Acuthentic shortcuts, TIPS, TRICKS \& TECHNIQUES in MATHEMATICS for JEE MAIN, ADVANCED \& KVPY

Er. Vaibhav Singh
Strategic Book for Class 11/ 12 \& Engineering Exams

Typeset by Disha DTP Team

Write to us at info@dishapublication.com

FOREWORD

The competitive exams like JEE test an aspirant's conceptual knowledge \& how fast he/ she solve the problems with accuracy. So it becomes necessary that the students should know the short-cut methods in addition to the traditional methods of analysis. Keeping this in mind DISHA Publication brings a unique \& innovative book Autheutic SHORTCUTS, TIPS, TRICKS \& TECHNIQUES in MATHEMATICS for JEE Main, Advanced \& KVPY to enable aspirants for advanced abilities to Solve KVPY, JEE Main \& Advanced level Questions well within the stipulated time.
An earnest effort has been made to bring the book Authentic SHORTCUTS, TIPS, TRICKS \& TECHNIQUES in MATHEMATICS. We have really worked hard researching for the best possible Tips, Tricks, Techniques and Shortcut Solutions which students must know and can utilize in the examination hall.

- Shortcuts to help you in providing a different perspective to a concept/ problem thus strengthening your conceptual understanding.
- Tips provide you the Most Important Points to remember that aids in Conceptual Understanding \& Problem Solving.
- Tricks empower you with magical tools that help you develop unique approaches to solve a problem.
- Shortcut Solutions provides alternate faster methods that save you a lot of time during examination.
The book encompasses 26 Chapters, which start with Review of Key Notes and Formulae, followed by Shortcuts, Tips, Tricks and Techniques which are further followed by Illustrations demonstrating Shortcut Solutions. The book in all contains:

1. 250+Chapter-wise Shortcuts, Tips \& Tricks to solve JEE Level Problems.
2. $400+$ Illustrations with Shortcut Solutions of JEE Level Questions including JEE Past Years Questions.
3. $25+$ International Techniques to crack JEE Advanced Level Questions.
4. $500+$ Chapter-wise JEE Level Questions Exercise with Accurate \& Shortest Possible Solutions.
5. Chapter-wise $350+$ Important Key Notes Formulae.

This book provides you with hundreds of short-cut methods for the most conceptual and relevant problems. This book can also be used as a REVISION BOOK for various competitive exams. I hope that the book will fulfill the needs of the students for which it has been designed. We have made our best efforts to keep the book error-free but some errors might have crept in by mistake. We request our readers to highlight these errors and their fruitful suggestions so that we can keep on improving this book.

Author: Er. Vaibhav Singh

No Matter where You Prepare from, keep this book as your companion. It would definitely improve your score by 25-30\%.

Contents

Unit-I: Calculus

1. Functions 1-32
2. Inverse Trigonometric Functions 33-50
3. Limits 51-70
4. Continuity 71-76
5. Differentiability 77-84
6. Methods of Differentiation 85-100
7. Application of Derivatives 101-122
8. Indefinite Integration 123-144
9. Definite Integration 145-158
10. Application of Integrals 159-172
11. Differential Equation 173-188
Unit-II: Algebra
12 Complex Numbers 189-206
13 Quadratic Equations 207-218
14 Matrices and Determinants 219-236
15 Permutations and Combinations 237-248
16 Binomial Theorem 249-262
17 Sequences and Series 263-280
18 Probability 281-296

Unit-III: Trigonometry

19	Trigonometric Ratios	$297-310$
20	Trigonometric Equations	$311-318$
21	Solution of Triangles	$319-326$
Unit-IV: Coordinate Geometry		
22	Straight Lines	$327-340$
23	Circles	$341-348$
24	Conic Sections	$349-380$
25	Vector Algebra	$381-402$
26	Three Dimensional Geometry	$403-436$

|||l|

Definition: If A and B are two non-empty sets, then the rule that, for each and every element of set A is uniquely associate with set B .

$$
f(x)=x^{2}
$$

Domain: All elements of set A

$$
D_{f}=\{1,2,3\}
$$

Co-domain: All elements of Set B

$$
C o-D_{f}=\{1,4,9,16\}
$$

Range: Elements of set B which are involved in mapping.

$$
R_{f}=\{1,4,9\}
$$

Different Types of Functions

1. Polynomial function: Function in the form of:

$$
f(x)=a_{0} x^{n}+a_{1} x^{n-1}+\ldots \ldots \ldots . .+a_{n} ; a_{0} \neq 0 ; \text { Degree }=n
$$

where, $n, n-1, n-2 \ldots \ldots . .$. are non-negative integers. Domain of $f(x)=R$
2. Rational function: Functions in form of

$$
f(x)=\frac{p(x)}{q(x)} ; q(x) \neq 0
$$

where, $P(x)$ and $q(x)$ are polynomial in x. Domain of $f(x)=R-\{x: q(x)=0\}$

	Function	Graph	Domain \& Range		
3.	Constant function: $\mathrm{y}=\mathrm{f}(\mathrm{x})=\mathrm{c} \quad \forall x \in R$, where c is a constant	$\mathrm{y}=\mathrm{c}, \mathrm{c}>0$		\quad	Rom $: \mathrm{x} \in \mathrm{R}$
:---					

Authentic Shortcuts-Tips \& Tricks in Mathematics

4.	Modulus function: $y=f(x)=\|x\|$		Dom: $x \in R$ Range: $y \in[0, \infty]$
5.	$\begin{aligned} & \text { Exponential function: } \\ & y=f(x)=a^{x} \text {, } \\ & \text { where } a>0, a \neq 1 \end{aligned}$		Dom: $x \in R$ Range: $y \in(0, \infty)$
6.	Logarithmic function: $\begin{aligned} & y=f(x)=\log _{a} x \\ & \text { where } a>0, a \neq 1 \end{aligned}$		Dom: $x \in(0, \infty)$ Range: $y \in R$
7.	Signum function: $\begin{aligned} & y=f(x)=\operatorname{Sgn}(x) \\ & \Rightarrow f(x)= \begin{cases}\frac{\|x\|}{x}, & \text { if } x \neq 0 \\ 0, & \text { if } x=0\end{cases} \end{aligned}$		$\begin{aligned} & \text { Dom: } x \in R \\ & \text { Range: } y \in\{-1,0,1\} \end{aligned}$
8.	Greatest integer function:		$\begin{aligned} & \text { Dom: } x \in R \\ & \text { Range }=\{z\} \end{aligned}$
9.	Fractional part function: $\begin{aligned} y=f(x) & =\{x\} \\ \{x\} & =x-[x] \end{aligned}$		$\begin{aligned} & \text { Dom: } x \in R \\ & \text { Range: } y \in[0,1) \end{aligned}$
10	Trigonometric function:		
	Functions $\begin{aligned} & y=\sin x \\ & y=\cos x \end{aligned}$	Domain $\begin{aligned} & x \in R \\ & x \in R \end{aligned}$	Range $\begin{aligned} & y \in[-1,1] \\ & y \in[-1,1] \end{aligned}$

Functions

$$
\begin{array}{l|l|l}
y=\tan x & x \in R-\left\{(2 n+1) \frac{\pi}{2}\right\} & y \in R \\
y=\cot x & x \in R-\{n \pi\} & y \in R \\
y=\operatorname{cosec} x & x \in R-\{n \pi\} & y \in(-\infty,-1] \cup[1, \infty) \\
y=\sec x & x \in R-\left\{(2 n+1) \frac{\pi}{2}\right\} & y \in(-\infty,-1] \cup[1, \infty) \\
\hline
\end{array}
$$

Equal or Identical Functions:

Two functions $f(x)$ and $g(x)$ are said to be identical if.
(i) Domain of $f(x)=$ Domain of $g(x)$
(ii) Co-domain of $f(x)=$ Co-domain of $g(x)$
(iii) $f(x)=g(x)$ for every x belonging to their domain.

Classification of Functions:

1. One-one function: The mapping $f: A \rightarrow B$
(Injective Function) is one-one function if different elements in A have different images in B.

$$
\begin{aligned}
& x_{1}, x_{2} \in A \\
& x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right) \neq f\left(x_{2}\right)
\end{aligned}
$$

2. Many-one function: The mapping $f: A \rightarrow B$ is many-one two or more than two different elements in A have the same image in B.

$$
\begin{array}{|l|}
\hline x_{1}, x_{2} \in A \\
x_{1} \neq x_{2} \Rightarrow f\left(x_{1}\right)=f\left(x_{2}\right) \\
\hline
\end{array}
$$

3. Onto (surjective) function: A function is said to be onto if

Range $=$ Co-domain
4. Into function: A function is said to be into if Range \neq Co-domain

\star Note \Rightarrow Bijective function \Leftrightarrow One- one + Onto

Composition of Function:

If $f: A \rightarrow B$ and $g: B \rightarrow C$ are two functions, then composite function of f and g are $g o ' f: A \rightarrow C$ will be defined as $g(f(x))=g o f(x) \forall x \in A$

Even and Odd Functions
(i) If $f(x)+f(-x)=0 \forall x \in$ Domain of $f(x)$
\Rightarrow Odd function \Rightarrow Symmetric about origin
(ii) If $f(x)=f(-x) \forall x \in$ Domain of $f(x)$
\Rightarrow Even function \Rightarrow Symmetric about y-axis
\star Note $f(x)=0$ is even as well as odd function.
Homogeneous Function:
Functions consists of variables both $x \& y$ such that $f(x, y)$ is homogeneous if:

$$
\begin{aligned}
f(t x, t y)= & t^{n} f(x, y) \\
& \downarrow \\
& \text { Homogeneous of degree ' } n '
\end{aligned}
$$

Periodic Function:

A function is periodic if its each value is repeated after a definite interval. So a function is periodic if there exists a positive real number ' T ' such that

$$
\begin{array}{ll}
& f(x+T)=f(x) \forall x \in D_{f} \\
\star & \text { Period }=n T ; n \in I \\
\therefore & \\
\therefore & f(x+n t)=f(x) ; n \in I
\end{array}
$$

\star Note: Constant function has no fundamental period.

Inverse of a Function:

If $f: A \rightarrow B$ is a one-one and onto fn . both then we can define the inverse of the function as $g: B \rightarrow A$, such that $f(x) y \Rightarrow \underset{~}{\downarrow} \underset{ }{\downarrow} \boldsymbol{g}(y)=x$

$$
\text { Inverse of } f(x)
$$

Properties of Invertible Function:

(i) Inverse of bijective function is unique and bijective.
(ii) $\left(f^{-1}\right)^{-1}=f$
(iii) $(g o f)^{-1}=f^{-1} o g^{-1}$
(iv) Inverse of a function is a mirror image about $y=x$ line.

Illustration 1

Find the polynomial function which satisfies the condition $f(x)+\left(\frac{1}{x}\right)$ $=f(x) .\left(\frac{1}{x}\right)$ of degree 3 and is always increasing function.

Short-cut solution :

Using T-1
$f(x)=1 \pm x^{3}$
(\because degree is 3)

Now, for function is always \uparrow sing
So, $\quad f(x)=1+x^{3}$ or $f(x)=1-x^{3}$
$\begin{array}{llll}\text { Differentiate, } & f^{\prime}(x)=3 x^{2}>0 & \& & f^{\prime}(x)=-3 x^{2}<0 \\ \Rightarrow & \uparrow \text { sing } & \Rightarrow & \uparrow \text { sing } f n\end{array}$
Hence, we conclude that the required function is
$f(x)=1+x^{3}$

Authentic Shortcuts-Tips \& Tricks in Mathematics

Illustration 2

Find the value of $\int_{a}^{3 \pi}[2 \cos x] d x$, where [] is the greatest integer function.

Short-cut solution :

Using T-2 $\int_{a}^{3 \pi}[2 \cos x] d x$, where [] is greatest integer function.
Let $\quad I=\int_{a}^{3 \pi}[2 \cos x] d x$
Apply, King Property : $\int_{a}^{b} f(x) d x=\int_{a}^{b} f(a+b-x) d x$

$$
\begin{equation*}
\Rightarrow \quad I=\int_{0}^{3 \pi}[-2 \cos x] d x \tag{2}
\end{equation*}
$$

Now, add (1) and (2)

$$
\Rightarrow \quad 2 I=\int_{0}^{3 \pi}[2 \cos x]+[-2 \cos x] d x
$$

Since $2 \cos x$ is not always ' 0 ' or Integer

$$
\begin{aligned}
\Rightarrow \quad & 2 I \\
= & \int_{0}^{3 \pi}(-1) d x \\
& \therefore I=\frac{-3 \pi}{2}
\end{aligned}
$$

TIPS AND TRICKS: (T-3)

If $y=f(x)=\{x\}$ is a fractional part function.
then, $\{x\}+\{-x\}= \begin{cases}0 & ; x \in I \\ 1 & ; x \notin I\end{cases}$

TIPS

TIPS AND TRICKS: (T-4)

${ }^{n} C_{r}$ and ${ }^{r} C_{n}$, simultaneously possible only when $n=r$

Illustration 3

Let $f(x)={ }^{x+1} C_{2 x-8}, g(x)={ }^{2 x-8} C_{x+1}$ if $h(x)=f(x) \cdot g(x)$.
Then find domain and range of $h(x)$.
Short-cut solution :

Using T-4	$x+1=2 x-8$
$x=9$	

Hence domain is $x \in\{9\}$ and $R_{f}=1$.

TIPS AND TRICKS: (T-5)

Range of the function $f(x)=\frac{a x+b}{c x+d} ; x \neq \frac{-d}{c}$ is $R-\left(\frac{d}{c}\right)$

Illustration 4

Find the range of the function $f(x)=\frac{2 x+1}{5 x-2} ; x \neq \frac{2}{5}$

Short-cut solution :

Using T-5 $y \in R-\left\{\frac{2}{5}\right\}$

TIPS AND TRICKS: (T-6)

To find Range of $f(x)=\cos (K \sin x)$
where $K \in R^{+}$then,
If $K \in[0, \pi) \Rightarrow$ Range is $y \in[\cos \mathrm{~K}, 1]$
If $K \in[\pi, \infty) \Rightarrow$ Range $\rightarrow y \in[-1,1]$

Illustration 5

Find range of the function $y=\cos (2 \sin x)$

Short-cut solution :

Using T-6 $\quad \because K=2\left(\right.$ case II $\left.{ }^{\text {nd }}\right)$ and $K<\pi$

$$
\Rightarrow \text { Range } \rightarrow y \in[\cos 2,1]
$$

Illustration 6

Find range of the function $y=\cos (3 \sin x)$

Short-cut solution :

Using T-6 $\quad \because K=3 \Rightarrow K<\pi \quad\left(\right.$ case $\left.I^{\text {nd }}\right)$

$$
\Rightarrow \text { Range } \rightarrow y \in[\cos 3,1]
$$

Illustration 7

Find the range of the function $f(x)=\cos (4 \sin x)$

Short-cut solution :

Using T-6

$$
\begin{aligned}
& \because \quad K=4 \Rightarrow K>\pi \quad\left(\text { case }^{\mathrm{st}}\right) \\
& \text { Range } \rightarrow y \in[\cos -1,1]
\end{aligned}
$$

Hence,

TIPS AND TRICKS: (T-7)

Identification of function using graph:
If it is possible to draw lines parallel to y-axis which cuts the curve more than one point then the given relation is not a function and when the line cuts the curve at only one point than it is a function.

Illustration 8

Check whether it is a function or not $y^{2}=4 a x$
Short-cut solution:
Using T-7

Vertical line cuts the graph more than one time then it is not a function.

Illustration 9

Check whether $x^{2}+y^{2}=a^{2}$ is a function or not
Short-cut solution :
Using T-7

\Rightarrow It is not a function.
Illustration 10
Check whether $y=\sqrt{x}$ is a function or not.
Short-cut solution :
Using T-7

\Rightarrow It is a function since it cuts the curve once.

TIPS AND TRICKS: (T-8(i))

Graphical approach to check one-one or many-one function
Construct the graph and draw lines parallel to x-axis, if it cuts the graph one time then it is a function and if it cuts more than one time then it is a many-one function.

Illustration 11

Check whether $y=x^{2}$ is a one-one or many-one function.
Short-cut solution :
Using T-8(i)

It is a many-one function.

TIPS AND TRICKS: (T-8(ii))

Calculus approach to check one-one or many-one function
Differentiate the function. $y=f(x)\{f(x)$ must be differentiable $\}$
\star If $\frac{d y}{d x}>0 \Rightarrow \underset{\text { Mncreases }}{\text { Monotonically } \Rightarrow \text { one-one function }}$
\star If $\frac{d y}{d x}<0 \Rightarrow \begin{gathered}\text { Monotonically } \\ \text { Decreases }\end{gathered} \rightarrow$ one-one function
\star If $\frac{d y}{d x}>0 \Rightarrow$ for some ' x ' and $\frac{d y}{d x}>0$ for some x then function is many-one function.

Illustration 12

Check whether one-one or many-one function.
(i) $f(x)=x^{3}$
(ii) $f(x)=x^{2}$

Short-cut solution :

Using T-8(ii)
(i) $f(x)=x^{3} \Rightarrow f^{\prime}(x)=3 x^{2}>0 \Rightarrow$ one-one function
(ii) $\left.f(x)=x^{2} \Rightarrow f^{\prime}(x)=2 x<\begin{array}{rl}x>0 & \Rightarrow \uparrow \text { ses } \\ x<0 \Rightarrow \downarrow_{\text {ses }}\end{array}\right\}$ Many- one function
\star Note: (1) All trigonometric functions are many-one function.
(2) All inverse trigonometric function are one-one function.

Illustration 13

Check for one－one or many－one function for $f(x)=\log _{e} x$
Short－cut solution ：
Using T－8（ii）

It is one－one function．

Illustration 14

Check whether the following functions $f(x)$ are either one－one or many－one function．
（i）$f(x)=\mathrm{e}^{x}$
（ii）$f(x)=\sin x$
（iii）$f(x)=|x|$
（iv）$f(x)=\tan x, x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
Short－cut solution ：
Using T－8（ii）
（i）$f(x)=e^{x}$

One－one function．
（ii）

(iii) $f(x)=|x|$

\Rightarrow Many-one function.
(iv) $f(x)=\tan x$ in $x \in\left(-\frac{\pi}{2},-\frac{\pi}{2}\right)$

\Rightarrow One-one function.

Illustration 15

Check whether one-one or many-one function for
$f(x)=f: R \rightarrow R$
$f(x)=x^{3}+x^{2}+7 x+\sin x$

Short-cut solution :

Using T-8(ii)
Differentiate $\quad f^{\prime}(x)=3 x^{2}+2 x+7+\cos x$

$$
\begin{aligned}
&=\left(x^{2}+2 x+1\right)+\left(2 x^{2}+6\right)+\cos x \\
& f^{\prime}(x)=(x+1)^{2}+\left(2 x^{2}+6\right)+\underbrace{\cos x}_{[-1,1]} \\
& \Rightarrow \quad f^{\prime}(x)>0 \Rightarrow \text { one-one function }
\end{aligned}
$$

Illustration 16

Check whether one-one or many-one function for

$$
f(x)=x^{3}+6 x^{2}+11 x
$$

Short-cut solution :

Using T-8(ii)
Differentiate $f^{\prime}(x)=3 x^{2}+12 x+11$
This is a parabola open upwards
Now, we find discriminant.

$$
\begin{aligned}
& D=144-132 \\
\Rightarrow \quad & D>0 \quad \text { (two distinct roots) }
\end{aligned}
$$

So this implies $f^{\prime}(x)>0$ and $f^{\prime}(x)<0$ both.
\Rightarrow Many-one function.

TIPS AND TRICKS: (T-9)

Short trick to check whether onto or into function for polynomial functions. For $x \in R$
Put, $x \rightarrow \infty \quad$ If $\Rightarrow f(x) \rightarrow \infty$
Put, $x \rightarrow-\infty$ If $\Rightarrow f(x) \rightarrow-\infty$
Hence, onto function.

Illustration 17

Check whether onto or into function.
(i) $f(x)=x^{3}$
(ii) $f(x)=x^{2}$

Short-cut solution :

Using T-9
(i) Since $f(x)$ is odd function.

$$
\left.\begin{array}{rl}
\Rightarrow & x \rightarrow+\infty, \\
& f(x) \rightarrow+\infty \\
& x \rightarrow-\infty, \\
f(x) \rightarrow-\infty
\end{array}\right\} \Rightarrow \text { One- one function and onto function. }
$$

(ii) $f(x)=a_{0} x^{2 n}+a_{1} x^{2 n-2}+$ \qquad
Put, $\left.\begin{array}{rl}x \rightarrow+\infty, & f(x) \rightarrow \infty \\ x \rightarrow-\infty, & f(x) \rightarrow \infty\end{array}\right\} \Rightarrow$ Many- one function and into function.

Illustration 18

Check whether the given function is bijective or not

$$
f(x)=x^{3}+5 x+1
$$

[AIEEE 2009]

Short-cut solution :

Using T-8(ii)
On differentiating $\rightarrow f(x)=3 x^{2}+5>0$ s

$$
\Rightarrow \text { one-one function. }
$$

Using T-9

$\left.\begin{array}{ll}x \rightarrow+\infty, & f(x) \rightarrow \infty \\ x \rightarrow-\infty, & f(x) \rightarrow-\infty\end{array}\right\} \Rightarrow$ Onto function
Hence, above function is bijective.

TIPS AND TRICKS: (T-10)

If set A contains ' m ' elements and another set B contains ' n ' elements, then the
(i) Total number of functions $=(n)^{m}$

For $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$
(ii) Number of one-one function is \square for $n \geq m$ and 0 (zero) for $n<m$
(iii) Number of many-one function = Total number of functions - One-one function
(iv) Number of onto functions are
(a) If $n<m \Rightarrow n^{m}-{ }^{n} C_{1}(n-1)^{m}+{ }^{n} C_{2}(n-2)^{m}-{ }^{n} C_{3}(n-3)^{m}+\ldots$
(b) If $n=m \Rightarrow n$!
(c) If $n>m \Rightarrow 0$
(v) Number of into function are
(a) If $n \leq m \Rightarrow$ Total number of functions - Onto functions
(b) If $n>m \Rightarrow(n)^{m} \quad$ [Total - Onto]
(vi) Number of constant functions $=n$.
(vii) If A and B are two sets having n-elements and ' 2 ' elements respectively.

Then number of onto functions from A to B
is $2^{n}-2$ if $n \geq 2$ and ' 0 ' if $n>2$

Illustration 19

If $A=\{1,5,9,7,14,22\}$ and $B=\{2,3,5,6\}$, then number of:
(a) Total functions
(b) One-one functions
(c) Many-one functions
(d) Onto function
(e) Into functions
(f) Constant functions

Short-cut solution :

Since, $m=6$ and $n=4$
(a) Using T-10(i) $\Rightarrow(n)^{m}=(4)^{6}=4096$
(b) Using T-10(ii) \Rightarrow Since $n<m \Rightarrow$ One-one function $=0$
(c) Using T-10(iii) \Rightarrow Many-one function = Total - (One-one functions)

$$
=4096-0=4096
$$

14 Authentic Shortcuts-Tips \& Tricks in Mathematics
(d) \square Since $n<m$
$=\left(n^{m}\right)-{ }^{n} C_{1}(n-1)^{m}+{ }^{n} C_{2}(n-2)^{m}+\ldots \ldots$.
$=4^{6}-{ }^{4} C_{1} \cdot 3^{6}+{ }^{4} C_{2} \cdot(2)^{6}-{ }^{4} C_{3} \cdot(1)^{6}+{ }^{4} C_{4} \cdot(0)^{6}$
$=4096-4 \times 729+6 \times 64-4+0$
$=1560$
(e) Using T-10(v)

Total - Onto
$4096-1560=2536$
(f) Using T-10(vi) Constant function $=n=4$

IIPS

TIPS AND TRICKS: (T-11)

If A and B are finite sets and $f: A \rightarrow B$ is a bijection, then A and B have same number of the elements. If A has n elements, then number of the bijections from A to B is $n!$

Illustration 20

If $A=\{2,3,4,5,6\}$, then the total number of bijection function in $f: A \rightarrow A$ is
(a) 110
(b) 115
(c) 120
(d) 125

Short-cut solution :

Using T-11 Since $n=5$
$\Rightarrow 5!=120$
Ans. (c)

TIPS AND TRICKS: (T-12)

In order to find fundamental period of

(i) $\sin (2 n \pi\{x\}) \longrightarrow$| $\frac{1}{n}$ |
| :---: |
| |
| $;$ | \(\begin{aligned} \& where\{x\} is fractional part function

\& and n \in I^{+}\end{aligned}\)
(ii) $\sin (2 n+1) \pi\{x\} \longrightarrow 1$
(iii) If $f(x)$ is periodic function with fundamental period ' T ' then $\overline{f(x)}$ and $\sqrt{f(x)}$ will also be periodic with fundamental period ' T '.

Illustration 21

Find the fundamental period of
(i) $\sin (2 \pi(\{x\}))$
(ii) $\sin (4 \pi\{x\})$

Short-cut solution :

$$
\text { Using T-12(i) } \frac{1}{n}=\frac{1}{1} \Rightarrow \mathrm{~T}=1
$$

(ii) $\sin (4 \pi\{x\})$

Using T-12(ii) $\frac{1}{n}=\frac{1}{2} \Rightarrow \mathrm{~T}=\frac{1}{2}$

Illustration 22

Find the fundamental period of $f(x)=\sec x$

Short-cut solution :

Using T-12(i)

$$
f(x)=\frac{1}{\cos x}
$$

Since period of $\cos x$ is 2π
Hence period of $f(x)=\sec x$ is also 2π.

Illustration 23

Find the fundamental period of $f(x)=\frac{1}{\sqrt{\tan x}}$
Short-cut solution :
Using T-12(iii) $f(x)=\sqrt{\cot x}$
Since fundamental period of $\cot x=$ is ' π '
Then, fundamental period of $\sqrt{\cot x}=\frac{1}{\sqrt{\tan x}}$ is also ' π '

TIPS AND TRICKS: (T-13)

If $f(x)$ is periodic with fundamental period ' T ' than $f(a x+b)$ is also periodic with fundamental period $\frac{\mathrm{T}}{|a|}$

Illustration 24

Find the fundamental period of $f(x)=\sin (2 x+3)$

Short-cut solution :

Using T-13 Since fundamental period of $\sin x$ is 2π
$\Rightarrow \mathrm{T}=\frac{2 \pi}{|2|} \Rightarrow \mathrm{T}=\pi$

Illustration 25

Find the period of $f(x)=\{-3 x+5\}$ where $\{*\}$ is fractional part function.

Short-cut solution :

Using T-13 Since period of $y=\{x\}$ is 1
Hence, $T=\frac{1}{|-3|} \Rightarrow T=\frac{1}{3}$

TIPS AND TRICKS: (T-14)

Let $f(x)$ and $g(x)$ be the two functions which are periodic then period of $h(x)$ $=f(x)+g(x)$ is LCM of T_{1} and T_{2} as one its periods.
where, $\mathrm{T}_{1}, \mathrm{~T}_{2}$ are period of $f(x)$ and $g(x)$ respectively.
\star Note: LCM of irrational number $=\frac{\text { LCM of numerator }}{\text { HCF of denominator }}$

Illustration 26

Find period of $f(x)=\cos (\sin x)+\cos (\cos x)$
Short-cut solution :
Using T-14 Since, period of $\cos (\sin x)$ is π and priod of $\cos (\cos x)$ is π Hence the priod of $f(x)=\operatorname{LCM}(\pi, \pi)=\pi$.

Illustration 27

Find period of $f(x)=-\sin \frac{2 x}{7}+\cos \frac{3 x}{5}$.

Short-cut solution :

Using T-13 Since period of $-\frac{\sin 2 x}{7}$ is 7π
and period of $\frac{\cos 2 x}{5}$ is $\frac{10 \pi}{3}$
Using T-14
Hence, the period of $f(x)=\operatorname{LCM}\left(7 \pi, \frac{10 \pi}{3}\right)$
$\Rightarrow \frac{\operatorname{LCM} \text { of } N^{r}}{\text { HCF of } D^{r}}=\frac{\operatorname{LCM}(7 \pi, 10 \pi)}{\operatorname{HCF}(1,3)}=\frac{70 \pi}{1}$

TIPS AND TRICKS: (T-15)

Let $y=f(x)$ is a function and it satisfies the relation $f(n+a)+f(n+b)$ $=$ constant then period of this junction is $2|b-a|$.

Illustration 28
If $f(x)+f(x+5)=12$, the period of $f(x)$ is:

Short-cut solution :

$$
\text { Using T-15 } 2|5-0|=10
$$

Illustration 29

If $f(x+2)+f(x+9)=30$, then period of $f(x)$ is:
Short-cut solution :

Using T-15 $2|9-2|=14$.

TIPS AND TRICKS: (T-16)

$[x]+\left[x+\frac{1}{n}\right]+\left[x+\frac{2}{n}\right]+\ldots+\left[x+\frac{n-1}{n}\right]=[n x]$
where, $n \in N$ and [*] is greatest integer function.

Illustration 30

Find the value of
$\left[\frac{1}{5}\right]+\left[\frac{1}{5}+\frac{1}{100}\right]+\left[\frac{1}{5}+\frac{2}{100}\right]+\ldots \ldots .+\left[\frac{1}{5}+\frac{99}{100}\right]$

Short-cut solution :

Using T-16 $\quad[n x]=\left[100 \times \frac{1}{5}\right]=20$

SHORTCUTS: (SC-1)

To find number of solution of $f(x)=g(x)$ where $f(x)$ and $g(x)$ are functions. Then draw graph for both LHS and RHS on same Cartesian plane and find number of point of intersection.

Number of point of intersection $=$ Number of solutions/ Roots

Illustration 31

Find number of solution of $x \cdot \ln x=1$

Short-cut solution :

Using SC-1 $\because \quad \ln x=\frac{1}{x} ; x>0$ and $x \neq 0$
Now, we draw graph for $y=\ln x$ and $y=\frac{1}{x} ; x>0$

Authentic Shortcuts-Tips \& Tricks in Mathematics

Number of intersection = $1=$ Number of solutions

Illustration 32

Find number of solutions of $\sin x=\frac{x}{10}$.
Short-cut solution :

Using SC-1	Now, we will draw graphs for $y=\sin x$ and $y=\frac{x}{10}$
\because	$\sin x \in[-1,1]$

$\Rightarrow \quad-1 \leq \frac{x}{10} \leq 1 \quad \Rightarrow \quad-10 \leq x \leq 10$

We have to sketch the curve when $x \in[-10,10]$
Hence, number of intersection $=7=$ Number of solutions.

Illustration 33

Find the number of solutions of $e^{2 x}=x^{2}$.

Short-cut solution :

Using SC-1 Now, we will draw graphs for $y=e^{2 x}, y=x^{2}$

Number of intersection $=$ Number of solutions $=2$.

Illustration 34

Find the number of solutions of $\sin x=\cos x$ in $x \in[0,2 \pi]$.

Short-cut solution :

Using SC-1 Draw graphs of $y=\sin x$ and $y=\cos x$

Number of intersection in $x \in[0,2 \pi]=2=$ Number of solutions

SHORTCUTS: (SC-2)

In order to find domain and range of function, the shortest way is to draw graph. Graphs are also useful for one-one, many-one, onto and into.

$$
\begin{aligned}
& \text { Domain }=\text { Existence of graph along } x \text {-axis } \\
& \text { Range }=\text { Existence of graph along } y \text {-axis }
\end{aligned}
$$

Illustration 35

Find the domain and range also check function is one-one or not in its domain. $f(x)=\frac{x^{2}-5 x+4}{x^{2}+2 x-3}$

Short-cut solution :

Using SC-2 $f(x)=\frac{x^{2}-5 x+4}{x^{2}+2 x-3}=\frac{(x-4)(x-1)}{(x+3)(x-1)} ; \quad x \neq 1,-3$
First of all we will check monotonicity.
Differentiating $\quad f(x)$ w.r.t. x , we get

$$
\begin{array}{ll}
\Rightarrow & f^{\prime}(x)=\frac{d}{d x}\left(\frac{x-4}{x+3}\right)=\frac{(x+3)-(x-4)}{(x+3)^{2}}=\frac{7}{(x+3)^{2}} \\
\Rightarrow & f^{\prime}(x)>0 \Rightarrow \text { Increasing function }
\end{array}
$$

Graph

\Rightarrow Domain ：$x \in R-\{-3,1\}$
Range ：$\quad x \in R-\left\{1, \frac{-3}{4}\right\}$
As shown function is one－one．

Illustration 36

$f:[2, \infty] \rightarrow Y$
$f(x)=x^{2}-4 x+5$ is both one－one and onto if
（a）$Y=R$
（b）$Y=[1, \infty)$
（c）$Y=[4, \infty)$
（d）$Y=[5, \infty)$

Short－cut solution ：

Using SC－2
Graph

Hence，$Y=[1, \infty)$ ．

Illustration 37

$f: R \rightarrow R$
$f(x)=\left\{\begin{array}{r}x^{2}+2 m x-1 ; x \leq 0 \\ m x-1 ; x>0\end{array}\right.$ then find the value of m

Short-cut solution :

Using SC-2
Graph
For $x<0$, it is parabola open upwards
For $x>0$, there are three possibilities (line)

Hence, $\quad m<0 \Rightarrow m \in(-\infty, 0)$.

SHORTCUTS: (SC-3)

Inverse of many-one function does not exist, only one-one onto function are invertible.

$$
f^{\prime}(x) \geq 0 \text { or } f(x) \leq 0
$$

Illustration 38

If $f: R \rightarrow R, f(x)=x^{3}+(a+2) x^{2}+3 a x+5$ is invertible mapping.
Find ' a '.

Short-cut solution :

$$
\begin{array}{ll}
\hline \text { Using SC-3 } & \text { Invertible } \Rightarrow \text { One-one }+ \text { Onto } \\
\text { Hence } & f^{\prime}(x) \geq 0 \text { or } f^{\prime}(x) \leq 0 \\
\Rightarrow & f^{\prime}(x)=3 x^{2}+2 x(a+2)+3 a \geq 0 \quad \text { or } \leq 0 \forall n \in R
\end{array}
$$

$$
\begin{array}{lrl}
\Rightarrow & D \leq 0 \\
\text { Hence, } 4(a+2)-4.9 a & \leq 0 \\
& a^{2}-5 a+4 \leq 0 \\
& (a-1)(a-4) \leq 0 \\
\Rightarrow & a \in[1,4]
\end{array}
$$

SHORTCUTS: (SC-4)

Inverse of a function is a mirror image about $y=x$ line. So copy the graph along other side of $y=x$ line.

Illustration 39
If $f(x)=\left\{\begin{array}{ll}x ; & x<1 \\ x^{2} ; & 1 \leq x \leq 4 . \\ 8 \sqrt{x} ; & x>4\end{array}\right.$ Then find $f^{-1}(x)$

Short-cut solution :

Using SC-4 Draw Graph

Hence, $f^{-1}(x)=\left\{\begin{array}{lll}x & ; & x<1 \\ \sqrt{x} & ; & 1 \leq x \leq 16 \\ \frac{x^{2}}{64} & ; & x>16\end{array}\right.$

SHORTCUTS: (SC-5)

Even functions are symmetric about y-axis odd functions are symmetric about origin.

Illustration 40

If $f(x)=\left\{\begin{array}{ll}x^{2} ; & x \in(0,1] \\ 2-x ; & x>1\end{array}\right.$. Define $f(x)$ for $x<0$ if $f(x)$ is
(i) Even function
(ii) Odd function

Short-cut solution :

Using SC-5
(i) Even Function

Draw graph of $f(x)$ using short cut \Rightarrow Symmetry about y-axis

Hence, $f(x)= \begin{cases}x+2 & ; x \in(-\infty,-1) \\ x^{2} & ; x \in(-1,0)\end{cases}$
(ii) Odd Function

Draw graph of $f(x)$ using shortcut \Rightarrow Symmetry about origin

Hence, $f(x)= \begin{cases}-x-2 & ; \quad x \in(-\infty,-1) \\ -x^{2} & ; x \in(-1,0)\end{cases}$

TECHNIQUE

If f^{-1} be the inverse of bijective function $f(x)$ then $f\left(f^{-1}(x)\right)=x$.
Apply the formula of f on $f^{-1}(x)$ and use of the identity $f\left(f^{-1}(x)\right)=x$ to solve for $f^{-1}(x)$

Illustration 41

Find the inverse of the function $f(x)=\log _{a}\left(x+\sqrt{x^{2}+1}\right) ; a>1$

Concept Booster Exercise

1. Find a polynomial of degree ' 5 ' which satisfies the relation $f(x)+f\left(\frac{1}{x}\right)$ $=f(x) \cdot f\left(\frac{1}{x}\right)$ which is always decreasing function.
2. Find a polynomial which satisfies $f(x)+f\left(\frac{1}{x}\right)=f(x) \cdot f\left(\frac{1}{x}\right) \forall x \in R-\{0\}$ and the condition $f(3)=-26$, then determine $f^{\prime}(1)$.
3. Find: $I=\int_{0}^{3 \pi}\{2 \cos x\} d x$; where $\}$ is fractional part function.
4. The range of the function $f(x)={ }^{7-x} P_{x-3}$ is
[AIEEE 2004]
(a) $\{1,2,3\}$
(b) $\{1,2,3,4,5,6\}$
(c) $\{1,2,3,4\}$
(d) $\{1,2,3,4,5\}$
5. If $f: R \rightarrow S$, defined by $f(x)=\sin x-\sqrt{3} \cos x+1$, is onto, then the interval of ' S ' is:
[AIEEE 2004]
(a) $[0,3]$
(b) $[-1,1]$
(c) $[0,1]$
(d) $[-1,3]$
6. The range of the function $f(x)=\frac{2+x}{2-x}, x \neq 2$ is
[AIEEE 2002]
(a) R
(b) $R-\{-1\}$
(c) $R-\{1\}$
(d) $R-\{2\}$
7. The range of $f(x)=\frac{3 x-1}{2 x+1} ; x \neq \frac{-1}{2}$
(a) $\quad R-\left\{\frac{2}{3}\right\}$
(b) $\quad R-\left\{\frac{3}{2}\right\}$
(c) R
(d) $R-\left\{\frac{2}{5}\right\}$
8. The range of the function $f(x)=\cos \left(\frac{1}{2} \sin x\right)$
(a) $[\cos 2,1]$
(b) $\left[\cos \frac{1}{2}, 1\right]$
(c) $[-1,1]$
(d) None of these
9. The range of the function $f(x)=\cos (5 \sin x)$
(a) $[\cos 5,1]$
(b) $[-1,1]$
(c) $\left[\cos \frac{1}{5}, 1\right]$
(d) $[-1,1)$
10. Which of the following is/are the functions
[AIEEE 2002]
(a) $y^{2}=4 x$
(b) $x^{2}=8 y$
(c) $x^{2}+y^{2}=4$
(d) $\left[\cos \frac{1}{5}, 1\right]$
11. The function $f: R \rightarrow R$ defined by $f(x)=\sin x$ is:
(a) Into
(b) Onto
(c) One-one
(d) Many-one
12. The period of the function $f(x)=$ if $f(x+10)+f(x+20)=50$
(a) 30
(b) 40
(c) 60
(d) 20
13. The period of $f(x)=\cos \frac{\pi}{4} x+\sin \frac{\pi x}{3}$.
(a) 24
(b) 12
(c) 36
(d) 6
14. The function $f: R \rightarrow R$ defined by $f(x)=x^{2}-3 x+2$
(a) Onto
(b) Into
(c) Many-one
(d) One-one
15. Given $X=\{1,2,3,4\}$, find all one-one, onto mappings, $f: X \rightarrow X$ such that,
16. Let $E=\{1,2,3,4\}$ and $F=\{1,2\}$. The number of onto functions from E to F is
[AIEEE 2002]
(a) 14
(b) 16
(c) 12
(d) 8
17. Suppose $f(x)=(x+1)^{2}$ for $x \geq-1$, If $g(x)$ is the function whose graph is the reflection of the graph of $f(x)$ with respect to the line $y=x$, then $g(x)$ equals
[AIEEE 2002]
(a) $-\sqrt{x}-1, x \geq 0$
(b) $\frac{1}{(x+1)^{2}}, x \geq-1$
(c) $\sqrt{x+1}, n \geq-1$
(d) $\sqrt{x}-1, x \geq 0$
18. Let $f: R \rightarrow R$ be defined by $f(x)=2 x+\sin x ; x \in R$. Then f is[AIEEE 2002]
(a) one to one and onto
(b) one to one but not onto
(c) onto but not one-one
(d) neither one-to one nor onto
19. The function $f:[0,3] \rightarrow[1,29]$, defined by $f(x)=2 x^{3}-15 x^{2}+36 x+1$ is
[AIEEE 2012]
(a) one-one and onto
(b) onto but not one-one
(c) one-one but not onto
(d) neither one-one nor onto
20. The inverse function of $f(x)=\frac{8^{2 x}-8^{-2 x}}{8^{2 x}+8^{-2 x}}, x \in(-1,1)$ is
[JEE M 2020]
(a) $\frac{1}{4} \log _{e}\left(\frac{1+x}{1-x}\right)$
(b) $\frac{1}{4} \log _{e}\left(\frac{1-x}{1+x}\right)$
(c) $\frac{1}{4}\left(\log _{8}^{e}\right) \log _{e}\left(\frac{1+x}{1-x}\right)$
(d) $\frac{1}{4}\left(\log _{8}^{e}\right) \log _{e}\left(\frac{1-x}{1+x}\right)$
21. Let $f:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \rightarrow R$ given by $f(x)=[\log (\sec x+\tan x)]^{3}$, then
[JEE M 2014]
(a) $f(x)$ is odd function
(b) $f(x)$ is an one-one function
(c) $f(x)$ is onto function
(d) $f(x)$ is even function
22. Let $f(x)=a x^{7}+b x^{3}+c x-5 ; a, b, c \in$ constant then find $f(+7)$, if $f(-7)=7$.
(a) -16
(b) -15
(c) -17
(d) -20
23. Find the period of the function $f(x)=2+3 \cos (3 x-2)$
(a) 2π
(b) π
(c) -
(d) $\frac{\pi}{3}$
24. Find the domain of the function $f(x)=\frac{\sqrt{\cos -\frac{1}{\sqrt{2}}}}{\sqrt{\frac{3}{2} x-x^{2}-\frac{1}{2}}}$
25. Let $f(x)=\frac{x}{1+x}$ defined from $(0, \infty) \rightarrow[0, \infty)$ then $f(x)$ is [AIEEE 2003]
(a) one-one but not onto
(b) one-one and onto
(c) many-one but not onto
(d) many-one and onto

Solutions

1. $\left(\mathbf{1}-\boldsymbol{x}^{\mathbf{5}}\right)$ Using T-1 $f(x)=1 \pm x^{5}$

Since function is always decreasing is
So, $f^{\prime}(x)<0$
$\Rightarrow f(x)=1+x^{5}$ or $f(x)=1-x^{5}$
$f^{\prime}(x)=5 x^{4}>0$ or $f^{\prime}(x)=-5 x^{4}<0$
\Rightarrow increasing function \Rightarrow decreasing function
Hence, $f(x)=1-x^{5}$ is our required answer.
2. (-3) Using T-1 $f(x)=1 \pm x^{n}$

Hence, the required function is
$f(x)=1-x^{3} \Rightarrow f^{\prime}(x)=-3 x^{2}$
3. $\begin{aligned} &\left(\frac{3 \pi}{2}\right) \Rightarrow \quad f^{\prime}(1)=-3 \\ & \text { Using T-3 } \\ & I=\int_{0}^{3 \pi}\{-2 \cos x\} d x\end{aligned}$

Apply king property
$\Rightarrow I=\int_{0}^{3 \pi}\{2 \cos x\} d x$
Add eqns. (1) and (2)
$\Rightarrow 2 I=\int_{0}^{3 \pi}(\{2 \cos x\}+\{-2 \cos x\}) d x$
$\Rightarrow 2 I=\int_{0}^{3 \pi}(1) d x \Rightarrow I=\frac{3 \pi}{2}$
4. (a) We know that $x-3 \geq 0 \Rightarrow x \geq 3$

And 7-x $\geq x-3 \Rightarrow 2 x \leq 10 \Rightarrow x \leq 5$
Hence, $x=3,4,5$
Now At $x=3 \Rightarrow y={ }^{4} P_{0}=1$
At $x=4 \Rightarrow y={ }^{3} P_{1}=3$
At $x=5 \Rightarrow y={ }^{2} P_{2}=2$
Hence, range $=\{1,2,3\}$.
5. (d) As we know that $-\sqrt{a^{2}+b^{2}} \leq a \sin x+b \cos x \leq \sqrt{a^{2}+b^{2}}$

Hence,
$-2 \leq \sin x-\sqrt{3} \cos x \leq 2$
$-1 \leq \sin x-\sqrt{3} \cos x+1 \leq 3$
Onto \Rightarrow Range $=$ Codomain $\Rightarrow S \in[-1,3]$.
6. (b) Using T-5 $\begin{aligned} \text { Range } & \rightarrow y \in R-\left\{\frac{1}{-1}\right\} \\ & \Rightarrow \quad y \in R-\{-1\}\end{aligned}$
7. (b) Using T-5 Range $\rightarrow y \in R-\left\{\frac{3}{2}\right\}$
8. (b) Using T-6 $\because \frac{1}{2}<\pi \Rightarrow$ Range is $y \in\left[\cos \frac{1}{2}, 1\right]$
9. (b) Using T-6 $\because 5>\pi \Rightarrow$ Range is $y \in[-1,1]$
10. (b, d) Using T-7
(a)

(b)

(c)

Not a function
Function
(d)

Function
11. (a, d) Using T-8

Range of $\sin x=y$ is $y \in[-1,1]\}$
But given co- domain is $y \in R\} \Rightarrow$ Range \neq Codomain
Hence, into function.

Authentic Shortcuts-Tips \& Tricks in Mathematics

12. (d)

$$
\begin{array}{lrl}
\hline \text { Using T-15 } & a=10, \quad b=20 \\
\Rightarrow \quad & \text { Period } & =2|20-10|=20 .
\end{array}
$$

13. (a) $f(x)=\underbrace{\sin \frac{\pi x}{4}}+\underbrace{\sin \frac{\pi x}{3}}$, Since period of $\sin x=2 \pi$

Using T-13 $T_{1}=\frac{2 \pi}{\frac{\pi}{4}}$ and $T_{2}=\frac{2 \pi}{\frac{\pi}{3}}$
Using T-14 Period $=\operatorname{LCM}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}\right)$
$=\operatorname{LCM}(8,6)=24$.
14. (b, c) Using T-8 $f(x)=x^{2}-3 x+2 \Rightarrow$ Parabola open upwards

\Rightarrow Many-one function

Using T-9

$$
\left.\begin{array}{lll}
x \rightarrow \infty & \Rightarrow f(x) \rightarrow \infty \\
x \rightarrow-\infty & \Rightarrow & f(x) \rightarrow \infty
\end{array}\right\} \Rightarrow \text { Into function }
$$

15. (24)

$$
\begin{aligned}
& \text { Using T-10(ii) } m=4 \text { and } n=4 \\
& { }^{n} P_{m}={ }^{4} P_{4}=\frac{4!}{0!} \\
& n=m \\
& \Rightarrow \text { No. of one-one functions }=24
\end{aligned}
$$

Using T-10(iv) Since, $n=m=4$
\Rightarrow No. of onto functions $=n!=4!=24$.
16. (a) Using T-10(iv) $m=4$ and $n=2$

Since, $n<m$
$\Rightarrow n^{m}-{ }^{n} C_{1}(n-1)^{m}+{ }^{n} C_{2}(n-2)^{m}-{ }^{n} C_{3}(n-3)^{m}+\ldots$
$=2^{4}-{ }^{2} C_{1}(1)^{4}+{ }^{2} C_{2} \times 0$
$=16-2=14$.

17. (d) Using SC-3

Since, $g(x)$ is reflection about $y=x$ line of $f(x)$
$\Rightarrow g(x)$ is inverse of $f(x)$
Hence, $\quad y=(x+1)^{2} \Rightarrow x+1=\sqrt{y} \Rightarrow x=-1+\sqrt{y}$

$$
\Rightarrow f^{-1}(x)=-1+\sqrt{x} ; x \geq 0 .
$$

18. (a) Using T-8(ii) Differentiate $f(x)$
$\Rightarrow \quad f^{\prime}(x)=2+\underbrace{\cos x}_{[-1,1]} \Rightarrow f^{\prime}(x)>0 \Rightarrow$ one-one function

$$
\begin{aligned}
& \text { Using T-9 } f(x)=2 x+\underbrace{\sin x}_{[-1,1]} \\
& \left.\begin{array}{l}
x \rightarrow \infty \Rightarrow f(x) \rightarrow \infty \\
x \rightarrow-\infty \Rightarrow f(x) \rightarrow-\infty
\end{array}\right\} \Rightarrow \text { Onto function. }
\end{aligned}
$$

19. (d)

$$
\begin{aligned}
& \hline \text { Using T-8(ii) Differentiate } f(x) \\
& f^{\prime}(x)=6 x^{2}-30 x+36 \\
&=6\left(x^{2}-5 x+6\right)
\end{aligned}
$$

For, $\left.x \in[0,2] \Rightarrow f^{\prime}(x)>0\right\}$

For, $\left.\quad x \in[2,3] \Rightarrow f^{\prime}(x)<0\right\}$
Hence, many-one function.
20. (c) $\frac{y}{1}=f(x)=\frac{8^{2 x}-8^{-2 x}}{8^{2 x}+8^{-2 x}} ; x \in(-1,1)$

Apply componendo and dividendo
$\Rightarrow \frac{y+1}{y-1}=\frac{2.8^{2 x}}{-2.8^{-2 x}}=-8^{4 x}$
Take $\log _{8}$ to both sides
$\Rightarrow 4 x=\log _{8}\left(\frac{y+1}{1-y}\right) \Rightarrow f^{-1}(x)=\frac{1}{4} \log _{8}\left(\frac{y+1}{1-y}\right) \quad$ \{Change base \}
$\Rightarrow f^{-1}(x)=\frac{1}{4} \frac{\log _{e}\left(\frac{x+1}{1-x}\right)}{\log _{e} 8}$
21. ($\mathbf{a}, \mathbf{b}, \mathbf{c}$) For even/odd function

$$
\begin{aligned}
& \Rightarrow f(-x)=[\log (\sec x-\tan x)]^{3} \\
& =\left(\log \left[\frac{\sec ^{2} x-\tan ^{2} x}{\sec x+\tan x}\right]\right)^{3}=\left[\log \left(\frac{1}{\sec x+\tan x}\right)\right]^{3} \\
& =-[\log (\sec x+\tan x)]^{3} \\
& f(-x)=-f(x) \Rightarrow \text { Odd function }
\end{aligned}
$$

For one-one function
Using T-8(ii) $f^{\prime}(x)=3[\log (\sec x+\tan x)]^{2} \times \frac{1 \cdot \sec x(\sec x+\tan x)}{(\sec x+\tan x)}$
$\Rightarrow f^{\prime}(x)=3[\log (\sec x+\tan x)]^{3}$
Since, $f^{\prime}(x)>0$
\Rightarrow One-one function

$$
\underbrace{\sec x}_{>0 \text { for }\left(\frac{-\pi}{2}, \frac{\pi}{2}\right)}
$$

Since, range $=$ codomain $\in R$. Hence, onto function.
22. (c) Put $x=-7$
$\Rightarrow f(-7)=-\left(a \cdot 7^{7}+b \cdot 7^{3}+c \cdot 7\right)-5 \Rightarrow\left(a \cdot 7^{7}+b \cdot 7^{3}+c \cdot 7\right)=-12$
Now, put $x=7$
$f(7)=\underbrace{a \cdot 7^{7}+b \cdot 7^{3}+c \cdot 7}-5=-12-5=-17$.
23. (c) Using T-13 Since period of $\cos x$ is 2π
\Rightarrow Period of $f(x)$ is $\frac{2 \pi}{3}$.
24. $x \in\left(\frac{1}{2}, \frac{\pi}{4}\right]$
$\begin{array}{ll}\text { (1) } \cos x-\frac{1}{\sqrt{2}} \geq 0 & \text { (2) } \frac{3}{2} x-x^{2}-\frac{1}{2}>0\end{array}$
$\left(x-\frac{1}{2}\right)(x-1)<0 \quad x \in\left(+\frac{1}{2}, 1\right)$

Hence, the common part is the graph will give the domain of $f(x)$
So the domain is $\quad x \in\left(\frac{1}{2}, \frac{\pi}{4}\right]$.
25. (a) Using T-8(ii) $f^{\prime}(x)=\frac{(1+x)-x}{(1+x)^{2}}>0$

Hence $f(x)$ is one-one function
Since, in the co-domain $\rightarrow[0, \infty)$; ' 0 ' is included
But in domain $\quad x \neq 0 \Rightarrow f(x) \neq 0$
Hence, \quad Range \neq Co-domain \Rightarrow Not onto

1. Inverse Trigonometric Function: As we know that trigonometric functions are not one-one and onto i.e. their natural domain and range, so their inverse do not exist but if we restrict their domain and range, then their inverse may exist.
2. Graphs of Inverse Trigonometric Functions

	Function	Graph	Domain	Range
(i)	$y=\sin ^{-1} x$		$x \in[-1,1]$	$y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(ii)	$y=\cos ^{-1} x$		$x \in[-1,1]$	$x \in[0, \pi]$
(iii)	$y=\tan ^{-1} x$		$x \in R$	$y \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$

34 Authentic Shortcuts-Tips \& Tricks in Mathematics

1. Properties of ITF (Inverse Trigonometric Function)

Property-1

(i) $\sin \left(\sin ^{-1} x\right)=x ; \quad x \in[-1,1]$
(ii) $\quad \cos \left(\cos ^{-1} x\right)=x ; \quad x \in[-1,1]$
(iii) $\tan \left(\tan ^{-1} x\right)=x ; \quad x \in \mathrm{R}$
(iv) $\cot \left(\cot ^{-1} x\right)=x ; \quad x \in \mathrm{R}$
(v) $\operatorname{cosec}\left(\operatorname{cosec}^{-1} x\right)=x ; \quad x \in(-\infty,-1] \cup[1, \infty)$
(vi) $\sec \left(\sec ^{-1} x\right)=x ; \quad x \in(-\infty,-1] \cup[1, \infty)$

Property-2
(i) $\sin ^{-1}(\sin x)=x ; \quad x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
(ii) $\cos ^{-1}(\cos x)=x ; \quad x \in[0, \pi]$
(iii) $\tan ^{-1}(\tan x)=x ; \quad x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$
(iv) $\cot ^{-1}(\cot x)=x ; \quad x \in(0, \pi)$
(v) $\operatorname{cosec}^{-1}(\operatorname{cosec} x)=x ; x \in\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]-\{0\}$
(vi) $\sec ^{-1}(\sec x)=x ; x \in[0, \pi]-\left\{\frac{\pi}{2}\right\}$

Very Important Note:

If ' x ' is not given according to above domain then make it between the above domain by using " $\pm n \pi$ "
Ex: $\quad \sin ^{-1}\left(\sin \frac{2 \pi}{3}\right)=\sin ^{-1}\left(\sin \left(\pi-\frac{\pi}{3}\right)\right)$

$$
=\sin ^{-1}\left(\sin \frac{\pi}{3}\right)
$$

$$
=\frac{\pi}{3} .
$$

Property-3

(i) $\sin ^{-1}(-x)=-\sin ^{-1} x \quad \forall x \in[-1,1]$
(ii) $\cos ^{-1}(-x)=\pi-\cos ^{-1} x \quad \forall x \in[-1,1]$
(iii) $\tan ^{-1}(-x)=-\tan ^{-1} x \quad \forall x \in R$
(iv) $\cot ^{-1}(-x)=\pi-\cot ^{-1} x \quad \forall x \in R$
(v) $\operatorname{cosec}^{-1}(-x)=-\operatorname{cosec}^{-1} x \forall x \in(-\infty,-1] \cup[1, \infty)$
(vi) $\sec ^{-1}(-x)=\pi-\sec ^{-1} x \quad \forall x \in(-\infty,-1] \cup[1, \infty)$

Property-4
(i) $\sin ^{-1} x+\cos ^{-1} x=\frac{\pi}{2} ; x \in[-1,1]$
(ii) $\tan ^{-1} x+\cot ^{-1} x=\frac{\pi}{2} ; x \in R$
(iii) $\sec ^{-1} x+\operatorname{cosec}^{-1} x=\frac{\pi}{2} ; x \in(-\infty,-1] \cup[1, \infty)$

Property-5

(i) $\sin ^{-1} x=\operatorname{cosec}^{-1}\left(\frac{1}{x}\right) ; x \in[-1,1]-\{0\}$
(ii) $\cos ^{-1} x=\sec ^{-1}\left(\frac{1}{x}\right) ; x \in[-1,1]-\{0\}$
(iii) $\tan ^{-1} x= \begin{cases}\cot ^{-1} \frac{1}{x} & ; x>0 \\ -\pi+\cot ^{-1} \frac{1}{x} & ; x<0\end{cases}$

Property-6

(i) $\tan ^{-1} x+\tan ^{-1} y= \begin{cases}-\pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; & x<0, y<0, x y>1 \\ \tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; & x y<1 \\ \pi+\tan ^{-1}\left(\frac{x+y}{1-x y}\right) ; & x>0, y>0, x y>1\end{cases}$
(ii) $\tan ^{-1} x-\tan ^{-1} y= \begin{cases}-\pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; & x<0, y<0, x y<-1 \\ \tan ^{-1}\left(\frac{x-y}{1+x y}\right) \quad ; & x y>-1 \\ \pi+\tan ^{-1}\left(\frac{x-y}{1+x y}\right) ; & x>0, y<0 \text { and } x y>-1\end{cases}$

Property-7

$$
\sin ^{-1} x \pm \sin ^{-1} y=\left\{\begin{array}{l}
\sin ^{-1}\left[x \sqrt{1-y^{2}} \pm \sqrt{1-x^{2}}\right] ; x, y \geq 0 \text { and } x^{2}+y^{2} \leq 1 \\
\pi-\sin ^{-1}\left[x \sqrt{1-y^{2}} \pm y \sqrt{1-x^{2}}\right] ; x, y \geq 0 \text { and } x^{2}+y^{2}>1
\end{array}\right.
$$

Property-7.1

$$
\cos ^{-1} x \pm \cos ^{-1} y=\left\{\begin{array}{l}
\cos ^{-1}\left[x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}}\right] ; x, y>0 \text { and } x^{2}+y^{2} \leq 1 \\
\pi-\cos ^{-1}\left[x y \mp \sqrt{1-x^{2}} \sqrt{1-y^{2}}\right] ; x, y>0 \text { and } x^{2}+y^{2}>1
\end{array}\right.
$$

Property-8: Simplified Trigonometric Functions

(i) $\quad \sin ^{-1} \frac{2 x}{1+x^{2}}=\left\{\begin{aligned}-\pi-2 \tan ^{-1} x ; & x<-1 \\ 2 \tan ^{-1} x ; & -1 \leq x \leq 1 \\ \pi-2 \tan ^{-1} x ; & x>1\end{aligned}\right.$
(ii) $\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)=\left\{\begin{aligned} \pi+2 \tan ^{-1} x & ; x<-1 \\ 2 \tan ^{-1} x ; & -1<x<1 \\ -\pi+2 \tan ^{-1} x ; & x>1\end{aligned}\right.$
(iii) $\cos ^{-1}\left(\frac{1-x^{2}}{1+x^{2}}\right)=\left\{\begin{aligned}-2 \tan ^{-1} x & ; x \leq 0 \\ 2 \tan ^{-1} x & ; x \geq 0\end{aligned}\right.$
(iv) $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}\left(\frac{x+y+z-x y z}{1-(x y+y z+z x)}\right)$;
if $x>0, y>0, z>0$ and $(x y+y z+z x)<1$
\star Note: (i) $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{\pi}{2}$, then $x y+y z+z x=1$
(ii) $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, then $x y+y z+z x=x y z$.

Important Points to Remember

(i) $\tan ^{-1}\left(\frac{x}{\sqrt{a^{2}-x^{2}}}\right)=\sin ^{-1} \frac{x}{a}$
(ii) $\tan ^{-1}\left(\frac{\sqrt{1+x^{2}}+\sqrt{1-x^{2}}}{\sqrt{1+x^{2}}-\sqrt{1-x^{2}}}\right)=\frac{\pi}{4}+\frac{1}{2} \cos ^{-1} x^{2}$
(iii) $\tan ^{-1}\left(\frac{3 a^{2} x-x^{3}}{a\left(a^{2}-3 x^{2}\right)}\right)=3 \tan ^{-1} \frac{x}{a}$
(iv) $\tan ^{-1} x_{1}+\tan ^{-1} x_{2}+\ldots \ldots .+\tan ^{-1} x_{n}=\tan ^{-1}\left[\frac{S_{1}-S_{3}+S_{5} \ldots \ldots .}{1-S_{2}+S_{4}-S_{6}+\ldots \ldots .}\right]$
where, S_{k} denotes the sum of the product of $x_{1}, x_{2}, \ldots, x_{n}$ taken ' K ' at a time.
\star Note: $\tan ^{-1}(\sqrt{2}+1)=\frac{3 \pi}{8}$

$$
\tan ^{-1}(2-\sqrt{3})=\frac{\pi}{12}
$$

Illustration 1

If $x>0, y>0$ and $x>y$, then find $\tan ^{-1}\left(\frac{x}{y}\right)+\tan ^{-1}\left(\frac{x+y}{x-y}\right)$.
[AIEEE 2005]
(a) $\frac{\pi}{4}$
(b) $-\frac{\pi}{4}$
(c) $\frac{3 \pi}{4}$
(d) $\frac{\pi}{2}$

Short-cut solution :

$$
\begin{align*}
& \text { Using T-1 Put } x=1, \quad y=1 \\
& \Rightarrow \quad \tan ^{-1} 1+\tan ^{-1}(\infty)=\frac{\pi}{4}+\frac{\pi}{2}=\frac{3 \pi}{4} \tag{a}
\end{align*}
$$

Illustration 2

If $\cos ^{-1} x-\cos ^{-1} \frac{y}{2}=\alpha$, then $4 x^{2}-4 x y \cos \alpha+y^{2}=$
(a) $-4 \sin ^{2} \alpha$
(b) $4 \sin ^{2} \alpha$
(c) 4
(d) $2 \sin 2 \alpha$

Short-cut solution :
Using T-1 Put $x=y=1 \Rightarrow \alpha=-\frac{\pi}{3}$
Now, put ' α ' in the required eqn.
$\Rightarrow 4 x^{2}-4 x y \cos \left(-\frac{\pi}{3}\right)+y^{2} \quad(\because x=y=1)$
$\Rightarrow \quad 4-4 \times \frac{1}{2}+1=3$
Now, check option A, B, C, D for $\alpha=-\frac{\pi}{3}$
$\Rightarrow 4 \times \sin ^{2} \alpha=4 \times \sin ^{2}\left(-\frac{\pi}{3}\right)=3$
Ans (b)

Illustration 3

$$
\begin{aligned}
\tan ^{-1}\left(\frac{a_{1} x-y}{a_{1} y+x}\right)+\tan ^{-1}\left(\frac{a_{2}-a_{1}}{1+a_{1} a_{2}}\right)+ & \tan ^{-1}\left(\frac{a_{3}-a_{2}}{1+a_{2} a_{3}}\right)+\ldots \\
& +\ldots \tan ^{-1}\left(\frac{a_{n}-a_{n+1}}{1+a_{n} a_{n-1}}\right)+\tan ^{-1}\left(\frac{1}{a_{n}}\right)
\end{aligned}
$$

Short-cut solution :

Using T-1 Put $a_{1}=a_{2}=a_{3}=\ldots a_{n}=0$
$\Rightarrow-\tan ^{-1}\left(\frac{y}{x}\right)+0+\ldots+0+\underbrace{\tan ^{-1}(\infty)}_{\pi / 2}$

$$
=\frac{\pi}{2}-\tan ^{-1} \frac{y}{x}=\cot ^{-1}\left(\frac{y}{x}\right)
$$

Illustration 4

If $x>0, y>0$, then $\tan ^{-1}\left(\frac{x}{y}\right)-\tan ^{-1}\left(\frac{x-y}{x+y}\right)=$
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{4}$
(c) $\frac{\pi}{3}$
(d) $\frac{\pi}{4}$ or $-\frac{3 \pi}{4}$

Short-cut solution :

Using T-1 Put $\quad x=y=1$
$\Rightarrow \tan ^{-1}(1)-\tan ^{-1}(0)=\frac{\pi}{4}$.
Ans. (b)

Illustration 5

If $0 \leq x \leq \frac{1}{2}$, then value of $\tan \left(\sin ^{-1}\left(\frac{x}{\sqrt{2}}+\frac{\sqrt{1-x^{2}}}{\sqrt{2}}\right)-\sin ^{-1} x\right)$ is
(a) 0
(b) -1
(c) 1
(d) $\frac{\pi}{4}$

Short-cut solution :

Using T-1 Since $0 \leq x \leq \frac{1}{2}$, put $x=0$
$\Rightarrow \quad \tan \left(\sin ^{-1} \frac{1}{\sqrt{2}}\right)=\tan \frac{\pi}{4}=1$.
Ans. (c)

Illustration 6

If $x^{2}+y^{2}+z^{2}=k^{2}$, then value of
$\tan ^{-1}\left(\frac{x y}{z k}\right)+\tan ^{-1}\left(\frac{x z}{y k}\right)+\tan ^{-1}\left(\frac{z y}{x k}\right)$ is equals to
(a) $\frac{\pi}{2}$
(b) π
(c) $\frac{3 \pi}{2}$
(d) 0

Short-cut solution :

Using T-1 Put $x=y=z=1$
$\Rightarrow K^{2}=3 \Rightarrow K=\sqrt{3}$
Hence, $\tan ^{-1}\left(\frac{1 \cdot 1}{1 \cdot \sqrt{3}}\right)+\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)+\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)=\frac{\pi}{2}$.
Ans. (a)

Illustration 7

The value of $\tan \left\{\frac{\pi}{4}+\frac{1}{2} \cos ^{-1}\left(\frac{x}{y}\right)\right\}+\tan ^{-1}\left\{\frac{\pi}{4}-\frac{1}{2} \cos ^{-1}\left(\frac{x}{y}\right)\right\}$
is equal to
(a) $\frac{x}{y}$
(b) $\frac{y}{x}$
(c) $\frac{2 x}{y}$
(d) $\frac{2 y}{x}$

Short-cut solution :

Using T-1 Put $x=1$ and $y=2$

$$
\begin{aligned}
\Rightarrow \tan \left\{\frac{\pi}{4}+\frac{1}{2} \times \frac{\pi}{3}\right\}+\tan \{ & \left\{\frac{\pi}{4}-\frac{\pi}{3} \times \frac{1}{2}\right\}=\tan \left\{\frac{5 \pi}{12}\right\}+\tan \left\{\frac{\pi}{12}\right\} \\
& =\tan 75^{\circ}+\tan 15^{\circ}=2+\sqrt{3}+2-\sqrt{3}=4
\end{aligned}
$$

Now, check for $x=1$ and $y=2$ in options (a), (b), (c), (d).
$\Rightarrow \quad \frac{2 y}{x}=4$.
Ans. (d)

TIPS

Short trick to solve series produces in inverse trigonometric functions.
In this we can take value of ' n ' be 1,2 or $3, \ldots$. etc. to minimize the steps. And after that check the option for those value of ' n ' which has taken.

Illustration 8

The value of

$$
\tan ^{-1}\left(\frac{x}{1+2 x^{2}}\right)+\tan ^{-1}\left(\frac{x}{1+6 x^{2}}\right)+\tan ^{-1}\left(\frac{x}{1+12 x^{2}}\right)+\ldots+n \text { terms }
$$

(a) $\tan ^{-1}(n+1) x-\tan ^{-1} x$
(b) $\tan ^{-1}(n+1) x+\tan ^{-1} x$
(c) $\tan ^{-1}(n-1)-\tan ^{-1} x$
(d) $\tan ^{-1}(n-1) x-\tan ^{-1} x$

Short-cut solution :

Using T-2 Put $n=1$
$\Rightarrow \tan ^{-1}\left(\frac{x}{1+2 x \times x}\right)=\tan ^{-1}\left(\frac{2 x-x}{1+2 x \times x}\right)$
As we know that $\tan ^{-1}\left(\frac{A-B}{1+A B}\right)=\tan ^{-1} A-\tan ^{-1} B$
$\Rightarrow \tan ^{-1} 2 x-\tan ^{-1} x$
Now, check for $n=1$ in options (a), (b), (c), (d).
Ans. (a)

Illustration 9

The value of

$$
\tan ^{-1} \frac{1}{x^{2}+x+1}+\tan ^{-1} \frac{1}{x^{2}+3 x+3}+\tan ^{-1} \frac{1}{x^{2}+5 x+7}+\ldots n \text { terms }
$$

(a) $\tan ^{-1}(x-n)-\tan ^{-1} x$
(b) $\tan ^{-1}(x+n)-\tan ^{-1} x$
(c) $\tan ^{-1}(n-x)-\tan ^{-1} x$
(d) $\tan ^{-1}(x+n+1)-\tan ^{-1} x$

Short-cut solution :

Using T-2 Put $n=1$
$\Rightarrow \tan ^{-1} \frac{1}{1+x(x+1)}=\tan ^{-1}\left(\frac{(x+1)-1}{1+x(x+1)}\right)$
As we know that $\tan ^{-1} x-\tan ^{-1} y=\tan ^{-1}\left(\frac{x-y}{1+x y}\right)$
$\Rightarrow \tan ^{-1}(x+1)-\tan ^{-1} 1$
Check options (a), (b), (c), (d) for $n=1$.

TIPS

In this trick first of all we will use substitution method as mentioned in T-1 and then stabilizing the components (options).

Illustration 10

The value of $\cos ^{-1}\left(\frac{4+5 \cos x}{5+4 \cos x}\right)$.
(a) $2 \tan ^{-1}\left(\frac{3}{4} \tan \frac{x}{2}\right)$
(b) $2 \tan ^{-1}\left(\frac{1}{3} \tan \frac{x}{2}\right)$
(c) $2 \tan ^{-1}\left(\frac{3}{5} \tan x\right)$
(d) $2 \tan ^{-1}\left(\frac{3}{4} \tan x\right)$

Short-cut solution :

Using T-3 Put $x=90^{\circ}$
$\Rightarrow \cos ^{-1}\left(\frac{4+0}{5+0}\right)=\tan ^{-1}\left(\frac{3}{4}\right)$
Now, we will check (a), (b), (c), (d) options.

Stabilizing $\Rightarrow \tan ^{-1} \frac{3}{4}=2 \tan ^{-1}\left(\frac{1}{3} \tan \frac{x}{2}\right)$
\Rightarrow Take 'tan' to both sides $\Rightarrow \frac{3}{4}=\frac{2 \times \frac{1}{3}}{1-\frac{1}{9}}=\frac{3}{4}$.
Ans. (b)

Illustration 11

If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$ then,
(a) $x^{100}+y^{100}+z^{100}-\frac{9}{x^{101}+y^{101}+z^{101}}=0$
(b) $x^{22}+y^{42}+z^{62}-x^{220}-y^{420}-z^{620}=0$
(c) $x^{50}+y^{25}+z^{5}=0$
(d) $\frac{x^{2008}+y^{2008}+z^{2008}}{(x y z)^{2009}}=0$

Short-cut solution :

Using T-3 Put $\sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{2}$ $\Rightarrow x=y=z=1$
Now, check options (a), (b), (c), (d) for $x=y=z=1$
Ans. (a, b)

Illustration 12

Solve $\cos ^{-1} x \sqrt{3}+\cos ^{-1} x=\frac{\pi}{2}$, then $x=$
(a) $-\frac{1}{2}$
(b) $\frac{1}{2}$
(c) 0
(d) 1

Short-cut solution :

Using T-1
Check options (a), (b), (c), (d).
Put $x=\frac{1}{2} \Rightarrow \cos ^{-1} \frac{\sqrt{3}}{2}+\cos ^{-1} \frac{1}{2}=\frac{\pi}{6}+\frac{\pi}{3}=\frac{\pi}{2}$
Ans. (b)

Illustration 13

If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{3 \pi}{4}$ then the value of $x y+y z+z x$ is,
(a) 3
(b) 2
(c) - 3
(d) -2

Short-cut solution :

Using T-3 Put $x=y=z=1$
$\Rightarrow \tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\frac{3 \pi}{4}$
Then, $x y+y z+z x=3$
Ans. (a)

Illustration 14

$\tan ^{-1}\left(\frac{\sqrt{1-\sin x}+\sqrt{1+\sin x}}{\sqrt{1-\sin x}-\sqrt{1+\sin x}}\right) ; \frac{\pi}{2} \leq x<\pi$ is equal to
(a) $\frac{x}{2}-\frac{\pi}{2}$
(b) $\frac{\pi}{2}-\frac{x}{2}$
(c) $\pi-x$
(d) $2 \pi-x$

Short-cut solution :

Using T-1 Put $x=\frac{\pi}{2}$
$\Rightarrow \quad \tan ^{-1}\left(\frac{0+\sqrt{2}}{0-\sqrt{2}}\right)=-\tan ^{-1} 1=\frac{-\pi}{4}$
Now, check options (a), (b), (c), (d)
$\Rightarrow\left(\frac{x}{2}-\frac{\pi}{2}=\frac{-\pi}{4}\right)$.
Ans. (a)

Illustration 15

$\left[\frac{1}{y^{2}}\left(\frac{\cos \left(\tan ^{-1} y\right)+y \sin \left(\tan ^{-1} y\right)}{\cot \left(\sin ^{-1} y\right)+\tan \left(\sin ^{-1} y\right)}\right)^{2}+y^{4}\right]^{\frac{1}{2}}$ is equal to: [JEE M 2013]
(a) 1
(b) 0
(c) $\frac{1}{2}$
(d) $\sqrt{2}$

Short-cut solution :

Using T-1 Put $y=1$
$\Rightarrow \quad\left[0^{2}+1\right]=1$

SHORTCUTS: (SC-1)

In order to solve inequilities in inverse trigonometric functions use graphs to minimizing the steps.

Illustration 16

The values of ' x ' for which $\sin ^{-1} x>\cos ^{-1} x \forall x \in(-1,1)$.

Short-cut solution :

Using SC-1
We will draw graphs of both functions

$$
y=\sin ^{-1} x \text { and } y=\cos ^{-1} x
$$

We will choose that part in the graph which is greater

$$
\left(\sin ^{-1} x>\cos ^{-1} x\right)
$$

Hence, it is clear from the graph $\Rightarrow x \in\left[\frac{1}{\sqrt{2}}, 1\right)$

TECHNIQUE

If the input of inverse trigonometric identity are infinite series and different then change the inputs in simple form using G.P. and then equate.

Illustration 17
If $\sin ^{-1}\left(x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots.\right)+\cos ^{-1}\left(x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots.\right)=\frac{\pi}{2}$,
for $0<|\mathrm{x}|<\sqrt{2}$ then find the value of x.
Short-cut solution :
Using Tech. $\because x-\frac{x^{2}}{2}+\frac{x^{3}}{3}-\frac{x^{4}}{4}+\ldots=\frac{x}{1+\frac{x}{2}}=\frac{2 x}{2+x}$
And $x^{2}-\frac{x^{4}}{2}+\frac{x^{6}}{4}-\ldots=\frac{x^{2}}{1+\frac{x^{2}}{2}}=\frac{2 x^{2}}{2+x^{2}}$
$\therefore \sin ^{-1}\left(\frac{2 x}{2+x}\right)+\cos ^{-1}\left(\frac{2 x^{2}}{2+x^{2}}\right)=\frac{\pi}{2}$ and this is true when
$\frac{2 x}{2+x}=\frac{2 x^{2}}{2+x^{2}} \Rightarrow 2 x+x^{3}=2 x^{2}+x^{3}$
$\Rightarrow 2 x^{2}-2 x=0 \Rightarrow x(x-1)=0 \Rightarrow x=0$ or $x=1$
$\Rightarrow \quad x=1 \quad(x$ cannot be 0 as $0<|x|<\sqrt{2})$

Concept Booster Exercise

1. If $\cos \tan ^{-1} \sin \cot ^{-1} x=\mathrm{P}$; then find ' P '
(a) $\sqrt{\frac{x^{2}+1}{x^{2}+2}}$
(b) $\sqrt{\frac{x^{2}-1}{x^{2}+2}}$
(c) $\sqrt{\frac{x^{2}+1}{x^{2}-2}}$
(d) $\sqrt{\frac{x^{2}+3}{x^{2}-1}}$
2. $2 \tan ^{-1} x=\cos ^{-1}\left(\frac{1-a^{2}}{1+a^{2}}\right)-\cos ^{-1}\left(\frac{1-b^{2}}{1+b^{2}}\right) ;(a>0, b>0)$
(a) $\frac{a+b}{1+a b}$
(b) $\frac{a+b}{1-a b}$
(c) $\frac{a-b}{1+a b}$
(d) $\frac{a-b}{1-a b}$
3. If $u=\cot ^{-1} \sqrt{\cos 2 \theta}-\tan ^{-1} \sqrt{\cos 2 \theta}$, then
(a) $1+\sin u=\tan \theta$
(b) $1+\sin u=\tan ^{2} \theta$
(c) $1-\sin u=\tan ^{2} \theta$
(d) $\sin u=\tan ^{2} \theta$
4. $\tan \left(\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z\right)$ is equal to:
(a) $1+\cot \left(\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z\right)$
(b) $1-\cot \left(\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z\right)$
(c) $\cot \left(\cot ^{-1} x+\cot ^{-1} y+\cot ^{-1} z\right)$
(d) $\tan \left(1+\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z\right)$
5. The value of $\sqrt{1+x^{2}}\left[\left\{x \cos \left(\cot ^{-1} x\right)+\sin \left(\cot ^{-1} x\right)\right\}^{2}-1\right]^{1 / 2}$ is equal to
[AIEEE 2008]
(a) $\frac{x}{\sqrt{1+x^{2}}}$
(b) x
(c) $x \sqrt{1+x^{2}}$
(d) $\frac{\sqrt{1+x^{2}}}{1+x^{2}}$
6. Let $\tan ^{-1} y=\tan ^{-1} x+\tan ^{-1}\left(\frac{2 x}{1-x^{2}}\right)$ where $|x|<\frac{1}{\sqrt{3}}$. Then the value of y is:
[JEE M 2015]
(a) $\frac{3 x-x^{3}}{1+3 x^{2}}$
(b) $\frac{3 x+x^{3}}{1+3 x^{2}}$
(c) $\frac{3 x-x^{3}}{1-3 x^{2}}$
(d) $\frac{3 x+x^{3}}{1-3 x^{2}}$
7. Find value of $\sin ^{-1} \cos \left(\sin ^{-1} x\right)+\cos ^{-1} \sin \left(\cos ^{-1} x\right)$
(a) $\frac{\pi}{2}$
(b) $\frac{\pi}{3}$
(c) $\frac{\pi}{6}$
(d) $\frac{\pi}{12}$
8. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, then $\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}$ is equal to
(a) $x y z$
(b) $\frac{1}{x y z}$
(c) 1
(d) 0
9. $\tan \left[\tan ^{-1}\left(\frac{2}{1+1 \cdot 2}\right)+\tan ^{-1}\left(\frac{2}{1+2 \cdot 3}\right)+\ldots+\tan ^{-1}\left(\frac{2}{1+n(n+1)}\right)\right]$
(a) $\frac{3}{2}$
(b) $\frac{2}{3}$
(c) $-\frac{3}{2}$
(d) $-\frac{2}{3}$
10. If p, q, r are positive real numbers and
$\theta=\tan ^{-1}\left(\sqrt{\frac{p(p+q+r)}{q r}}\right)+\tan ^{-1}\left(\sqrt{\frac{q(p+q+r)}{p r}}\right)+\tan ^{-1}\left(\sqrt{\frac{r(p+q+r)}{p q}}\right)$, then $\tan \theta$ is equal to
(a) 1
(b) 0
(c) $\frac{p+q+r}{p q r}$
(d) $\frac{p q r}{p+q+r}$
11. If $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, then $x+y+z=$
(a) $x y+y z+z x$
(b) $x y z$
(c) $\frac{1}{x y z}$
(d) $-x y z$
12. Let $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\pi$ then
$x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=$
(a) $x y z$
(b) $\frac{1}{2} x y z$
(c) $2 x y z$
(d) $\frac{x y z}{3}$

Numerical Value Problems

13. If $\cos ^{-1} x+\cos ^{-1} y=2 \pi$, and $\sin ^{-1} x+\sin ^{-1} y=\mathrm{P}$, then find value of $4+[\mathrm{P}]$; where $[x]$ is greatest integer function.
14. Find number of solutions of $\cos ^{-1} x=\tan ^{-1} x \forall x \in[-1,1]$.
15. Find number of solutions of $\sin ^{-1} x=1-x \forall x \in[-1,1]$.
16. The values of ' x ' satisfying the inequality $\cos ^{-1} x>\sin ^{-1} x \forall x \in[-1,1]$ is $[-1, \mathrm{P}]$, then find the value of $[\mathrm{P}]$; where [] is greatest integer function.
17. The value of ' x ' satisfying the inequality $2\left(\tan ^{-1} x\right)^{2}-5 \tan ^{-1} x+3<0$ is $\left(\tan K_{1}, \tan K_{2}\right)$ then find the value of $K_{1}+\underset{\substack{\uparrow \\(T w o)}}{2 K_{2}}$.

Sofutions

1. (a) Using T-1 Put $x=0$
$\Rightarrow \quad \cos \tan ^{-1} \sin \cot ^{-1} 0=\frac{1}{\sqrt{2}}=\mathrm{P}$
Now check options (a), (b), (c), (d) for $x=0$
2. (c) Using T-3 Put $a=b=1$
$\Rightarrow 2 \tan ^{-1} x=0 \Rightarrow x=0$
Now check options (a), (b), (c), (d) for $a=b=1$
3. (d) Using T-1 Put $\theta=0 \Rightarrow u=0$

Now check options (a), (b), (c), (d) for $\theta=0$ and $u=0$
4. (c) Using T-3 Put $x=y=z=0 \Rightarrow \tan 0=0$

Now check options (a), (b), (c), (d) for $x=y=z=0$
5. (c) Using T-1 Put $x=1$
$\Rightarrow \sqrt{2}\left[\left\{\frac{1}{\sqrt{2}}+\frac{1}{\sqrt{2}}\right\}^{2}-1\right]^{\frac{1}{2}}=\sqrt{2}$
Now, check options a, b, c, d for $x=1$
6. (c) Using T-1 Put $x=1 \Rightarrow \tan ^{-1} y=\frac{3 \pi}{4} \Rightarrow y=-1$

Now, check options (a), (b), (c), (d) for $x=1$
7. (a) Using T-1 Put $x=0$
$\Rightarrow \sin ^{-1} \cos (0)+\cos ^{-1} \sin \frac{\pi}{2}=\frac{\pi}{2}$.
8. (c) Using T-3 Put, $\tan ^{-1} x=\tan ^{-1} y=\tan ^{-1} z=\frac{\pi}{3}$
$\Rightarrow \quad x=y=z=\sqrt{3}$
Now, $\frac{1}{x y}+\frac{1}{y z}+\frac{1}{z x}=\frac{1}{3}+\frac{1}{3}+\frac{1}{3}=1$.

Authentic Shortcuts-Tips \& Tricks in Mathematics

9. (b) Using T-2 Put $n=1$

$$
\Rightarrow \tan \left(\tan ^{-1}\left(\frac{2}{3}\right)\right)=\frac{2}{3} .
$$

10. (b) Using T-2 Put $p=q=r=1$
$\Rightarrow \theta=\tan ^{-1} \sqrt{3}+\tan ^{-1} \sqrt{3}+\tan ^{-1} \sqrt{3}=\pi$.
11. (b) Using T-3 Put $x=y=z=\sqrt{3}$ $\Rightarrow x+y+z=3 \sqrt{3}=x y z$.
12. (c) Using T-3 Put $\sin ^{-1} x=\sin ^{-1} y=\sin ^{-1} z=\frac{\pi}{3}$
$\Rightarrow \quad x=y=z=\frac{\sqrt{3}}{2}$
$\Rightarrow x \sqrt{1-x^{2}}+y \sqrt{1-y^{2}}+z \sqrt{1-z^{2}}=\frac{3 \times \sqrt{3}}{4}=\frac{3 \sqrt{3}}{4}$
Now, check options (a), (b), (c), (d) for $x=y=z=\frac{\sqrt{3}}{2}$
$\Rightarrow \quad 2 x y z=2 \times\left(\frac{\sqrt{3}}{2}\right)^{3}=\frac{3 \sqrt{3}}{4}$
13. (0) Using T-3 Put $\cos ^{-1} x=\cos ^{-1} y=\pi \Rightarrow x=y=-1$

Now, $\sin ^{-1}(-1)+\sin ^{-1}(-1)=\mathrm{P}=-\pi$
$\Rightarrow 4+[-\pi]=4+(-4)=0$
14. (1) Using SC-1 Drawing graphs of $y=\cos ^{-1} x$ and $y=\tan ^{-1} x$

Number of intersection $=1=$ No. of solution.
15. (1) Using SC-1 Drawing graphs of $y=\sin ^{-1} x$ and $y=1-x$

Number of intersection $=$ No. of solution $=1$.
16. (0) Using SC-1 Drawing graphs of $y=\sin ^{-1} x$ and $y=\cos ^{-1} x$

Number of intersection $=$ No. of solution $=1$.
$\therefore \cos ^{-1} x>\sin ^{-1} x$ when $x \in\left[-1, \frac{1}{\sqrt{2}}\right]$
$\therefore P=\frac{1}{\sqrt{2}} \Rightarrow[\mathrm{P}]=\left[\frac{1}{\sqrt{2}}\right]=[0.707]=0$
17. (4) Using SC-1 $2\left(\tan ^{-1} x\right)^{2}-5 \tan ^{-1} x+3<0$
$\Rightarrow \quad\left(\tan ^{-1} x-1\right)\left(\tan ^{-1} x-\frac{3}{2}\right)<0$
$\Rightarrow \quad \tan ^{-1} x \in\left(1, \frac{3}{2}\right)$
Now, drawing graph of $y=\tan ^{-1} x$

Hence, it is clear from graph that

$$
x \in\left(\tan 1, \tan \frac{3}{2}\right) \Rightarrow K_{1}=1, K_{2}=\frac{3}{2} .
$$

Hence,

$$
K_{1}+2 K_{2}=1+\frac{3}{2} \cdot 2=4
$$

