' satisfying the inequality 2 $(\tan^{-1} x)^2 - 5 \tan^{-1} x + 3 < 0$ is $(\tan K_1, \tan K_2)$ then find the value of $K_1 + 2K_2$.

(Two)

1. (a) Using T-1 Put x = 0

$$\Rightarrow \cos \tan^{-1} \sin \cot^{-1} 0 = \frac{1}{\sqrt{2}} = P$$

Now check options (a), (b), (c), (d) for x = 0

- 2. (c) Using T-3 Put a = b = 1 $\Rightarrow 2 \tan^{-1} x = 0 \Rightarrow x = 0$ Now check options (a), (b), (c), (d) for a = b = 1
- 3. (d) Using T-1 Put $\theta = 0 \implies u = 0$ Now check options (a), (b), (c), (d) for $\theta = 0$ and u = 0
- 4. (c) Using T-3 Put $x = y = z = 0 \implies \tan 0 = 0$ Now check options (a), (b), (c), (d) for x = y = z = 0
- 5. (c) Using T-1 Put x = 1

$$\Rightarrow \sqrt{2} \left[\left\{ \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} \right\}^2 - 1 \right]^{\frac{1}{2}} = \sqrt{2}$$

Now, check options a, b, c, d for x = 1

- 6. (c) Using T-1 Put $x = 1 \implies \tan^{-1} y = \frac{3\pi}{4} \implies y = -1$ Now, check options (a), (b), (c), (d) for x = 1
- 7. (a) Using T-1 Put x = 0

$$\Rightarrow \sin^{-1} \cos (0) + \cos^{-1} \sin \frac{\pi}{2} = \frac{\pi}{2}.$$

8. (c) Using T-3 Put, $\tan^{-1} x = \tan^{-1} y = \tan^{-1} z = \frac{\pi}{3}$ $\Rightarrow x = y = z = \sqrt{3}$

Now,
$$\frac{1}{xy} + \frac{1}{yz} + \frac{1}{zx} = \frac{1}{3} + \frac{1}{3} + \frac{1}{3} = 1$$

(b) Using T-2 Put
$$n = 1$$

 $\Rightarrow \tan\left(\tan^{-1}\left(\frac{2}{3}\right)\right) = \frac{2}{3}$

48 9.

- **10.** (b) Using T-2 Put p = q = r = 1 $\Rightarrow \theta = \tan^{-1}\sqrt{3} + \tan^{-1}\sqrt{3} + \tan^{-1}\sqrt{3} = \pi$.
- 11. (b) Using T-3 Put $x = y = z = \sqrt{3}$ $\Rightarrow x + y + z = 3\sqrt{3} = xyz.$

12. (c) Using T-3 Put
$$\sin^{-1}x = \sin^{-1}y = \sin^{-1}z = \frac{\pi}{3}$$

$$\Rightarrow \quad x = y = z = \frac{\sqrt{3}}{2}$$
$$\Rightarrow \quad x\sqrt{1 - x^2} + y\sqrt{1 - y^2} + z\sqrt{1 - z^2} = \frac{3 \times \sqrt{3}}{4} = \frac{3\sqrt{3}}{4}$$

Now, check options (a), (b), (c), (d) for $x = y = z = \frac{\sqrt{3}}{2}$

$$\Rightarrow 2xyz = 2 \times \left(\frac{\sqrt{3}}{2}\right)^3 = \frac{3\sqrt{3}}{4}$$

13. (0) Using T-3 Put $\cos^{-1}x = \cos^{-1}y = \pi \implies x = y = -1$ Now, $\sin^{-1}(-1) + \sin^{-1}(-1) = P = -\pi$ $\implies 4 + [-\pi] = 4 + (-4) = 0$

14. (1) Using SC-1 Drawing graphs of $y = \cos^{-1} x$ and $y = \tan^{-1} x$

